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The supplementary appendices contain additional experiments (Section A) and proofs (Section B) to1

substantiate the claims in the main body of the paper.2

A Additional experiments3

The results for different experiments are given. Highlights from experiment A were discussed in the4

main paper, but the training and validation loss curves are only presented in the appendix.5

Experimentation was performed with Python and TensorFlow. Experiment A was performed on a6

personal laptop with a 7th generation i7 Intel processor and took a few hours to finish thirty trials.7

The loss function chosen for training and evaluation is the mean absolute error (MAE). The training8

data set and test set in all experiments had 10000 data points, sampled uniformly at random. Gaussian9

noise with standard deviation = 0.1 was added to all training and test data target values. The test set10

was also used as a validation set to quantify the test error during training. All models were trained11

with a learning rate of 0.01 with the Adam optimizer. All models and experiments used batch sizes12

of 100 during training.13

To test memory retention, two tasks, presented to an Atlas model one after the other, were constructed.14

The details of each task are given below.15

Task 1 The training and test sets were sampled uniformly from the Task 1 target function over16

the domain [0., 1.]
2, with Gaussian noise added to the target values. The initial Atlas model was17

instantiated as a two-variable function that maps to a one-dimensional output, with r = 0 and M = 018

such that it is a minimally expressive model. The model was evaluated and trained for 30 epochs.19

After training, the Atlas model was expanded using the built-in methods, such that r is increased by20

one, and M is increased by two: r′ = r + 1 and M ′ = M + 2. This training-expansion process was21

repeated four times. The output of the model is presented at the end of each expansion iteration. The22

target functions for Task 1 in each experiment is labeled Y (x⃗).23

Task 2 The test sets were sampled uniformly from the Task 2 target function over the domain24

[0., 1.]
2, with Gaussian noise added to the target values. The training sets were sampled uniformly25

over the domain [0.45, 0.55]
2, and target values of zero with added Gaussian noise. All models were26

trained for 6 epochs. The Task 2 target function in each experiment is given by:27

Y ′(x⃗) =

{
0 0.45 < xi < 0.55 ∀i = 1, 2, ...

Y (x⃗) otherwise.

Task 2 effectively tests if a model changes only where new data was presented, with off-target effects28

leading to larger test MAE.29
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A.1 Experiment A30

A.1.1 Task 131

The Task 1 target function of Experiment A is given as follows, where the radius is measured from32

the centre of the domain [0.5, 0.5]:33

r =

√
(x1 −

1

2
)2 + (x2 −

1

2
)2

θ = tan−1

(
(x− 1

2
)2, (y − 1

2
)2
)

YA = YA(x1, x2) = sin (30r + θ) + 2

Figure 1: Training and validation MAE during the course of training on Task 1, Experiment A.

Figure 2: Outputs of the model during successive training and expansion iterations, Experiment A.

A.1.2 Task 234

The under-sampled target function Y ′
A used for validation is given by:35

Y ′
A(x1, x2) =

{
0 0.45 < xi < 0.55 ∀i = 1, 2, ...

YA(x1, x2) otherwise.
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Figure 3: Training and validation MAE during the course of training on Task 2, Experiment A.

Figure 4: Visual inspection of target functions and model outputs over Task 1 and Task 2, Experiment
A.

A.2 Experiment B36

A.2.1 Task 137

The Task 1 target function for experiment B is given by:38

YB(x1, x2) = cos2 (20x1 − 10) + cos2 (10x2 − 5) + exp
(
−(20x1 − 10)2 − (20x2 − 10)2

)

Figure 5: Training and validation MAE during the course of training on Task 1, Experiment B.
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Figure 6: Outputs of the model during successive training and expansion iterations, Experiment B.

A.2.2 Task 239

The under-sampled target function Y ′
B used for validation is given by:40

Y ′
B(x1, x2) =

{
0 0.45 < xi < 0.55 ∀i = 1, 2, ...

YB(x1, x2) otherwise.

Figure 7: Training and validation MAE during the course of training on Task 2, Experiment B

Figure 8: Visual inspection of target functions and model outputs over Task 1 and Task 2, Experiment
B.
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A.3 Experiment C41

A.3.1 Task 142

The Task 1 target function for Experiment C is given by:43

YC(x1, x2) = 2 + cos (20x1 − 10) cos (20x2 − 10)

Figure 9: Training and validation MAE during the course of training on Task 1, Experiment C.

Figure 10: Outputs of the model during successive training and expansion iterations, Experiment C.

A.3.2 Task 244

The under-sampled target function Y ′
C used for validation is given by:45

Y ′
C(x1, x2) =

{
0 0.45 < xi < 0.55 ∀i = 1, 2, ...

YC(x1, x2) otherwise.
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Figure 11: Training and validation MAE during the course of training on Task 2, Experiment C.

Figure 12: Visual inspection of target functions and model outputs over Task 1 and Task 2, Experiment
C.

