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A RELATED WORK

In the sequel, we discuss the related works.

RL for solving NE in Markov games Our work adds to the vast body of existing literature on
RL for finding Nash equilibria in Markov games. In particular, there is a line of works that gener-
alizes single-agent RL algorithms to Markov games under either the generative model (Azar et al.,
2013) or offline settings with well-explored datasets (Littman, 2001; Greenwald et al., 2003; Hu &
Wellman, 2003; Lagoudakis & Parr, 2012; Hansen et al., 2013; Perolat et al., 2015; Jia et al., 2019;
Sidford et al., 2020; Cui & Yang, 2020; Fan et al., 2020; Daskalakis et al., 2021; Zhao et al., 2021).
These works all aim to find the Nash equilibrium and their algorithms are generalizations of single-
agent RL algorithms. In particular, Littman (2001; 1994); Greenwald et al. (2003); Hu & Wellman
(2003) generalize Q-learning (Watkins & Dayan, 1992) to Markov games and establish asymptotic
convergence guarantees. Jia et al. (2019); Sidford et al. (2020); Zhang et al. (2020a); Cui & Yang
(2020) propose variants of Q-learning or value iteration (Shapley, 1953) algorithms under the gen-
erative model setting. Moreover, Perolat et al. (2015); Fan et al. (2020) study the sample efficiency
of fitted value iteration (Munos & Szepesvári, 2008) for zero-sum Markov games under the offline
setting. They assume the behavior policy is explorative in the sense that the concentrability coeffi-
cients (Munos & Szepesvári, 2008) are uniformly bounded. Under similar assumptions, Daskalakis
et al. (2021); Zhao et al. (2021) study the sample complexity of policy gradient (Sutton et al., 1999)
under the well-explored offline setting. Moreover, under the online setting, there is a recent line of
research that proposes provably efficient RL algorithms for zero-sum Markov games. See, e.g., Wei
et al. (2017); Bai et al. (2020); Bai & Jin (2020); Liu et al. (2020a); Tian et al. (2020); Xie et al.
(2020); Chen et al. (2021b) and the references therein. These works propose optimism-based algo-
rithms and establish sublinear regret guarantees for finding NE. Among these works, our work is
particularly related to Xie et al. (2020); Chen et al. (2021b), whose algorithms also incorporate the
linear function approximation. Compared with these aforementioned works, we focus on solving
the Stackelberg-Nash equilibrium, which involves a bilevel structure and is fundamentally different
from the Nash equilibrium. Thus, our work is not directly comparable.

Related single-agent RL methods Broadly speaking, our work is also related to the recent line
of works that achieve sample efficiency in single-agent RL under the online setting. See, e.g., (Azar
et al., 2017; Jin et al., 2018; Yang & Wang, 2019; Zanette & Brunskill, 2019; Jin et al., 2020b; Zhou
et al., 2020; Ayoub et al., 2020; Yang & Wang, 2020; Zanette et al., 2020b;a; Zhang et al., 2020c;b;
Agarwal et al., 2020) and the references therein. In particular, following the optimism in the face
of uncertainty principle, these works achieve near-optimal regret under either tabular or function
approximation settings. Meanwhile, for offline RL with an arbitrary dataset, various recent works
propose to utilize pessimism for achieving robustness. See, e.g., (Yu et al., 2020; Kidambi et al.,
2020; Kumar et al., 2020; Jin et al., 2020c; Liu et al., 2020b; Buckman et al., 2020; Rashidinejad
et al., 2021) and the references therein. These aforementioned works all focus on the single-agent
setting and we prove that optimism and pessimism also play an indispensable role in achieving
sample efficiency in finding SNE.

B NOTATION

We denote by ‖·‖2 the `2-norm of a vector or the spectral norm of a matrix. We also let ‖·‖op denote
the matrix operator norm. Furthermore, for a positive definite matrix A, we denote by ‖x‖A the
weighted norm

√
x>Ax of a vector x. Also, we denote by ∆(A) the set of probability distributions

on a set A. For some positive integer K, [K] denotes the index set {1, 2, · · · ,K}.

C PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Recall the regret defined in (3.1) takes the following form

Regret(K) =

K∑
k=1

V π
∗,ν∗

l,1 (xk1)− V π
k,ν∗(πk)

l,1 (xk1)︸ ︷︷ ︸
Regretl(K)

+

N∑
i=1

K∑
k=1

V
πk,ν∗(πk)
fi,1

(xk1)− V
πk,νkfi

,ν∗f−i
(πk)

fi,1
(xk1)︸ ︷︷ ︸

Regretf (K)

.

(C.1)
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By the leader-controller assumption (Assumption 2.1), we have the following lemma.

Lemma C.1. For any k ∈ [K], we have νk = ν∗(πk). Here ν∗(·) is defined in (2.6).

Proof. See §C.1 for a detailed proof.

Combining Lemma C.1 and (C.1), we have

Regret(K) =

K∑
k=1

[V π
∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1)]. (C.2)

Then we establish an upper bound for this term. To facilitate our analysis, for any (k, h) ∈ [K]×[H]
we define the model prediction error by

δkh = rl,h + PhV kh+1 −Qkh. (C.3)

Moreover, for any (k, h) ∈ [K]× [H], we define ζ1
k,h and ζ2

k,h as

ζ1
k,h = [V kh (xkh)− V π

k,νk

l,h (xkh)]− [Qkh(xkh, a
k
h, b

k
h)−Qπ

k,νk

l,h (xkh, a
k
h, b

k
h)],

ζ2
k,h = [(PhV kh+1)(xkh, a

k
h, b

k
h)− (PhV π

k,νk

l,h+1 )(xkh, a
k
h, b

k
h)]− [V kh+1(xkh+1)− V π

k,νk

l,h+1 (xkh+1)].
(C.4)

Recall that (πk, νk = {νkfi}i∈[N ]) are the policies executed by the leader and the followers in the
k-th episode, which generate a trajectory {xkh, akh, bkh = {bki,h}i∈[N ]}h∈[H]. Thus, we know that ζ1

k,h

and ζ2
k,h characterize the randomness of choosing actions akh ∼ πkh(· |xkh) and bkh ∼ νkh(· |xkh) and

the randomness of drawing the next state xkh+1 ∼ Ph(· |xkh, akh, bkh), respectively.

To establish an upper bound for (C.2), we introduce the following lemma, which decomposes this
term into three parts using the notations defined above.

Lemma C.2 (Regret Decomposition). We can decompose (C.2) as follows.

Regret(K) =

K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
(l.1): Computational Error

+

K∑
k=1

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
(l.2): Statistical Error

+

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h)︸ ︷︷ ︸
(l.3): Randomness

,

where 〈Qkh(xkh, ·, ·), π∗h(· |xkh) × ν∗h(· |xkh) − πkh(· |xkh) × νkh(· |xkh)〉 =
〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh) × ν∗f1,h(· |xkh) × · · · ν∗fN ,h(· |xkh) − πkh(· |xkh) × νkf1,h(· |xkh) ×
· · · νkfN ,h(· |xkh)〉Al×Af .

Proof. See §C.2 for a detailed proof.

Remark C.3. Similar regret decomposition results also appear in the single-agent RL literature (Cai
et al., 2020; Efroni et al., 2020; Yang et al., 2020), and they can be regarded as the special case of
Lemma C.2. Moreover, our regret decomposition lemma is independent of the leader-controller
linear setting in Assumption 2.1, and thus, can be applied to more general settings.

Lemma C.2 states that the regret has three sources: (i) computational error, which represents the
convergence of the algorithm with the known model, (ii) statistical error, that is, the error caused by
the inaccurate estimation of the model, and (iii) randomness, as aforementioned, which comes from
executing random policies and interaction with random environment.

Returning to the main proof, we only need to characterize these three types of errors, respectively.
We first characterize the computational error by the following lemma.
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Lemma C.4 (Optimization Error). It holds that

K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉] ≤ εKH.

Proof. See §C.3 for a detailed proof.

Then, we establish an upper bound for the statistical error. Due to the uncertainty that arises from
only observing limited data, the model prediction errors can be possibly large for the triple (x, a, b)
that are less visited or even unseen. Fortunately, however, we have the following lemma which
characterizes the model prediction errors defined in (C.3).

