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Motivation and Problem Setup

Scientific Machine Learning

▶ scientific computing (model-based) meets machine learning (data-driven)

▶ applies to many problems of the natural sciences, e.g. the important setting
of inverse problems in medical imaging: y = Fx + e

▶ a key concept is the error decomposition of reconstruction methods

∥x− Rec(y)∥ ≤ ∥x− Rec(Fx)∥︸ ︷︷ ︸
accuracy → this work

+ ∥Rec(Fx)− Rec(y)∥︸ ︷︷ ︸
robustness → [Genzel et al., 2020]

The AAPM Grand Challenge

Starting Point:

▶ lack of evidence for the reliability of deep-learning based solutions

▶ post-processing of filtered-backprojections (FBPs) with U-Nets may not yield
satisfactory results in CT reconstruction (Figure from [Sidky et al., 2020])

Challenge Setup:

The goal of the challenge was to“identify the state-of-the-art in solving the
CT inverse problem with data-driven techniques”. [Sidky et al., 2021]

▶ synthetic images comparable to mid-plane breast CT [Sidky et al., 2021]

▶ fanbeam CT sinograms and FBPs provided

▶ unknown fanbeam geometry

Our Approach:

High accuracy is possible if the forward model (estimated from the provided
data) is explicitly incorporated into the solution map.
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Further reading:
accuracy: arxiv.org/abs/2106.00280, openreview.net/forum?id=IhI3ZhtZGUo
robustness: arxiv.org/abs/2011.04268

Methodology

Step 1: Data-Driven Geometry Identification
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Data-driven estimation of fanbeam-geometry parameters θfan:

min
θfan

1

M

M∑
i=1

∥∥F[θfan](xi)− yi
∥∥2
2

Estimation of additional filtered-backprojection parameters θfbp:

min
θfbp

1

M

M∑
i=1

∥∥xi − FBP[θfan,θfbp](y
i)
∥∥2
2

; forward model F = F[θfan] and filtered-backprojection FBP = FBP[θfbp]

Step 2: Pre-Training a U-Net

Empirical risk minimization learns the parameters θ̃ of a U-Net U[θ̃] that post-
processes the FBP estimated in Step 1:

min
θ
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M

M∑
i=1

∥∥xi − (U[θ̃] ◦ FBP)(yi)
∥∥2
2
+ µ · ∥θ̃∥22

Step 3: Constructing an Iterative Scheme

The iterative procedure

ItNetK [θ] : Rm → RN, y 7→
[
⃝K

k=1

(
DCλk ,y ◦U[θ̃k]

)
◦ FBP

]
(y)

with learnable parameters θ = {θ̃k,λk}Kk=1 and data-consistency layer

DCλk ,y : RN → RN, x 7→ x− λk · FBP(Fx− y)

is trained analogous to Step 2.

Results and Analysis

Winning the Challenge

We were able to achieve near-exact recovery and win the AAPM challenge
with a margin of about an order of magnitude compared to the runners-up.

Results from the challenge report [Sidky et al., 2021]

Data Consistency

The Deeper the Better?

Conclusions

▶ end-to-end neural networks can achieve near-perfect accuracy

▶ our iterative scheme invokes the forward operator only 5 times (FBP 6 times),
much less than classical model-based solvers

▶ careful training is more important than specific architecture details

▶ there is a sweetspot regarding depth at about K = 5 iterations, after which
the improvement in accuracy is negligable and only training time increases