A.4 Experiment D46

A.4.1 Task 147

The task 1 target function for experiment D is given by:48

YD(x1, x2) = 2 + σ(sin (2πx1) sin (2πx2))

Figure 13: Training and validation MAE during the course of training on Task 1, Experiment D.
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Figure 14: Outputs of the model during successive training and expansion iterations, Experiment D.

A.4.2 Task 249

The under-sampled target function Y ′
D used for validation is given by:50

Y ′
D(x1, x2) =

{
0 0.45 < xi < 0.55 ∀i = 1, 2, ...

YD(x1, x2) otherwise.

Figure 15: Training and validation MAE during the course of training on Task 2, Experiment D.

Figure 16: Visual inspection of target functions and model outputs over Task 1 and Task 2, Experiment
D.

B Analysis and mathematical proofs51

List of all definitions, theorems, corollaries, properties and their proofs are presented for completeness.52

The numbering of all statements match the main body of the paper. Some of the important results are53

also presented in the main body of the paper.54

B.1 Stone-Weierstrass Theorem55

Any continuous multi-variable function on a compact space can be uniformly approximated with56

multi-variable polynomials by the Stone-Weierstrass Theorem. Let I denote an index set of tuples of57
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natural numbers including zero such that ij ∈ N0 for all j ∈ N with i = (i1, .., in) ∈ I and ai ∈ R.58

Multi-variable polynomials can be represented as:59

y(x⃗) = y(x1, .., xn) =
∑
i∈I

aix
i1
1 xi2

2 ...xin
n =

∑
i∈I

aiΠ
n
j=1x

ij
j

Each monomial term aiΠ
n
j=1x

ij
j is a product of single-variable functions in each variable.60

B.2 Exponential Representation Theorem61

Lemma 1. For any ai ∈ R, there exists γi > 0 and βi > 0, such that: ai = γi − βi62

Proof. Let ai ∈ R. Three cases are considered.63

If ai = 0, then choose γi = 1 > 0 and βi = 1 > 0, such that: γi − βi = 1− 1 = 0 = ai64

If ai > 0, then choose γi = ai + 1 > 0 and βi = 1 > 0, such that: γi − βi = ai + 1− 1 = ai65

If ai < 0, then choose γi = 1 > 0 and βi = 1 + |ai| > 0, such that:66

γi − βi = 1− (1 + |ai|) = 1− 1− |ai| = ai

67

Theorem 1 (Exponential representation theorem). Any multi-variable polynomial function p(x⃗)68

of n variables over the positive orthant, can be exactly represented by continuous single-variable69

functions gi,j(xj) and hi,j(xj) in the form:70

p(x⃗) =
∑
i∈I

exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

Proof. Consider any monomial term aiΠ
n
j=1x

ij
j with ai ∈ R, then by Lemma 1 there exist strictly71

positive numbers γi > 0 and βi > 0, such that:72

aiΠ
n
j=1x

ij
j = γiΠ

n
j=1x

ij
j − βiΠ

n
j=1x

ij
j

= exp
(
log
(
γiΠ

n
j=1x

ij
j

))
− exp

(
log
(
βiΠ

n
j=1x

ij
j

))
= exp

(
log(γi) + Σn

j=1 log
(
x
ij
j

))
− exp

(
log(βi) + Σn

j=1 log
(
x
ij
j

))
The argument of each exponential function is a sum of single-variable functions and constants.73

Without loss of generality, a set of single-variable functions can be defined such that:74

aiΠ
n
j=1x

ij
j = exp

(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

Since this holds for any aiΠ
n
j=1x

ij
j and all i ∈ I, it follows that:75

p(x⃗) =
∑
i∈I

exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

76

There is a duality between representation and approximation. If any multi-variable polynomial can77

be exactly represented, then any continuous multi-variable function can be approximated to arbitrary78

accuracy.79
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B.2.1 Exponential approximation corollary80

Corollary 1 (Exponential approximation). For any ε > 0, and continuous multi-variable function81

y(x⃗) of n variables over a compact domain in the positive orthant, there exist continuous single-82

variable functions gi,j(xj) and hi,j(xj) such that:83

∣∣∣∣∣y(x⃗)−
(∑

i∈I
exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
))∣∣∣∣∣ < ε

Proof. Fix ε > 0, and let y(x⃗) be a continuous multi-variable function of n variables over a compact84

domain in the positive orthant.85

By the Stone–Weierstrass theorem there exists a multi-variable polynomial p(x⃗) over the domain of86

y(x⃗) such that:87

|y(x⃗)− p(x⃗)| < ε

By Theorem 1, for any polynomial p(x⃗) over the positive orthant, there exist continuous single-88

variable functions gi,j(xj) and hi,j(xj) such that:89

p(x⃗) =
∑
i∈I

exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

It follows that:90

∣∣∣∣∣y(x⃗)−
(∑

i∈I
exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
))∣∣∣∣∣ < ε

91

B.3 Single-variable function approximators92

Each basis function Si for a uniform cubic B-spline can be obtained by scaling and translating the93

input of the same activation function. The activation function is denoted S(x) and is given by:94