Lemma C.5 (Optimism). It holds with probability at least 1− p/2 that

−2 min{H,Γkh(x, a)} ≤ δkh(x, a, b) ≤ 0

for any (k, h) ∈ [K]× [H] and (x, a, b) ∈ S ×Al ×Af .

Proof. See §C.4 a detailed proof.

Lemma C.5 states that δkh(x, a, b) ≤ 0 for any (x, a, b) ∈ S × A ×A. Combining the definition of
model prediction error in (C.3), we obtain

Qkh(x, a, b) ≥ rl,h(x, a, b) + (PhV kh+1)(x, a, b),

which further implies that the estimated Q-function Qk?,h is “optimistic in the face of uncertainty”.
Moreover, Lemma C.5 implies that −δkh(x, a, b) ≤ 2 min{H,Γkh(x, a)}. Thus we only need to
establish an upper bound for 2

∑K
k=1

∑H
h=1 min{H,Γkh(xkh, a

k
h)}, which is the total price paid for

the optimism. As shown in the following lemma, we can derive an upper bound for this term by the
elliptical potential lemma (Abbasi-Yadkori et al., 2011).

Lemma C.6. For the bonus function Γkh defined in Line 7 of Algorithm 1, it holds that

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} ≤ O(

√
d2H3Tι2).

Here p ∈ (0, 1) and ι = log(2dT/p) are defined in Theorem 3.3.

Proof. See §C.5 for a detailed proof.

It remains to analyze the randomness, which is the purpose of the following lemma.

Lemma C.7. For the ζ1
k,h and ζ2

k,h defined in Lemma C.2 and any p ∈ (0, 1), it holds with proba-
bility at least 1− p/2 that

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h) ≤
√

16KH3 · log(4/p).

Proof. See §C.6 for a detailed proof.

Putting above lemmas together, we obtain

Regret(K) ≤ O(
√
d2H3Tι2) (C.5)

with probability at least 1− p, which concludes the proof of Theorem 3.3.
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C.1 PROOF OF LEMMA C.1

Proof of Lemma C.1. Fix k ∈ [K], by the definition of the best response in (2.5), we have

BR(πk) = {ν = {νfi}i∈[N ] | ν is the NE of the followers given the leader policy πk}

= {ν = {νfi}i∈[N ] | ν is the NE of {V π
k,ν

fi,h
(x)}i∈[N ], ∀h ∈ [H] and x ∈ S}

= {ν = {νfi}i∈[N ] | ν is the NE of {rπ
k,ν
fi,h

(x)}i∈[N ], ∀h ∈ [H] and x ∈ S}, (C.6)

where rπ
k,ν
fi,h

(x) = 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x)× νf1,h(· |x)× · · · × νfN ,h(· |x)〉Al×Af . Here the
last inequality uses Bellman equality (2.2) and Assumption 2.1, which assumes the leader-controller
game. Moreover, by the definition of ν∗(πk) defined in (2.6), we have that

ν∗h(πk) = {ν∗fi,h(πk)}i∈[N ] ∈ argmin
ν∈BR(πk)

V π
k,ν

l,h (x) = argmin
ν∈BR(πk)

rπ
k,ν
l,h (x), (C.7)

where rπ
k,ν
l,h (x) = 〈rl,h(x, ·, ·, · · · , ·), πkh(· |x) × νf1,h(· |x) × · · · × νfN ,h(· |x)〉Al×Af . Here the

last equality uses Assumption 2.1.

Recall that, in the subroutine ε-SNE (Algorithm 2), we pick the function Q̃ ∈ Qkh,ε such that ‖Qkh−
Q̃‖∞ ≤ ε and solve the matrix game defined in (3.6). Here Qkh,ε is the class of functions Q :
S ×Al ×Af → R that takes form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h
{
φ(·, ·)>w + β ·

(
φ(·, ·)>Λ−1φ(·, ·)

)1/2}
, (C.8)

where ‖w‖2 ≤ H
√
dk and λmin(Λ) ≥ 1. Thus, given the leader policy πk, the best response of the

followers for the matrix game defined in (3.6) takes the form

BR′(πk) = {ν | ν is the NE of {〈rfi,h(x, ·, ·), πkh(· |x)× νh(· |x)〉}i∈[N ],∀h ∈ [H] and x ∈ S}
= BR(πk) (C.9)

where 〈rfi,h(x, ·, ·), πkh(· |x) × νh(· |x)〉 is the shorthand of 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x) ×
νf1,h(· |x) × · · · × νfN ,h(· |x)〉Al×Af . Here the last equality uses (C.6). Similarly, by the defi-
nition of Qkh,ε in (C.8), we can obtain that

argmin
νh

〈Q̃(x, ·, ·), πkh(· |x)× νh(· |x)〉 = argmin
νh

〈rl,h(x, ·, ·), πkh(· |x)× νh(· |x)〉, (C.10)

where 〈rl,h(x, ·, ·), πkh(· |x) × νh(· |x)〉 is the abbreviation of 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x) ×
νf1,h(· |x) × · · · × νfN ,h(· |x)〉Al×Af Together with (C.7) and (C.9), we have that, for the
matrix game with payoff matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), the policy νkh(· |xkh) =

{νkfi,h(· |xkh)}i∈[N ] is also the best response of πkh(· |xkh) and breaks ties against favor of the leader.
Therefore, we have νk = ν∗(πk) for any k ∈ [K], which concludes the proof of Lemma C.1.

C.2 PROOF OF LEMMA C.2

First, we establish a more general regret decomposition lemma, which immediately implies Lemma
C.2.

Lemma C.8 (General Decomposition for One Episode). Fix k ∈ [K]. Suppose (πk, νk =
{νkfi}i∈[N ]) are the policies executed by the leader l and the followers {fi}i∈[N ] in the k-th episode.
Moreover, suppose that Qk?,h and V k?,h = 〈Qk?,h, πkh × νkh〉 are the estimated Q-function and
value function for any ? ∈ {l, f1, · · · , fN} at h-th step of k-th episode. Then, for any policies
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(π, ν = {νfi}i∈[N ]) and ? ∈ {l, f1, · · · , fN}, we have

V π,ν?,1 (xk1)− V π
k,νk

?,1 (xk1)

=

H∑
h=1

Eπ,ν [〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
Computational Error

+

H∑
h=1

(
Eπ,ν [δk?,h(xh, ah, bh)]− δk?,h(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
Statistical Error

+

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)︸ ︷︷ ︸
Randomness

,

where 〈Qk?,h, πkh × νkh〉 = 〈Qk?,h, πkh × νkf1,h × · · · × ν
k
fN ,h
〉Al×Af and 〈Qkh(xkh, ·, ·), π∗h(· |xkh) ×

ν∗h(· |xkh) − πkh(· |xkh) × νkh(· |xkh)〉 = 〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh) × ν∗f1,h(· |xkh) ×
· · · ν∗fN ,h(· |xkh) − πkh(· |xkh) × νkf1,h(· |xkh) × · · · νkfN ,h(· |xkh)〉Al×Af . Here δk?,h is the model pre-
diction error defined by

δk?,h = r?,h + PhV k?,h+1 −Qk?,h, (C.11)

and ζ1
?,k,h and ζ2

?,k,h are defined by

ζ1?,k,h = [V k?,h(x
k
h)− V π

k,νk

?,h (xkh)]− [Qk?,h(x
k
h, a

k
h, b

k
h)−Qπ

k,νk

?,h (xkh, a
k
h, b

k
h)],

ζ2?,k,h = [(PhV k?,h+1)(x
k
h, a

k
h, b

k
h)− (PhV π

k,νk

?,h+1 )(x
k
h, a

k
h, b

k
h)]− [V k?,h+1(x

k
h+1)− V π

k,νk

?,h+1 (x
k
h+1)].