S(x) =



1
6x

3 0 ≤ x < 1
1
6

[
−3(x− 1)3 + 3(x− 1)2 + 3(x− 1) + 1

]
1 ≤ x < 2

1
6

[
3(x− 2)3 − 6(x− 2)2 + 4

]
2 ≤ x < 3

1
6 (4− x)3 3 ≤ x < 4

0 otherwise

B.3.1 Definition of ρ-density B-spline functions95

Definition 1 (ρ-density B-spline function). A ρ-density B-spline function is a uniform cubic B-spline96

function with 2ρ+2 basis functions:97

f(x) =

2ρ+2∑
i=1

θiSi(x) =

2ρ+2∑
i=1

θiS(wix+ bi) =

2ρ+2∑
i=1

θiS((2
ρ+2 − 3)x+ 4− i)
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Figure 17: Set of eight uniform cubic B-spline basis functions, where Si(x) = S(wix+ bi).

B.3.2 Definition of mixed-density B-spline function98

Definition 2 (mixed-density B-spline function). A mixed-density B-spline function is a single-99

variable function approximator that is obtained by summing together different ρ-density B-spline100

functions. Only the maximum ρ-density B-spline function has trainable parameters, the others are101

constant. Mixed-density B-spline functions are of the form:102

f(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

The maximum density parameters θr,i are trainable, but the lower density parameters θρ,i (with103

ρ < r) are in general non-zero constants. The function approximator can be expanded without losing104

previously learned values. Analytically, we can choose all the new parameters θr+1,i = 0, ∀i ∈ N105

such that:106

f(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x) =

r+1∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

B.4 Atlas architecture107

B.4.1 Atlas representation theorem108

Theorem 2 (Atlas representation theorem). Any multi-variable polynomial p(x⃗) of n variables109

over the positive orthant, can be exactly represented by continuous single-variable functions fj(xj),110

gi,j(xj), and hi,j(xj) in the form:111

p(x⃗) =

n∑
j=1

fj(xj) +

∞∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

Proof. Let p(x⃗) be a multi-variable polynomial over the positive orthant:112

p(x⃗) = p(x1, .., xn) =
∑
i∈I

aix
i1
1 xi2

2 ...xin
n =

∑
i∈I

aiΠ
n
j=1x

ij
j

Consider the set of terms that depend on at most one input variable, or single-variable terms in the113

expression for the polynomial p(x⃗):114

P1 := {aiΠn
j=1x

ij
j | i ∈ I, ij ̸= 0 =⇒ ik = 0, ∀k ̸= j}
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It is worth noting that P1 contains the constant function.115

Let Q denote the index set of all single-variable monomial terms:116

Q := { i | i ∈ I, ij ̸= 0 =⇒ ik = 0, ∀k ̸= j}

The polynomial p(x⃗) can be rewritten in terms of single-variable functions and a residual polynomial117

function pres as:118

p(x⃗) =
∑
i∈Q

aiΠ
n
j=1x

ij
j +

∑
i∈I\Q

aiΠ
n
j=1x

ij
j

=

n∑
j=1

fj(xj) + pres(x⃗)

The single-variable terms can be consumed by a sum of n arbitrary single-variable functions fj(xj).119

By Theorem 1, for any polynomial pres(x⃗) over the positive orthant, there exist continuous single-120

variable functions gi,j(xj) and hi,j(xj) such that:121

pres(x⃗) =
∑

i∈I\Q

exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

Since the index set is countable, one can use another indexing scheme:122

pres(x⃗) =

∞∑
k=1

exp
(
Σn

j=1gk,j(xj)
)
− exp

(
Σn

j=1hk,j(xj)
)

Scale factors can be introduced without changing the representation:123

pres(x⃗) =

∞∑
k=1

exp
(
log k2 − log k2 +Σn

j=1gk,j(xj)
)
− exp

(
log k2 − log k2 +Σn

j=1hk,j(xj)
)

=

∞∑
k=1

1

k2
exp
(
log k2 +Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
log k2 +Σn

j=1hk,j(xj)
)

Since the single-variable functions gi,j(xj) and hi,j(xj) are arbitrary, one can absorb the constants124

and redefine gi,j(xj) and hi,j(xj) to obtain:125

pres(x⃗) =

∞∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

Substituting the expressions one obtains:126

p(x⃗) =

n∑
j=1

fj(xj) +

∞∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

127

There is a duality between representation and approximation. If any multi-variable polynomial can128

be exactly represented, then any continuous multi-variable function can be approximated to arbitrary129

accuracy.130
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B.4.2 Atlas definition131

Definition 3 (Atlas). Atlas is a function approximator of n variables, with mixed-density B-spline132

functions fj(xj), gi,j(xj), and hi,j(xj) in the form:133

A(x⃗) :=

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

Atlas is equivalently given by the compact notation:134

A(x⃗) :=

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

=F (x⃗) +

M∑
k=1

1

k2
exp(Gk(x⃗))−

1

k2
exp(Hk(x⃗))