(C.12)

Proof of Lemma C.8. To facilitate our analysis, for any ν = {νfi}i∈[N ] and (h, x) ∈ [H] × S, we
denote νf1,h(· |x) × · · · νfN ,h(· |x) by νh(· |x). Moreover, we define two operators Jh and Jk,h
respectively by

(Jhf)(x) = 〈f(x, ·, ·), πh(· |x)× νh(· |x)〉,
(Jk,hf)(x) = 〈f(x, ·, ·), πkh(· |x)× νkh(· |x)〉

(C.13)

for any h ∈ [H] and any function f : S ×Al ×Af → R. Also, we define

ξk?,h(x) = (JhQk?,f )(x)− (Jk,hQk?,f )(x)

= 〈Qk?,h(x, ·, ·), πh(· |x)× νh(· |x)− πkh(· |x)× νkh(· |x)〉 (C.14)

for any (h, x) ∈ [H]× S and ? ∈ {l, f1, · · · , fN}.
Under the above notations, we decompose the regret at the k-th episode into the following two terms,

V π,ν?,1 (xk1)− V π
k,νk

1 (xk1) = V π,ν?,1 (xk1)− V k?,1(xk1)︸ ︷︷ ︸
(i)

+V k?,1(xk1)− V π
k,νk

1 (xk1)︸ ︷︷ ︸
(ii)

. (C.15)

Then we characterize these two terms respectively.

Term (i). By the Bellman equation in (2.2) and the definition of the operator Jh in (C.13), we have
V π,ν?,h = JhQπ,ν?,h . Similar, by the definition of V k?,h and the definition of the operator Jk,h in (C.13),
we have V k?,h = Jk,hQk?,h. Hence, for any h ∈ [H], we have

V π,ν?,h − V
k
?,h = JhQπ,ν?,h − Jk,hQk?,h = (JhQπ,ν?,h − JhQk?,h) + (JhQk?,h − Jk,hQk?,h)

= Jh(Qπ,ν?,h −Q
k
?,h) + ξk?,h, (C.16)

where the last inequality is obtained by the fact that Jh is a linear operator and the definition of ξk?,h
in (C.14). Meanwhile, by the Bellman equation in (2.2) and the definition of the prediction error
δk?,h in (C.3), we obtain

Qπ,ν?,h −Q
k
?,h = (r?,h + PhV π,ν?,h+1)− (r?,h + PhV k?,h+1 − δk?,h)

= Ph(V π,ν?,h+1 − V
k
?,h+1) + δk?,h. (C.17)
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Putting (C.16) and (C.17) together, we further obtain

V π,ν?,h − V
k
?,h = JhPh(V π,ν?,h+1 − V

k
?,h+1) + Jhδk?,h + ξk?,h (C.18)

for any h ∈ [H] and ? ∈ {l, f1, · · · , fN}. By recursively applying (C.18) for all h ∈ [H], we have

V π,ν?,1 − V k?,1 =
( H∏
h=1

JhPh
)

(V π,ν?,H+1 − V
πk,νk

?,H+1) +

H∑
h=1

( h∑
i=1

JiPi
)
Jhδk?,h +

H∑
h=1

( h∑
i=1

JiPi
)
ξk?,h

=

H∑
h=1

( h∑
i=1

JiPi
)
Jhδk?,h +

H∑
h=1

( h∑
i=1

JiPi
)
ξk?,h, (C.19)

where the last equality follows from the fact that V π,ν?,H+1 = V π
k,νk

?,H+1 = 0. Thus, by utilizing the
definition of ξk?,h in (C.14), we further obtain

V π,ν?,1 (xk1)− V k?,1(xk1) = Eπ,ν
[ H∑
h=1

〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
]

+ Eπ,ν
[ H∑
h=1

δk?,h(xh, ah, bh)

]
(C.20)

for any k ∈ [K] and ? ∈ {l, f1, · · · , fN}.

Term (ii). Recall that we denote {bkfi,h}i∈[N ] by bkh for any h ∈ [H]. Then, for any h ∈ [H] and
? ∈ {l, f1, · · · , fN}, by the definition of model prediction error in (C.11), we have

δk?,h(xkh, a
k
h, b

k
h) = rk?,h(xkh, a

k
h, b

k
h) + (PhV k?,h+1)(xkh, a

k
h, b

k
h)−Qk?,h(xkh, a

k
h, b

k
h)

= [rk?,h(xkh, a
k
h, b

k
h) + (PhV k?,h+1)(xkh, a

k
h, b

k
h)−Qπ

k,νk

?,h (xkh, a
k
h, b

k
h)]

+ [Qπ
k,νk

?,h (xkh, a
k
h, b

k
h)−Qk?,h(xkh, a

k
h, b

k
h)]

= (PhV k?,h+1 − PhV π
k,νk

?,h+1 )(xkh, a
k
h, b

k
h) + (Qπ

k,νk

?,h −Qk?,h)(xkh, a
k
h, b

k
h) (C.21)

where the last equation is obtained by the Bellman equation in (2.2). Thus, by (C.21), we have

V k?,h(xkh)− V π
k,νk

?,h (xkh)

= V k?,h(xkh)− V π
k,νk

?,h (xkh) + (Qπ
k,νk

?,h −Qk?,h)(xkh, a
k
h, b

k
h)

+ (PhV k?,h+1 − PhV π
k,νk

?,h+1 )(xkh, a
k
h, b

k
h)− δk?,h(xkh, a

k
h, b

k
h)

= V k?,h(xkh)− V π
k,νk

?,h (xkh)− (Qk?,h −Q
πk,νk

?,h )(xkh, a
k
h, b

k
h)

+
(
Ph(V k?,h+1 − V

πk,νk

?,h+1 )
)
(xkh, a

k
h, b

k
h)− (V k?,h+1 − V

πk,νk

?,h+1 )(xkh)

+ (V k?,h+1 − V
πk,νk

?,h+1 )(xkh)− δk?,h(xkh, a
k
h, b

k
h) (C.22)

for any h ∈ [H] and ? ∈ {l, f1, · · · , fN}. By the definitions of ζ1
?,k,h and ζ2

?,k,h in (C.12), (C.22)
can be written as

V k?,h(xkh)− V π
k,νk

?,h (xkh) = [V k?,h+1(xkh)− V π
k,νk

?,h+1 (xkh)] + ζ1
?,k,h + ζ2

?,k,h − δk?,h(xkh, a
k
h, b

k
h).

(C.23)

For any ? ∈ {l, f1, · · · , fN}, recursively expanding (C.23) across h ∈ [H] yields

V k?,1(xk1)− V π
k,νk

?,1 (xk1)

= V k?,H+1(xkH+1)− V π
k,νk

?,H+1(xkH+1) +

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)−
H∑
h=1

δk?,h(xkh, a
k
h, b

k
h)

=

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)−
H∑
h=1

δk?,h(xkh, a
k
h, b

k
h), (C.24)
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where the last equality follows from the fact that V k?,H+1(xkH+1) = V π
k,νk

?,H+1(xkH+1) = 0.

Plugging (C.20) and (C.24) into (C.15), we obtain

V π,ν?,1 (xk1)− V π
k,νk

?,1 (xk1)

=

H∑
h=1

Eπ,ν [〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
Computational Error

+

H∑
h=1

(
Eπ,ν [δk?,h(xh, ah, bh)]− δk?,h(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
Statistical Error

+

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)︸ ︷︷ ︸
Randomness

for any (π, ν) and ? ∈ {l, f1, · · · , fN}. Therefore, we conclude the proof of Lemma C.2.

Proof of Lemma C.2. For any k ∈ [K], applying Lemma C.8 with (π, ν) = (π∗, ν∗), we obtain

V π
∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1)

=

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]

+

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

+

H∑
h=1

(ζ1
k,h + ζ2

k,h).

Taking summation over k ∈ [K], we decompose (C.2) as desired, which concludes the proof of
Lemma C.2.

C.3 PROOF OF LEMMA C.4

Proof of Lemma C.4. By the same argument in §C.1 (replacing πk by π∗), we have that, for the ma-
trix game with payoff matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), ν∗h(· |xkh) is also the best response
of π∗h(· |xkh) and breaks ties against favor of the leader.

Recall that (πkh(· |xkh), νkh(· |xkh) = {νkfi,h(· |xkh)}i∈[N ]) is the Stackelberg-Nash equilibrium of
the matrix game with payoff matrices (Q̃(xkh, ·, ·, ·), {rkfi,h(xkh, ·, ·, ·)}i∈[N ]), which implies that
πkh(· |xkh) is the “best response to the best response”, which further implies that

〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 ≤ 0 (C.25)

for any (k, h) ∈ [K]× [H]. Thus, for any (k, h) ∈ [K]× [H], we have

〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
= 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
≤ ε, (C.26)

where the last inequality uses (C.25) and the fact that ‖Qkh − Q̃‖∞ ≤ ε. By taking summation over
(k, h) ∈ [K]× [H], we conclude the proof of Lemma C.4.
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C.4 PROOF OF LEMMA C.5

Proof of Lemma C.5. Recall that the estimated Q-function Qkh defined in Line 8 of Algorithm 1
takes the following form:

Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·)>wkh + Γkh(·, ·)},

where wkh = (Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h) · V kh+1(xτh+1)

)
.

(C.27)

Here Λkh and Γkh are defined in Lines 5 and 7 of Algorithm 1, respectively. Meanwhile, by Assump-
tion 2.1, we have

(PhV kh+1)(x, a, b) = φ(x, a)>〈µh, V kh+1〉
= φ(x, a)>(Λkh)−1Λkh〈µh, V kh+1〉 (C.28)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af . Here 〈µh, V kh+1〉 =
∫
S V

k
h+1(x′)dµh(x′).

Together with the definition of Λkh in Line 5 of Algorithm 1, we further obtain

(PhV kh+1)(x, a, b) = φ(x, a)>(Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)>〈µh, V kh+1〉+ 〈µh, V kh+1〉

)
= φ(x, a)>(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h) · (PhV kh+1)(xτh, a

τ
h, b

τ
h) + 〈µh, V kh+1〉

)
,

(C.29)

for any (k, h, x, a, b) ∈ [K]× [H]×S×Al×Af . Here the last equality uses (C.28). Putting (C.27)
and (C.29) together, we have

φ(x, a)>wkh − (PhV kh+1)(x, a, b)

= φ(x, a)>(Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
))

︸ ︷︷ ︸
(i)

(C.30)

− φ(x, a)>(Λkh)−1〈µh, V kh+1〉︸ ︷︷ ︸
(ii)

for any (k, h, x, a, b) ∈ [K]×[H]×S×Al×Af . Then we upper bound these two terms respectively.

Term (i). By Cauchy-Schwarz inequality, we have

|(i)| ≤ ‖φ‖(Λkh)−1 ·
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1
(C.31)

for any (k, h, x, a) ∈ [K] × [H] × S × Al. Under the event E defined in Lemma C.9, we further
have

|(i)| ≤ C ′dH
√

log(2dT/p) · ‖φ(x, a)‖(Λkh)−1 (C.32)

for any (k, h, x, a) ∈ [K]× [H]× S ×Al.

Term (ii). Similarly, by Cauchy-Schwarz inequality, we obtain

|(ii)| ≤ ‖φ(x, a)‖(Λkh)−1 · ‖〈µh, V kh+1〉‖(Λkh)−1

≤ ‖φ(x, a)‖(Λkh)−1 · ‖〈µh, V kh+1〉‖2 ≤
√
d · ‖φ(x, a)‖(Λkh)−1 (C.33)

for any (k, h, x, a) ∈ [K] × [H] × S × Al. Here the second inequality follows from the fact that
Λkh � I and the last inequality is obtained by

‖〈µh, V kh+1〉‖2 ≤ ‖V kh+1‖∞ · ‖µh(S)‖2 ≤ H
√
d.
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Here we use the fact that ‖V kh+1‖∞ ≤ H and Assumption 2.1, which assumes ‖µh(S)‖2 ≤
√
d.

Plugging (C.32) and (C.33) into (C.30), we obtain that

|φ(x, a)>wkh − (PhV kh+1)(x, a, b)| ≤ CdH
√

log(2dT/p) · ‖φ(x, a)‖(Λkh)−1 (C.34)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al ×Af under the event E . Here C > 0 is a constant. By
setting

β = CdH
√

log(2dT/p) (C.35)

in Line 7 of Algorithm 1, (C.34) gives

|φ(x, a)>wkh − (PhV kh+1)(x, a, b)| ≤ Γkh(x, a) (C.36)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al ×Af under the event E . Meanwhile, by the truncation
in Line 8 of Algorithm 1 and the fact that rl,h ∈ [−1, 1], we have Qkh ∈ [−(H −h+ 1), H −h+ 1],
which further implies that

V kh ∈ [−(H − h+ 1), H − h+ 1] (C.37)

for any (k, h) ∈ [K]× [H]. Hence, by (C.36), we have

φ(x, a)>wkh + Γkh(x, a) ≥ (PhV kh+1)(x, a, b) ≥ H − h (C.38)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af under the event E , where the last inequality is
obtained by (C.37). Thus, for the model prediction error defined in (C.3), we have

−δkh(x, a, b) = Qkh(x, a, b)− rl,h(x, a, b)− PhV kh+1(x, a, b)

≤ φ(x, a)>wkh + Γkh(x, a)− PhV kh+1(x, a, b)

≤ 2Γkh(x, a) (C.39)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af under the event E . Moreover, by the definition
of the model prediction error, we have −δkh(·, ·, ·) ≤ 2H . Together with (C.39), we have

−δkh(x, a, b) ≤ 2 min{H,Γkh(x, a)} (C.40)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al ×Af under the event E . On the other hand, by (3.4),
we have

δkh(x, a, b) = rl,h(x, a, b) + PhV kh+1(x, a, b)−Qkh(x, a, b)

≤ PhV kh+1(x, a, b)−min{φ(x, a)>wkh + Γkh(x, a), H − h}
= max{PhV kh+1(x, a, b)− φ(x, a)>wkh − Γkh(x, a),PhV kh+1(x, a, b)− (H − h)}
≤ 0 (C.41)

for any (k, h, x, a, b) ∈ [K]× [H]×S×Al×Af under the event E . Here the last inequality follows
from (C.36) and the fact that V kh+1 ≤ H − h. Combining (C.40) and (C.41), we conclude the proof
of Lemma C.5.

Lemma C.9. For any p ∈ (0, 1], the event E that, for any (k, h) ∈ [K]× [H],∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1
≤ C ′dH

√
log(2dT/p)

happens with probability at least 1− p/2, where C ′ > 0 is an absolute constant.

Proof of Lemma C.9. Fix (k, h) ∈ [K] × [H]. By Lemma C.10, we have wkh+1 ≤ H
√
dk, which

implies that Qkh+1 ∈ Qkh+1,ε. Here Qkh+1,ε is defined in (3.5). Moreover, as shown in Algo-
rithm 2, we find a Q̃ in the ε-net Qkh+1,ε such that ‖Qkh+1 − Q̃‖∞ ≤ ε. For any x ∈ S, let
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(π̃(· |x), ν̃ = {νfi}Ni=1) be the Stackelberg-Nash equilibrium of the matrix game with payoff matri-
ces (Q̃(x, ·, ·), {rfi,h+1(x, ·, ·)}Ni=1). Moreover, we define Ṽ (x) = Ea∼π̂(· | x),b∼ν̂(· | x)[Q̃(x, a, b)]
for any x ∈ S. Then, we have

∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1

≤
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h) ·

(
Ṽ (xτh+1)− (PhṼ )(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1︸ ︷︷ ︸
(i)

(C.42)

+
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h) ·

(
[V kh+1(xτh+1)− Ṽ (xτh+1)]−

(
Ph(V kh+1 − Ṽ )

)
(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1︸ ︷︷ ︸
(ii)

.

By Lemma H.2 and a union bound argument, it holds for any Q̃ ∈ Qkh+1,ε with probability at least
1− p/2 that

|(i)| ≤ 4H2
(d

2
log(k + 1) + log

2Nε
p

)
, (C.43)

whereNε is the covering number of Qh+1,ε. Meanwhile, by applying Lemma H.4 with L = H
√
dk

and λ = 1, (C.43) gives that

|(i)| ≤ C ′dH
√

log(dT/p), (C.44)

with probability at least 1 − p/2. Here C ′ is a constant. Meanwhile, by the definition of V kh+1 in
Line 10 of Algorithm 1, we have V kh+1(x) = Ea∼π̂(· | x),b∼ν̂(· | x)[Q

k
h+1(x, a, b)], which yields that

|V kh+1(x)− Ṽ (x)| =
∣∣Ea∼π̂(· | x),b∼ν̂(· | x)[Q

k
h+1(x, a, b)− Q̃(x, a, b)]

∣∣
≤ Ea∼π̂(· | x),b∼ν̂(· | x)|Qkh+1(x, a, b)− Q̃(x, a, b)| ≤ ε

for any x ∈ S, which further implies that

|(ii)| ≤ ε ·
k−1∑
τ=1

‖φ(xτh, a
τ
h)‖(Λkh)−1 ≤ εk, (C.45)

where the last inequality follows from the fact that ‖φ(·, ·)‖(Λkh)−1 ≤ ‖φ(·, ·)‖2 ≤ 1 for any (k, h) ∈
[K] × [H]. Plugging (C.44) and (C.45) into (C.42), together with the fact that ε = 1/KH , we
conclude the proof of Lemma C.9.