=F (x⃗) +G(x⃗)−H(x⃗)

B.4.3 Atlas polynomial approximation135

Theorem 3 (Atlas polynomial approximation). For any multi-variable polynomial p(x⃗) over the136

positive orthant with bounded and compact domain D(p) and ε > 0, there exists an Atlas model137

A(x⃗) such that:138

|p(x⃗)−A(x⃗)| < ε

Proof. Let p(x⃗) be a multi-variable polynomial p(x⃗) of n variables over the positive orthant, and fix139

ε > 0, and choose:140

ε = ε1 + ε2

By Theorem 2, there exist continuous single-variable functions fj(xj), gi,j(xj), and hi,j(xj) such141

that:142

p(x⃗) =

n∑
j=1

fj(xj) +

∞∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

If p(x⃗) has finitely many terms, then let M denote the number of residual terms:143

p(x⃗) =

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

=F (x⃗) +

M∑
k=1

1

k2
exp(Gk(x⃗))−

1

k2
exp(Hk(x⃗))

=F (x⃗) +G(x⃗)−H(x⃗)

Choose mixed-density B-spline functions f∗
j (xj), g∗i,j(xj), and h∗

i,j(xj) such that the Atlas model144

A(x⃗) is given by:145
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A∗(x⃗) =

n∑
j=1

f∗
j (xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1g
∗
k,j(xj)

)
− 1

k2
exp
(
Σn

j=1h
∗
k,j(xj)

)
=F ∗(x⃗) +

M∑
k=1

1

k2
exp(G∗

k(x⃗))−
1

k2
exp(H∗

k(x⃗))

=F ∗(x⃗) +G∗(x⃗)−H∗(x⃗)

Then it follows that,146

|p(x⃗)−A(x⃗)| =|F (x⃗) +G(x⃗)−H(x⃗)− (F ∗(x⃗) +G∗(x⃗)−H∗(x⃗))|
=|F (x⃗)− F ∗(x⃗) +G(x⃗)−G∗(x⃗)− (H(x⃗)−H∗(x⃗))|
≤|F (x⃗)− F ∗(x⃗)|+ |G(x⃗)−G∗(x⃗)|+ |H(x⃗)−H∗(x⃗)|

The first set of functions is easily shown to have bounded error. Choose mixed-density B-spline147

functions f∗
j (xj) such that:148

|fj(xj)− f∗
j (xj)| <

ε1
n

Then it follows,149

|F (x⃗)− F ∗(x⃗)| =

∣∣∣∣∣∣
n∑

j=1

fj(xj)−
n∑

j=1

f∗
j (xj)

∣∣∣∣∣∣
≤

n∑
j=1

∣∣fj(xj)− f∗
j (xj)

∣∣
<ε1

The interior functions for the exponential functions are more complicated.150

Remark. The uniform continuity of exponentials on bouned domains makes it possible to bound the151

approximation error in each exponential term. The exponential function is uniformly continuous152

on a compact and bounded subset of the real numbers [a, b]. Thus, for any εexp > 0, there exists a153

δexp > 0, such that for every x, y ∈ [a, b]:154

|x− y| < δexp =⇒ | exp(x)− exp(y)| < εexp

For all exponential functions on bounded and compact domains choose:155

εexp =
3ε2
π2

Choose the smallest δexp for all M exponential functions, so that the implication holds. Choose156

δg,k,j , such that:157

n∑
j=1

δg,k,j < δexp

Choose mixed-density B-spline functions g∗i,j(xj), and h∗
i,j(xj) such that:158
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|gk,j(xj)− g∗k,j(xj)| < δg,k,j

|hk,j(xj)− h∗
k,j(xj)| < δg,k,j

The interior functions g∗k,j(xj) have bounded approximation error δg,k,j one obtains:159

∣∣∣∣∣∣
n∑

j=1

gk,j(xj)−
n∑

j=1

g∗k,j(xj)

∣∣∣∣∣∣
≤

n∑
j=1

∣∣gk,j(xj)− g∗k,j(xj)
∣∣

<

n∑
j=1

δg,k,j < δexp

This implies that:160

∣∣exp(Σn
j=1gk,j(xj)

)
− exp

(
Σn

j=1g
∗
k,j(xj)

)∣∣ <εexp

Recombining this result with the exponential terms yields:161

|G(x⃗)−G∗(x⃗)| =

∣∣∣∣∣
M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
−

M∑
k=1

1

k2
exp
(
Σn

j=1g
∗
k,j(xj)

)∣∣∣∣∣
|G(x⃗)−G∗(x⃗)| ≤

M∑
k=1

1

k2
∣∣exp(Σn

j=1gk,j(xj)
)
− exp

(
Σn

j=1g
∗
k,j(xj)

)∣∣
|G(x⃗)−G∗(x⃗)| <

M∑
k=1

1

k2
εexp

The scaling factors of k−2 were chosen for convergence, such that:162

|G(x⃗)−G∗(x⃗)| <
∞∑
k=1

1

k2
εexp

|G(x⃗)−G∗(x⃗)| <εexp

∞∑
k=1

1

k2

|G(x⃗)−G∗(x⃗)| <εexp
π2

6
=

3ε2
π2

π2

6
=

ε2
2

It follows that:163

|G(x⃗)−G∗(x⃗)| <ε2
2

The same argument holds for |H(x⃗)−H∗(x⃗)|, and one obtains the result:164

|p(x⃗)−A(x⃗)| ≤|F (x⃗)− F ∗(x⃗)|+ |G(x⃗)−G∗(x⃗)|+ |H(x⃗)−H∗(x⃗)|

|p(x⃗)−A(x⃗)| <ε1 +
ε2
2

+
ε2
2

|p(x⃗)−A(x⃗)| <ε1 + ε2

14



Finally,165

|p(x⃗)−A(x⃗)| <ε

166

B.4.4 Universal function approximation theorem167

Theorem 4 (Atlas universal function approximation). For any ε > 0, and continuous multi-variable168

function y(x⃗) of n variables over a compact domain in the positive orthant, there exists an Atlas169

model A(x⃗) such thtat:170

|y(x⃗)−A(x⃗)| < ε

Proof. Let ε > 0, and y(x⃗) be a continuous multi-variable function of n variables over a compact171

domain in the positive orthant. Choose ε1 + ε2 = ε.172

By the Stone–Weierstrass theorem there exists a multi-variable polynomial p(x⃗) over the domain of173

y(x⃗) such that:174

|y(x⃗)− p(x⃗)| < ε1

By Theorem 3 an Atlas model can approximate the polynomial p(x⃗) to arbitrary precision:175

|p(x⃗)−A(x⃗)| < ε2

It follows from the triangle inequality that:176

|y(x⃗)−A(x⃗)| ≤ |y(x⃗)− p(x⃗)|+ |p(x⃗)−A(x⃗)|
|y(x⃗)−A(x⃗)| < ε1 + ε2

Finally,177

|y(x⃗)−A(x⃗)| < ε

178

B.5 Atlas properties179

B.5.1 Atlas expansion180

The number of exponential terms can be increased without changing the output of the model. We can181

choose to initialise GM+1(x⃗) = 0 and HM+1(x⃗) = 0, such that the model capacity can be increased182

without changing the output of the model:183

AM+1(x⃗) =

M+1∑
k=1

1

k2
exp(Gk(x⃗))−

1

k2
exp(Hk(x⃗))

=
1

(M + 1)2
exp(GM+1(x⃗))−

1

(M + 1)2
exp(HM+1(x⃗)) +A(x⃗)

=
1

(M + 1)2
exp(0)− 1

(M + 1)2
exp(0) +A(x⃗)

= A(x⃗)
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The density of basis functions in Atlas can also be incremented without changing the learned output184

of the model. The density of basis functions can also be increased without changing the output for185

any of mixed-density B-spline functions Ψ of the form:186

Ψ(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

Analytically, we can choose all the new parameters θr+1,i = 0, ∀i ∈ N such that:187

Ψ(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x) =

r+1∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

The last thing to note is that only the parameters for the largest specified density are trainable, in188

contrast to smaller density parameters that are fixed constants.189

B.5.2 Atlas sparsity190

Property 1 (Sparsity). For any x⃗ ∈ D(A) ⊂ Rn and bounded trainable parameters θi with index set191

Θ, the gradient vector of trainable parameters for Atlas is sparse:192

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
0
=
∑
i∈Θ

dHamming

(
∂A

∂θi
(x⃗), 0

)
≤ 4n(2M + 1)

Proof. Let A(x⃗) denote some Atlas model, with mixed-density B-spline functions fj(xj), gi,j(xj),193

and hi,j(xj) in the form:194

A(x⃗) =

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

Each mixed-density B-spline function has its own parameters that are independent of every other195

mixed-density B-spline. The mixed-density B-splines function Ψ(x) is by definition given by:196

Ψ(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

Thus for every mixed-density B-spline function in A(x⃗):197

fj(xj) =

r∑
ρ=0

2ρ+2∑
i=1

θf,(ρ,i,j)Sρ,i(xj)

gk,j(xj)) =

r∑
ρ=0

2ρ+2∑
i=1

θg,(ρ,i,k,j)Sρ,i(x)

hk,j(xj)) =

r∑
ρ=0

2ρ+2∑
i=1

θh,(ρ,i,k,j)Sρ,i(x)

Only the maximum density basis function ρ = r have trainable parameters. The maximum density198

r-density B-spline functions are uniform B-spline functions with trainable parameters. There are at199

most four basis functions that are non-zero for any given xj , and as such the gradient vector with200

respect to trainable parameters will have at most four non-zero entries for each r-density B-spline201
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function, the same four parameters for each mixed-density B-spline functions fj(xj), gi,j(xj), and202

hi,j(xj). One simply needs to count the number of mixed-density B-spline functions.203

The number of mixed-density B-spline functions labeled fj(xj) are in total n, with 4 active trainable204

parameters each.205

The number of functions labeled gk,j(xj) are in total nM . For each M , there are n mixed-density206