Lemma C.10 (Bounded Weight of Value Functions). For all (k, h) ∈ [K] × [H], the linear coeffi-
cient wkh defined in (3.3) satisfies ‖wkh‖ ≤ H

√
kd.

Proof of Lemma C.10. By the definition of wkh in (3.3) and triangle inequality, we have

‖wkh‖ =
∥∥∥(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h) · V kh+1(xτh+1)

)∥∥∥
≤
k−1∑
τ=1

‖(Λkh)−1φ(xτh, a
τ
h) · V kh+1(xτh+1)‖. (C.46)
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Together with the fact that |V kh (·)| ≤ H for any (k, h) ∈ [K]× [H], (C.46) gives

‖wkh‖ ≤ H ·
k−1∑
τ=1

‖(Λkh)−1φ(xτh, a
τ
h)‖

≤ H ·
k−1∑
τ=1

‖(Λkh)−1/2‖ · ‖φ(xτh, a
τ
h)‖(Λkh)−1

≤ H ·
k−1∑
τ=1

‖φ(xτh, a
τ
h)‖(Λkh)−1 , (C.47)

where the second inequality uses Cauchy-Schwarz inequality and the last inequality follows from
the fact that Λkh � I for any (k, h) ∈ [K]× [H]. Then, by Cauchy-Schwarz inequality, we obtain

k−1∑
τ=1

‖φ(xτh, a
τ
h)‖(Λkh)−1 ≤

√
k ·
(k−1∑
τ=1

φ(xτh, a
τ
h)>(Λkh)−1φ(xτh, a

τ
h)
)1/2

=
√
k ·
(k−1∑
τ=1

Tr
(
φ(xτh, a

τ
h)>(Λkh)−1φ(xτh, a

τ
h)
))1/2

=
√
k ·
(

Tr
(
(Λkh)−1

k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)>
))1/2

. (C.48)

Meanwhile, recall that Λkh =
∑k−1
τ=1 φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I , we have

Tr
(

(Λkh)−1
k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)>
)
≤ Tr(I) = d. (C.49)

Plugging (C.48) and (C.49) into (C.47), we conclude the proof of Lemma C.10.

C.5 PROOF OF LEMMA C.6

Proof of Lemma C.6. Recall the definition of Γkh in Line 7 of Algorithm 1, we have

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} = 2β ·

K∑
k=1

H∑
h=1

min{H/β, ‖φ(xkh, a
k
h)‖(Λkh)−1}

≤ 2β ·
K∑
k=1

H∑
h=1

min{1, ‖φ(xkh, a
k
h)‖(Λkh)−1}. (C.50)

Here the last inequality uses the fact that β = CdH
√

log(2dT/p), where C > 1 is a constant. By
Cauchy-Schwarz inequality, we further obtain that

K∑
k=1

H∑
h=1

min{1, ‖φ(xkh, a
k
h)‖(Λkh)−1} ≤

H∑
h=1

(
K ·

K∑
k=1

min{1, ‖φ(xkh, a
k
h)‖2(Λkh)−1}

)
≤

H∑
h=1

√
K ·

(
2 log

(det(ΛK+1
h )

det(Λ1
h)

))1/2

, (C.51)

where the last inequality follows from Lemma H.1. Moreover, Assumption 2.1 gives that

‖φ(x, a)‖2 ≤ 1

for any (k, h, x, a) ∈ [K]× [H]× S ×A, which further implies that

ΛK+1
h =

K∑
k=1

φ(xkh, a
k
h)φ(xkh, a

k
h)> + I � (K + 1) · I (C.52)
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for any h ∈ [H]. Combining (C.52) and the fact that Λ1
h = I , we obtain

2 log
(det(ΛK+1

h )

det(Λ1
h)

)
≤ 2d · log(K + 1) ≤ 4d · log(K). (C.53)

Combining (C.50), (C.51), (C.52) and (C.53), it holds that

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} ≤ 2β

√
dHT · log(K) ≤ O(

√
d3H3Tι2),

where ι = log(2dT/p). Therefore, we conclude the proof of Lemma C.6.

C.6 PROOF OF LEMMA C.7

Proof of Lemma C.7. First, we show that {ζ1
k,h, ζ

2
k,h}(k,h)∈[K]×[H] can be written as a bounded mar-

tingale difference with respect to a filtration. Similar to Cai et al. (2020), we construct the following
filtration. For any (k, h) ∈ [K]× [H], we define σ-algebras F1

k,h and F2
k,h as follows:

F2
k,h = σ

(
{xτi , aτi , bτ1,i, · · · , bτN,i}(τ,i)∈[k−1]×[h] ∪ {xki , aki , bk1,i, · · · , bkN,i}i∈[h]

)
,

F2
k,h = σ

(
{xτi , aτi , bτ1,i, · · · , bτN,i}(τ,i)∈[k−1]×[h] ∪ {xki , aki , bk1,i, · · · , bkN,i}i∈[h] ∪ {xkh+1}

)
,

(C.54)
where xH+1 is a null state for any k ∈ [K]. Here σ(·) denotes the σ-algebra generated by a finite
set. Moreover, for any (k, h,m) ∈ [K]× [H]× [2], we define the timestep index t(k, h,m) as

t(k, h,m) = (k − 1) · 2H + (h− 1) · 2 +m. (C.55)

By the definitions of σ-algebras in (C.54), we have Fmk,h ⊂ Fm
′

k′,h′ for any t(k, h,m) ≤ t(k′,m′, h′),
which implies that the σ-algebra sequence {Fmk,h}(k,h,m)∈[K]×[H]×[2] is a filtration. Moreover, by
the definitions of {ζ1

k,h, ζ
2
k,h}(k,h)∈[K]×[H] in (C.4), we have

ζ1
k,h ∈ F1

k,h, ζ2
k,h ∈ F2

k,h, E[ζ1
k,h | F2

k,h−1] = 0, E[ζ2
k,h | F1

k,h] = 0 (C.56)

for any (k, h) ∈ [K]× [H]. Here we identify F2
k,0 with F2

k−1,H for any k ≥ 2 and define F1,0,2 be
the empty set. Hence, we can define the martingale

Mm
k,h =

{ ∑
k′,h′,m′

ζm
′

k′,h′ : t(k′, h′,m′) ≤ t(k, h,m)
}
. (C.57)

Such a martingale is adaptive to the filtration {Fmk,h}(k,h,m)∈[K]×[H]×[2]. In particular, we have

M2
K,H =

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h). (C.58)

Moreover, note the fact that V kh , Q
k
h, V

πk,νk

l,h , Qπ
k,νk

l,h ∈ [−H,H], we further obtain |ζmk,h| ≤ 2H ,
for any (k, h,m) ∈ [K]× [H]× [2]. Finally, by applying the Azuma-Hoeffding inequality toM2

K,H

defined in (C.58), we have

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h) ≤
√

16KH3 · log(4/p)

with probability at least 1− p/2, which concludes the proof of Lemma C.7.
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D PSEUDOCODE OF REWARD-FREE EXPLORE

Algorithm 4 Reward-Free Explore
1: Input: iteration number K0 and K.
2: Let policy class Φ = ∅.
3: for (x, h) ∈ S × [H] do
4: rh′(x

′, a′)← 1 [x′ = x and h′ = h] for all (x′, a′, h′) ∈ S ×A× [H].
5: Φ(x,h) ← EULER (r,K0). 2

6: πh(· |x)← Uniform(A) for all π ∈ Φ(x,h).
7: Ψ← Ψ ∪ Φ(x,h).
8: end for
9: for k = 1, · · · ,K do

10: Sample policy π ∼ Uniform(Ψ).
11: Play the game M using policy π and uniform policy νuni, and observe the trajectory

{xkh, akh, bkh}h∈[H] and rewards {r?,h(xkh, a
k
h, b

k
h)}h∈[H].