B-spline functions, with 4 active trainable parameters each.207

The number of mixed-density B-spline functions labeled hk,j(xj) are in total nM . For each M , there208

are n mixed-density B-spline functions, with 4 active trainable parameters each.209

The total number of active trainable parameters is thus:210

4n+ 4nM + 4nM = 4n(2M + 1)

211

Remark. The total number of trainable parameters for each mixed-density B-spline function is 2r+2.212

For a fixed number of variables n, the model has a total of 2r+2n(2M +1) trainable parameters. The213

gradient vector has a maximum of 4n(2M + 1) non-zero entries, which is independent of r. Recall214

that only the maximum density (ρ = r) cubic B-spline function has trainable parameters. The fraction215

of trainable basis functions that are active is at most 2−r. Sparsity entails efficient implementation,216

and suggests possible memory retention and robustness to catastrophic forgetting.217

It is worth noting that the total number of parameters (including constants) is:218

Total number of parameters ∝
r∑

ρ=0

2ρ+2n(2M + 1) ≈ 2r+1n(2M + 1)

B.5.3 Atlas gradient flow attenuation219

Property 2 (Gradient flow attenuation). For any x⃗ ∈ D(A) ⊂ Rn and bounded trainable parameters220

θi with index set Θ: if all the mixed-density B-spline functions are bounded, then the gradient vector221

of trainable parameters for Atlas is bounded:222

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
1
=
∑
i∈Θ

∣∣∣∣∂A∂θi (x⃗)
∣∣∣∣ < U

Proof. Let A(x⃗) denote some Atlas model, with mixed-density B-spline functions fj(xj), gi,j(xj),223

and hi,j(xj) in the form:224

A(x⃗) =

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

=F (x⃗) +

M∑
k=1

1

k2
exp(Gk(x⃗))−

1

k2
exp(Hk(x⃗))

=F (x⃗) +G(x⃗)−H(x⃗)

With each mixed-density B-spline function in A(x⃗) given by:225

17



fj(xj) =

r∑
ρ=0

2ρ+2∑
i=1

θf,(ρ,i,j)Sρ,i(xj)

gk,j(xj)) =

r∑
ρ=0

2ρ+2∑
i=1

θg,(ρ,i,k,j)Sρ,i(x)

hk,j(xj)) =

r∑
ρ=0

2ρ+2∑
i=1

θh,(ρ,i,k,j)Sρ,i(x)

The norm of the gradient of A(x⃗) with respect to trainable parameters is given by:226

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
1
=
∥∥∥∇⃗θ⃗ (F (x⃗) +G(x⃗)−H(x⃗))

∥∥∥
1∥∥∥∇⃗θ⃗A(x⃗)

∥∥∥
1
=
∥∥∥∇⃗θ⃗F (x⃗) + ∇⃗θ⃗G(x⃗)− ∇⃗θ⃗H(x⃗)

∥∥∥
1∥∥∥∇⃗θ⃗A(x⃗)

∥∥∥
1
≤
∥∥∥∇⃗θ⃗F (x⃗)

∥∥∥
1
+
∥∥∥∇⃗θ⃗G(x⃗)

∥∥∥
1
+
∥∥∥∇⃗θ⃗H(x⃗)

∥∥∥
1

The first term is bounded,227

∥∥∥∇⃗θ⃗F (x⃗)
∥∥∥
1
=

∥∥∥∥∥∥∇⃗θ⃗

 n∑
j=1

fj(xj)

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
n∑

j=1

∇⃗θ⃗fj(xj)

∥∥∥∥∥∥
1

≤
n∑

j=1

∥∥∥∇⃗θ⃗fj(xj)
∥∥∥
1

Substituting the expression for each fj(xj), all lower densities have constant parameters:228

∥∥∥∇⃗θ⃗F (x⃗)
∥∥∥
1
≤

n∑
j=1

∥∥∥∥∥∥∇⃗θ⃗

 r∑
ρ=0

2ρ+2∑
i=1

θf,(ρ,i,j)Sρ,i(xj)

∥∥∥∥∥∥
1∥∥∥∇⃗θ⃗F (x⃗)

∥∥∥
1
≤

n∑
j=1

∥∥∥∥∥∥∇⃗θ⃗

2r+2∑
i=1

θf,(r,i,j)Sr,i(xj)

∥∥∥∥∥∥
1∥∥∥∇⃗θ⃗F (x⃗)

∥∥∥
1
≤

n∑
j=1

2r+2∑
i=1

∥∥∥∇⃗θ⃗

(
θf,(r,i,j)Sr,i(xj)

)∥∥∥
1

∥∥∥∇⃗θ⃗F (x⃗)
∥∥∥
1
≤

n∑
j=1

2r+2∑
i=1

|Sr,i(xj)|

Each basis function is continuous and bounded by some positive constant u > 0, such that S(x) < u229

regardless of its density, and it follows that:230

∥∥∥∇⃗θ⃗F (x⃗)
∥∥∥
1
≤

n∑
j=1

2r+2∑
i=1

u
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The last thing to include is that at most four basis functions are non-zero, regardless of the value of r,231

so a tighter upper bound is:232

∥∥∥∇⃗θ⃗F (x⃗)
∥∥∥
1
≤

n∑
j=1

4∑
i=1

u = 4nu

Remark. Each ρ-density B-spline function has at most four active basis functions, and each mixed-233

density B-spline function has r + 1 different ρ-density B-spline functions. If the lower densities234

ρ < r were also trainable, then this upper bound would instead be 4nu(r + 1). This is why only the235

maximum density was chosen to be trainable.236

The exponential terms are more complicated.237

∥∥∥∇⃗θ⃗G(x⃗)
∥∥∥
1
=

∥∥∥∥∥∇⃗θ⃗

(
M∑
k=1

1

k2
exp(Gk(x⃗))

)∥∥∥∥∥
1∥∥∥∇⃗θ⃗G(x⃗)

∥∥∥
1
≤

M∑
k=1

1

k2

∥∥∥∇⃗θ⃗ (exp(Gk(x⃗)))
∥∥∥
1∥∥∥∇⃗θ⃗G(x⃗)

∥∥∥
1
≤

M∑
k=1

1

k2

∥∥∥exp(Gk(x⃗))∇⃗θ⃗ (Gk(x⃗))
∥∥∥
1∥∥∥∇⃗θ⃗G(x⃗)

∥∥∥
1
≤

M∑
k=1

1

k2
exp(Gk(x⃗))

∥∥∥∇⃗θ⃗ (Gk(x⃗))
∥∥∥
1

Each mixed-density B-spline function is bounded, so238

|gk,j(xj))| =

∣∣∣∣∣∣
r∑

ρ=0

2ρ+2∑
i=1

θg,(ρ,i,k,j)Sρ,i(x)

∣∣∣∣∣∣ < ug,(k,j)

Since n is fixed and finite, the functions Gk(x⃗) are bounded:239

|Gk(x⃗)| =

∣∣∣∣∣∣
n∑

j=1

gk,j(xj)

∣∣∣∣∣∣ ≤
n∑

j=1

|gk,j(xj)| <
n∑

j=1

ug,(k,j) = ug,(k)

Since this is true for each Gk, one can choose the maximum bound:240

ug = max
k=1,...,M

{ug,(k)}

It is evident that:241

Gk(x⃗) ≤ |Gk(x⃗)| < ug

Since the exponential function is monotonic increasing:242

exp(Gk(x⃗)) ≤ exp(|Gk(x⃗)|) < exp(ug)

This result can be substituted back,243

∥∥∥∇⃗θ⃗G(x⃗)
∥∥∥
1
<

M∑
k=1

1

k2
exp(ug)

∥∥∥∇⃗θ⃗ (Gk(x⃗))
∥∥∥
1

19



It should be noted that Gk(x⃗) and F (x⃗) have similar structure such that:244 ∥∥∥∇⃗θ⃗ (Gk(x⃗))
∥∥∥
1
=
∥∥∥∇⃗θ⃗ (F (x⃗))

∥∥∥
1

This is true, even though Gk(x⃗) ̸= F (x⃗), because the same set of basis functions are used, with245

different coefficient parameters being the only difference. The consequence is that:246

∥∥∥∇⃗θ⃗G(x⃗)
∥∥∥
1
<

M∑
k=1

1

k2
exp(ug)

∥∥∥∇⃗θ⃗ (F (x⃗))
∥∥∥
1

Substituting previously shown results gives:247

∥∥∥∇⃗θ⃗G(x⃗)
∥∥∥
1
<

M∑
k=1

1

k2
exp(ug)4nu

∥∥∥∇⃗θ⃗G(x⃗)
∥∥∥
1
<4nu exp(ug)

∞∑
k=1

1

k2∥∥∥∇⃗θ⃗G(x⃗)
∥∥∥
1
<4nu exp(ug)

π2

6
< 4nuπ2 exp(ug)

The same argument can be used to find an upper bound for
∥∥∥∇⃗θ⃗H(x⃗)

∥∥∥
1

248

∥∥∥∇⃗θ⃗H(x⃗)
∥∥∥
1
<4nu exp(uh)

π2

6
< 4nuπ2 exp(uh)

The original expression of interest was:249

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
1
≤
∥∥∥∇⃗θ⃗F (x⃗)

∥∥∥
1
+
∥∥∥∇⃗θ⃗G(x⃗)

∥∥∥
1
+
∥∥∥∇⃗θ⃗H(x⃗)

∥∥∥
1∥∥∥∇⃗θ⃗A(x⃗)

∥∥∥
1
<4nu+ 4nuπ2 exp(ug) + 4nuπ2 exp(uh)∥∥∥∇⃗θ⃗A(x⃗)

∥∥∥
1
<4nuπ2 + 4nuπ2 exp(ug) + 4nuπ2 exp(uh)∥∥∥∇⃗θ⃗A(x⃗)