12: end for
13: Calculate the empirical reward as

r̂?,h(x, a, b) =

∑K
k=1 r?,h(x, a, b) · 1[xkh = x, akh = a, xkh+1 = x′]∑K

k=1 1[xkh = x, akh = a, xkh+1 = x′]
.

E UNKNOWN REWARD SETTING

To relax the assumption that the reward is known, in this subsection, we consider the case where
the reward functions are unknown. We focus on the tabular case for simplicity, and the extension
to linear case is left as future work. We assume that S = |S|, Al = |Al| and Af = |Af | =
|Af1 × · · · × AfN |. For simplicity, we use the shorthand V π,ν? = V π,ν?,1 (x1), where x1 ∈ S is the
fixed initial state.

At a high level, we first conduct a reward-free exploration algorithm (Algorithm 4 in §D), a variant
of Reward-Free RL-Explore algorithm in Jin et al. (2020a), to obtain estimated reward functions
{r̂l, r̂f1 , · · · r̂fN }. As asserted before, we can use Algorithm 1, to find the SNE with respect to the
known estimated reward functions {r̂l, r̂f1 , · · · r̂fN }. Hence, we can obtain the approximate SNE if
the value functions of estimated value functions are good approximation of the true value functions.
Fortunately, we have the following lemma to guarantee it.
Lemma E.1. Fix ε, p > 0. If we set K0 ≥ Ω(H7S4Al/ε) and K ≥ Ω(H3S2AlAf/ε

2) in Al-
gorithm 4 (cf. §D), then we have the empirical rewards {r̂l, r̂f1 , · · · r̂fN } and corresponding value
functions (V̂l, V̂f1 , · · · , V̂fN ) satisfying that

sup
π,ν
|V̂ π,ν? − V π,ν? | ≤ ε

with probability at least 1− p. Here Ω(·) hides some logarithmic factors.

Proof. This lemma is a simple extension of Lemma D.1 in Bai et al. (2021). They focus on the MDP
setting and we consider the more complex leader-controller Markov games. The detailed proof is
given in §E.1.

Lemma E.1 states that we can obtain estimated reward functions and the associated value functions
is an ε-approximation of the true value functions, which further implies that the SNE with respect to
the estimated reward functions is a good approximation of the SNE in the original problem. We also
remark that if we consider the Markov games with only one follower and aim to find the Stackelberg
equilibria, we can provide a more refined analysis. See §E.2 for more details.

2Here EULER is a single-agent RL algorithm proposed in Zanette & Brunskill (2019).
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E.1 PROOF OF LEMMA E.1

Before our proof, we present a useful lemma.
Lemma E.2. We define the set of δ-significant states as

Sδh = {s : max
π

Pπh(x) ≥ δ}, (E.1)

where Pπh(x) is the probability of visiting x at h-th step under policy π. Then, We have

max
π

Pπh(x)
1
K0

∑
π∈Φ(x,h) Pπh(x, a)

≤ 2

for any s ∈ Sδh. Here Pπh(x, a) is the probability of visiting (x, a) at h-th step under policy π.

Proof. See the proof of Theorem 3.3 in Jin et al. (2020a) for more details.

Now, we are ready to proof Lemma E.1.

Proof of Lemma E.1. For any (π, ν), we denote Pπ,νh (x, a, b) as the probability of visiting (x, a, b)
at h-th step under policies (π, ν). Under this notion, by Lemma E.2 and the fact that all policies in
Φ(x,h) are uniform at (x, h), we have

max
π,a

Pπh(x, a)
1
K0

∑
π∈Φ(x,h) Pπh(x, a)

≤ 2Al,

where |Al| = Al. Together with the fact that we use the uniform policy νuni in Algorithm 4 to
gather data, we further obtain that

max
π,ν,a,b

Pπ,νh (x, a, b)
1
K0

∑
π∈Φ(x,h) Pπ,νunih (x, a, b)

≤ 2AlAf ,

where Af = |Af | = |Af1 × · · · × AfN |. Thus, for any δ-significant (x, h), we have

max
π,ν,a,b

Pπ,νh (x, a, b)
1

K0SH

∑
π∈∪{Φ(x,h)}(x,h) P

π,νuni
h (x, a, b)

≤ 2SAlAfH.

Then the data obtained from Algorithm 4 is sampled i.i.d. from some distribution ζh, such that

max
π,ν,a,b

Pπ,νh (x, a, b)

ζh(x, a, b)
≤ 2SAlAfH. (E.2)

for any s ∈ Sδh. Back to our proof, we have

|V̂ π,ν? − V π,ν? | =
∣∣∣∣ H∑
h=1

∑
x,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
=

∣∣∣∣ H∑
h=1

∑
x,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
≤
∣∣∣∣ H∑
h=1

∑
x/∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣ H∑
h=1

∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣︸ ︷︷ ︸
(ii)

. (E.3)
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Clearly,

(i) ≤
H∑
h=1

∑
x/∈Sδh,a,b

Pπ,νh (s, a, b) =

H∑
h=1

∑
x/∈Sδh

Pπh(x) ≤ HSδ ≤ ε/2, (E.4)

where the second inequality uses the definition of δ-significant set in (E.1) and the last inequality is
implied by the fact that δ = ε/2H2S. Meanwhile, we have

(ii) ≤
H∑
h=1

∣∣∣∣ ∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
≤

H∑
h=1

( ∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2)1/2

︸ ︷︷ ︸
∆h

. (E.5)

Note that Pπ,νh (x, a, b) = Pπ,νh (x) · πh(a |x) · νh(b |x), together with Cauchy-Schwarz inequality,
we further have

∆h ≤ max
π′:S→Al,ν′:S→Af

( ∑
x∈Sδh,a,b

Pπh(x) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

≤ max
π′:S→Al,ν′:S→Af

( ∑
x∈Sδh,a,b

Pπh(x) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

≤ max
π′:S→Al,ν′:S→Af

(2SAlAfH)
1/2

×
( ∑
x∈Sδh,a,b

ζh(x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

,

(E.6)

where the last inequality follows from (E.2). Meanwhile, by Hoeffding inequality and a union bound
for the reward estimations we have( ∑

x∈Sδh,a,b

ζh(x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

≤
( ∑
x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Nh(s, a, b)

)
1[a = π′(s), b = ν′(s)]

))1/2

. (E.7)

Choose δ = ε/2H2S. Together with (E.2), we have ζh(s, a, b) ≥ ε/4H3S2AlAf for any s ∈ Sδh.
Hence, we have K ≥ Ω(H3S2AlAf/ε) ≥ Ω(1/mins,a,b ζh(s, a, b)). Applying multiplicative
Chernoff bound for the counter Nh(s, a, b) ∼ Bin(K, ζh(s, a, b)), we have( ∑

x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Nh(s, a, b)

)
1[a = π′(s), b = ν′(s)]

))1/2

≤
( ∑
x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Kζh(s, a, b)

)
1[a = π′(s), b = ν′(s)]

))1/2

= Õ
(√ S

K

)
. (E.8)

Plugging (E.6), (E.7), and (E.7) into (E.5), we have

(ii) ≤ Õ
(√H3S2AlAf

K

)
≤ ε/2, (E.9)

where the last inequality follows form our choice that K ≥ Ω(H3S2AlAf/ε
2). Combining (E.3),

(E.4) and (E.9), we have |V̂ π,ν? −V π,ν? | ≤ ε for any (π, ν), which concludes the proof of Lemma E.1.
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E.2 LEARNING STACKELBERG EQUILIBRIA

In this section, we analyze the sample-efficiency of learning Stackelberg equilibria in two-player
tabular Markov games without the known reward assumption.

For simplicity, we use the shorthands f = f1 and V π,ν? = V π,ν?,1 (x1), where x1 ∈ S is the fixed initial
state. Meanwhile, for any ε > 0, we define the ε-approximate value of worst-case best response by

V πε = argmin
ν∈BRε(π)

V π,νl ,

BRε(π) = {ν : V π,νf ≥ max
ν′

V π,ν
′

f − ε}.

By the above definitions, we can immediately obtain that BR(π) ⊆ BRε(π), which further implies
V πε ≤ V

π,ν∗(π)
l . Then we can define the gap

gapε = max
π

V
π,ν∗(π)
l −max

π
V πε = V π

∗,ν∗

l −max
π

V πε . (E.10)

As stated before, we first conduct a Reward-Free Explore algorithm (Algorithm 4) to obtain the
estimated rewards (r̂l, r̂f ). We also define (V̂l, V̂f ) as the corresponding value functions. Then we
use Algorithm 1 to solve the SNE with respect to the known reward functions (r̂l, r̂f ). Specifically,
we consider the following optimization problem of finding approximation Stackelberg equilibria
with respect to the empirical rewards (r̂l, r̂f ).

argmax
π

V̂3ε/4(π) = argmax
π

V̂
π,ν(π)
l ,

ν(π) = argmin
ν∈B̂R3ε/4(π)

V̂ π,νl ,

B̂R3ε/4(π) =
{
ν : V̂ π,νf ≥ max

ν
V̂ π,νf − 3ε/4

}
.

(E.11)

Since (r̂l, r̂f ) are known to us, we can use Algorithm 1 to obtain the solution (π̂, ν̂ = ν(π̂)), which
is our approximate solution. See Algorithm 5 for more details.

Algorithm 5 Reward-Free Explore then Commit
1: Input: Accuracy coefficient ε > 0.
2: Run the Reward-Free Explore algorithm (Algorithm 4) with K0 ≥ Ω(H7S4Al/ε) and K ≥

Ω(H3S2AlAf/ε
2), and obtain empirical rewards (r̂l, r̂f ).

3: Use Algorithm 1 as an oracle to solve the problem defined in (E.11) and obtain the solution
(π̂, ν̂ = ν(π)).

4: Output: (π̂, ν̂).

E.3 THEORETICAL RESULTS

The performance of Algorithm 5 is guaranteed by the following theorem.
Theorem E.3. Suppose Algorithm 5 outputs (π̂, ν̂). Then it holds with probability at least 1 − p
that

V
π̂,ν∗(π̂)
l ≥ V π

∗,ν∗

l − gapε − ε, V π̂,ν̂fi
≥ V π̂,ν

∗(π̂)
f − ε.

Proof. Similar analysis also appears in Bai et al. (2021). As stated before, however, their setting is
different with ours. For completeness, we provide a detailed proof here. First, we show that

BRε/2(π) ⊆ B̂R3ε/4(π) ⊆ BRε(π). (E.12)

By choosing a large absolute constant in K, together with Lemma E.1, it holds for any ? ∈ {l, f}
that

sup
π,ν
|V̂ π,ν? − V π,ν? | ≤ ε/8. (E.13)
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Meanwhile, for the empirical rewards (r̂l, r̂f ), we define the best response of leader’s policy π as
ν̂∗(π). Under this notation, for any ν ∈ B̂R3ε/4(π), we have

V
π,ν∗(π)
f − V π,νf

= (V
π,ν∗(π)
f − V̂ π,ν

∗(π)
f )︸ ︷︷ ︸

(i)

+ (V̂
π,ν∗(π)
f − V̂ π,ν̂

∗(π)
f )︸ ︷︷ ︸

(ii)

+ (V̂
π,ν̂∗(π)
f − V̂ π,νf )︸ ︷︷ ︸

(iii)

+ (V̂ π,νfi
− V π,νf )︸ ︷︷ ︸

(iv)

≤ ε/8 + 0 + 3ε/4 + ε/8 ≤ ε. (E.14)

where (i) ≤ ε/8 and (iv) ≤ ε/8 is implied by the uniform convergence in (E.13), (ii) ≤ 0 uses the
definition of ν̂∗(π), and (iii) ≤ 0 follows from the fact that ν ∈ B̂R3ε/4(π).

Similarly, for any ν ∈ BRε/2(π), we can show that

V̂
π,ν̂∗(π)
f − V̂ π,νf

= (V̂
π,ν̂∗(π)
f − V π,ν̂

∗(π)
f ) + (V

π,ν̂∗(π)
f − V π,ν

∗(π)
f ) + (V

π,ν∗(π)
f − V π,νf ) + (V π,νf − V̂ π,νf )

≤ ε/8 + 0 + ε/2 + ε/8 = 3ε/4. (E.15)

Combining (E.14) and (E.15), we obtain BRε/2(π) ⊆ B̂R3ε/4(π) ⊆ BRε(π) as desired.

Back to our proof, by the fact that π̂ maximizes V̂ π3ε/4 = minν∈B̂R3ε/4(π) V̂l(π, ν), we have

min
ν∈B̂R3ε/4(π̂)

V̂ π̂,νl = V̂ π̂3ε/4 ≥ V̂
π
3ε/4 = min

ν∈B̂R3ε/4(π)
V π,νl ≥ min

ν∈BRε(π)
V̂ π,νl , (E.16)

for any π. Here the last inequality uses the fact B̂R3ε/4(π) ⊆ BRε(π) in (E.12). Together with the
uniform convergence in (E.13), (E.16) yields

min
ν∈B̂R3ε/4(π̂)

V π̂,νl ≥ min
ν∈BRε(π)

V π,νl − ε/8 = V πε − ε/8 (E.17)

Meanwhile, by the fact BRε/2(π) ⊆ B̂R3ε/4(π) in (E.13), we have

V π̂ε/2 = min
ν∈BRε/2(π̂)

V π̂,νl ≥ min
ν∈B̂R3ε/4(π̂)

V π̂,νl . (E.18)

Combining (E.17) and (E.18), we have

V π̂ε/2 ≥ max
π

V πε − ε/8 = max
π

V
π,ν∗(π)
l − gapε − ε/8 ≥ V

π∗,ν∗

l − gapε − ε, (E.19)

where the equality uses the definition of gapε in (E.10). Clearly, we also have V π̂ε/2 ≤ V
π̂,ν∗(π̂)
l .

Plugging this inequality into (E.19), we obtain

V
π̂,ν∗(π̂)
l ≥ V π

∗,ν∗

l − gapε − ε

as desired. Meanwhile, by the facts that ν̂ ∈ B̂R3ε/4(π̂) and B̂R3ε/4(π̂) ⊆ BRε(π̂), we have

V π̂,ν̂fi
≥ V π̂,ν

∗(π̂)
f − ε.

Therefore, we conclude the proof of Theorem E.3.

F PROOF OF THEOREM 4.2

To facilitate our analysis, we first define the prediction error

δh = rl,h + Q̂h − PhV̂h (F.1)

for any h ∈ [H]. Then we show the proof of Theorem 4.2.
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Proof of Theorem 4.2. Recall that the definition of optimality gap defined in (4.1) takes the follow-
ing form

SubOpt(π̂, ν̂, x) = V π
∗,ν∗

l,1 (x)− V π̂,ν
∗(π̂)

l,1 (x) +

N∑
i=1

[V
π̂,ν∗(π̂)
fi,1

(x)− V π̂,ν̂fi,1
(x)]. (F.2)

Similar to Lemma C.1, we have the following lemma.
Lemma F.1. It holds that ν̂ = ν∗(π̂). Here ν(·) is defined in (2.6).

Proof. This proof is similar to the proof of Lemma C.1, and we omit it to avoid repetition.

By Lemma F.1, we have ν∗(π̂) = ν̂, which implies that the suboptimality of followers decays to
zero. Then we only need to characterize the quantity V π

∗,ν∗

l,1 (x) − V π̂,ν̂l,1 (x), which can be decom-
posed by the following lemma.

Lemma F.2. For the V̂1 defined in Line 9 of Algorithm 3 and any (π, ν), it holds that

V π,νl,1 (x)− V̂1(x) = Eπ,ν
[ H∑
h=1

〈Q̂h(xh, ·, ·), πh(· |xh)× νh(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ,ν
[ H∑
h=1

δh(xh, ah, bh)

]
.

Proof. This proof is the same as the proof of (C.20), and we omit it to avoid repetition.