∥∥∥
1
<4nuπ2 (1 + exp(ug) + exp(uh))

Let the upper bound U be given by:250

U = 4nuπ2 (1 + exp(ug) + exp(uh))

From the definition of the norm ∥∥1, and the trainable parameters θi with index set Θ one has that:251

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
1
=
∑
i∈Θ

∣∣∣∣∂A∂θi (x⃗)
∣∣∣∣

Finally,252

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
1
=
∑
i∈Θ

∣∣∣∣∂A∂θi (x⃗)
∣∣∣∣ < U

253
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Remark. For a fixed number of variables n, the model has a total of n2r+2(2M + 1) trainable254

parameters. The factor of k−2 inside the expression for Atlas is necessary to ensure the sum is255

convergent in the limit of infinitely many exponential terms M → ∞. Only the maximum density256

(ρ = r) cubic B-spline function has trainable parameters, so that the gradient vector is bounded in the257

limit of arbitrarily large densities r → ∞. It is worth recalling that at most four basis functions are258

active for uniform cubic B-spline functions, regardless of the density, but the smaller densities cannot259

be trainable, otherwise this property does not hold. The gradient vector has bounded norm for any260

number of basis functions and exponential terms. The bounded gradient vector implies that Atlas is261

numerically stable during training, regardless of its size or parameter count.262

B.5.4 Atlas distal orthogonality263

Property 3 (Distal orthogonality). For any Atlas model A(x⃗) and ∀ x⃗, y⃗ ∈ D(A) ⊂ Rn and264

trainable parameters θi, there exists a δ > 0 such that:265

min
j=1,...,n

{|xj − yj |} > δ =⇒ ⟨∇⃗θ⃗A(x⃗), ∇⃗θ⃗A(y⃗)⟩ = 0

Proof. Let A(x⃗) denote some Atlas model, with mixed-density B-spline functions fj(xj), gi,j(xj),266

and hi,j(xj) in the form:267

A(x⃗) =

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp
(
Σn

j=1gk,j(xj)
)
− 1

k2
exp
(
Σn

j=1hk,j(xj)
)

=F (x⃗) +

M∑
k=1

1

k2
exp(Gk(x⃗))−

1

k2
exp(Hk(x⃗))

=F (x⃗) +G(x⃗)−H(x⃗)

With each mixed-density B-spline function in A(x⃗) given by:268

fj(xj) =

r∑
ρ=0

2ρ+2∑
i=1

θf,(ρ,i,j)Sρ,i(xj)

gk,j(xj)) =

r∑
ρ=0

2ρ+2∑
i=1

θg,(ρ,i,k,j)Sρ,i(xj)

hk,j(xj)) =

r∑
ρ=0

2ρ+2∑
i=1

θh,(ρ,i,k,j)Sρ,i(xj)

Any mixed-density functions Φ and Ψ that act on different components of the input must have269

orthogonal parameter gradients, since each input variable has its own associated parameters:270

⟨∇⃗θ⃗Φ(xi), ∇⃗θ⃗Ψ(yj)⟩ = 0 ∀ i ̸= j

Generally, since all mixed-density functions have parameters that are independent of each other it271

follows that for any mixed-density B-splines Φ and Ψ:272

⟨∇⃗θ⃗Φ(xj), ∇⃗θ⃗Ψ(yj)⟩ = 0 ∀ Φ ̸= Ψ

Thus, one need only compare the parameter gradients of each mixed-density B-spline function Ψ273

with itself. The inner-product of the parameter gradient of Ψ evaluated on two different inputs is274

given by:275

⟨∇⃗θ⃗Ψ(xj), ∇⃗θ⃗Ψ(yj)⟩
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The inner-product given above is not zero in general. However, as illustrated in Figure 18, for any276

mixed-density B-spline function Ψ there exist a δ > 0, such that:277

|xj − yj | > δ =⇒ ⟨∇⃗θ⃗Ψ(xj), ∇⃗θ⃗Ψ(yj)⟩ = 0

Figure 18: Visual proof of distal orthogonality for single-variable ρ-density B-splines.

This is because each basis function is zero everywhere, except on some small sub-interval. If this is278

true for all j = 1, ..., n, then the parameter gradients evaluated at x⃗ and y⃗ must be orthogonal. If this279

is true for all j = 1, ..., n, then it is true for the minimum. The converse is true by transitivity such280

that:281

|xj − yj | > δ ∀j = 1, ..., n ⇐⇒ min
j=1,...,n

{|xj − yj |} > δ

Finally,282

min
j=1,...,n

{|xj − yj |} > δ =⇒ ⟨∇⃗θ⃗A(x⃗), ∇⃗θ⃗A(y⃗)⟩ = 0

283

Remark. Two points that sufficiently differ in each input variable have orthogonal parameter gradients.284

It is worth mentioning that the condition resembles a cross-like region in two variables, and planes that285

intersect in higher dimensions. Distal orthogonality means Atlas is reasonably robust to catastrophic286

forgetting.287
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