Applying Lemma F.2 with (π, ν) = (π∗, ν∗), we have

V π
∗,ν∗

l,1 (x)− V̂1(x) = Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ∗,ν∗
[ H∑
h=1

δh(xh, ah, bh)

]
. (F.3)

Similarly, applying Lemma F.2 with (π, ν) = (π̂, ν̂) gives that

V̂1(x)− V π̂,ν̂l,1 (x) = −Eπ̂,ν̂
[ H∑
h=1

δh(xh, ah, bh)

]
. (F.4)

Combining (F.3) and (F.4), we obtain

V π
∗,ν∗

l,1 (x)− V π̂,ν̂l,1 (x) = Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ∗,ν∗
[ H∑
h=1

δh(xh, ah, bh)

]
− Eπ̂,ν̂

[ H∑
h=1

δh(xh, ah, bh)

]
. (F.5)

As stated in §C, these two terms characterize the optimization error and the statistical error, respec-
tively. Similar to Lemmas C.4 and C.5, we introduce the following two lemmas to analyze these two
errors.
Lemma F.3. It holds that

Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]
≤ εH.

Proof. This proof is similar to the proof of Lemma C.4, and we omit it to avoid repetition.
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Lemma F.4. It holds with probability at least 1− p/2 that
0 ≤ δh(x, a, b) ≤ 2Γh(x, a)

for any h ∈ [H] and (x, a, b) ∈ S ×Al ×Af .

Proof. See §F.1 for a detailed proof.

Combining (F.5) and Lemmas F.3 and F.4, we further obtain that

V π
∗,ν∗

l,1 (x)− V π̂,ν̂l,1 (x) ≤ εH + 2Eπ∗
[ H∑
h=1

Γh(xh, ah)

]

≤ 3β′
H∑
h=1

Eπ∗
[(
φ(sh, ah)>(Λh)−1φ(sh, ah)

)1/2]
, (F.6)

where the last inequality is obtained by the definition of Γh in Line 6 of Algorithm 3 and the fact
that ε = d/KH . Therefore, we conclude the proof of Theorem 4.2.

F.1 PROOF OF LEMMA F.4

Proof of Lemma F.4. Similar to (C.36), it holds with probability at least 1− p/2 that

|φ(x, a)>wh − (PhV̂h+1)(x, a, b)| ≤ Γh(x, a) (F.7)
for any h ∈ [H]. The only exception is that we use Lemma H.3 instead of the classical concentration
lemma (Lemma H.2) for the self-normalized process. Here we omit the detailed proof to avoid
repetition.

By (F.7) and the fact that V̂h+1(·) ≤ H − h, we obtain

φ(x, a)>wh − Γh(x, a) ≤ (PhV̂h+1)(x, a, b) ≤ H − h. (F.8)

Thus, we have Q̂h ≥ φ>wh − Γh, which further implies that

δh(x, a, b) = rl,h(x, a, b) + PhV̂h+1(x, a, b)− Q̂h(x, a, b)

≤ PhV̂h+1(x, a, b)− φ(x, a)>wh + Γh(x, a)

≤ 2Γh(x, a), (F.9)
where the last inequality uses (F.7). Meanwhile, it holds that

δh(x, a, b) = rl,h(x, a, b) + PhV̂h+1(x, a, b)− Q̂h(x, a, b)

≥ PhV̂h+1(x, a, b)−max{φ(x, a)>wh − Γkh(x, a),−(H − h)}
= min{PhV kh+1(x, a, b)− φ(x, a)>wkh + Γkh(x, a),PhV kh+1(x, a, b) + (H − h)}
≥ 0, (F.10)

where the last inequality follows from (F.7). Combining (F.9) and (F.10), we conclude the proof of
Lemma F.4.

G PROOF OF COROLLARY 4.3

Proof of Corollary 4.3. The proof is similar to the proof of Corollary 4.5 in Jin et al. (2020c). For
completeness, we present the detailed proof here. For notational simplicity, we define

Σh(x) = Eπ∗,x[φ(sh, ah)φ(sh, ah)>]

for all x ∈ S and h ∈ [H]. With this notation and Cauchy-Schwarz inequality, we have

Eπ∗,x
[√

φ(sh, ah)>Λ−1
h φ(sh, ah)

]
= Eπ∗,x

[√
Tr
(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)]

= Eπ∗,x
[√

Tr
(
φ(sh, ah)φ(sh, ah)>Λ−1

h

)]
= Eπ∗,x

[√
Tr
(
Σh(x)Λ−1

h

)]
. (G.1)
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Plugging (G.1) into Theorem 4.2, together with the assumption that Λh � I + c · K ·
Eπ∗,x[φ(sh, ah)φ(sh, ah)>] with probability at least 1−p/2 and a union bound argument, we further
with probability at least 1− p have

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

Eπ∗,x
[√

Tr
(

Σh(x)
(
I + c ·K · Σh(x)

)−1
)]

= 3β′
H∑
h=1

√√√√ d∑
j=1

λh,j(x)

1 + cKλh,j(x)
(G.2)

for all x ∈ S. Here {λh,j(x)}dj=1 are the eigenvalues of Σh(x). Meanwhile, by Jensen’s inequality,
we obtain

‖Σh(x)‖op ≤ Eπ∗,x[‖φ(sh, ah)φ(sh, ah)>‖op] ≤ 1, (G.3)

where the last inequality follows from the fact that ‖φ(·, ·)‖2 ≤ 1. Combining (G.2) and (G.3), it
holds with probability at least 1− p that

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

√√√√ d∑
j=1

1

1 + cK

≤ C̄ · d3/2H2
√

log(4dHK/p)/K,

where C̄ = 3C/
√
c, which concludes the proof of Corollary 4.3.

H SUPPORTING LEMMAS

Lemma H.1 (Elliptical Potential Lemma (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Jin et al.,
2020b; Cai et al., 2020)). Let {φt}∞t=1 be an Rd-valued sequence. Meanwhile, let Λ0 ∈ Rd×d be a
positive-definite matrix and Λt = Λ0 +

∑t−1
j=1 φjφ

>
j . It holds for any t ∈ Z+ that

t∑
j=1

min{1, ‖φj‖2Λ−1
j

} ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Proof. See Lemma 11 of Abbasi-Yadkori et al. (2011) for a detailed proof.

Lemma H.2 (Concentration of Self-Normalized Process (Abbasi-Yadkori et al., 2011)). Let
{F̃t}∞t=0 be a filtration and {ηt}∞t=1 be an R-valued stochastic process such that ηt is F̃t-measurable
for any t ≥ 0. We also assume that, for any t ≥ 0, conditioning on F̃t, ηt is a zero-mean and
σ-sub-Gaussian random variable, that is,

E[ηt | F̃t] = 0, E[eληt | F̃t] ≤ eλ
2σ2/2 (H.1)

for any λ ∈ R. Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is F̃t-measurable for
any t ≥ 0. Also, let Y ∈ Rd×d be a deterministic and positive-definite matrix. For any t ≥ 0, we
define

Y t = Y +

t∑
s=1

XsX
>
s , St =

t∑
s=1

ηs ·Xs.

For any δ > 0 and t ≥ 0., it holds with probability at least 1− δ that

‖St‖2Y −1
t

≤ 2σ2 · log

(
det(Y t)

1/2 det(Y )−1/2

δ

)
.

Proof. See Theorem 1 of Abbasi-Yadkori et al. (2011) for a detailed proof.
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Lemma H.3. For any fixed h ∈ [H], let V : S → [0, H] be any fixed value function. Under
Assumption 4.1, for any fixed δ > 0, we have

PD

(∥∥∥ K∑
k=1

φ(xτh, a
τ
h) ·

(
V (xτh+1)− PhV (xτh, a

τ
h, b

τ
h)
)∥∥∥

Λ−1
h

> H2 ·
(
2 log(1/δ) + d · log(1 +K)

))
≤ δ.

Proof. See Lemma B.2 of Jin et al. (2020c) for a detailed proof.

Lemma H.4 (Covering). Let Qh be the class of value functions Q : S × Al ×Af → R that takes
the form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h{(φ(·, ·)>w + β ·
(
φ(·, ·)>Λ−1φ(·, ·)

)1/2},
which are parameterized by (w,Λ) ∈ Rd ×Rd×d such that ‖w‖ ≤ L and λmin(Λ) ≥ λ. We assume
that β is fixed and satisfy that β ∈ [0, B], and the feature map φ : S × A → Rd satisfies that
‖φ(·, ·)‖2 ≤ 1. We have that, for any L,B, ε > 0, there exists an ε-covering of Qh with respect to
the `∞ norm such that the covering number Nε satisfies

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 8B2

√
d/(ε2λ)

)
.

Proof. See Jin et al. (2020b) for a detailed proof.
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