Near-Exact Recovery for Sparse-View CT via Data-Driven Methods
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Motivation and Problem Setup Methodology Results and Analysis
Scientific Machine Learning Step 1: Data-Driven Geometry ldentification Winning the Challenge
_ . _ _ _ _ X—ray source Challenge FBP (RMSE = 5.96e-03) ( ) )
» scientific computing (model-based) meets machine learning (data-driven) e g A o | We were able to achieve near-exact recovery and win the AAPM challenge
» applies to many problems of the natural sciences, e.g. the important setting / ﬂ with a margin of about an order of magnitude compared to the runners-up.
of inverse problems in medical imaging: y = Fx + e l N
. o _ ; eon Tiramisu (RMSE = 2.75e-04) ItNet-post ens. (RMSE = 6.23e-06)
» a key concept is the error decomposition of reconstruction methods / t \ . .

Ix — Rec(y)|| < |Ix — Rec(Fx)|| + |[Rec(Fx) — Rec(y))|
—_— ————

accuracy — this work  robustness — [Genzel et al., 2020]
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The AAPM Grand Challenge 1/ o
Starting Point: Sdetector detector array - o | d U /t
. ﬂ sernartmne/ realil 51 S9
| o | | Data-driven estimation of fanbeam-geometry parameters Oy = 0.003; Lot 1 “Max/Robust-and-stable | 6.37x10 © L11x10
» lack of evidence for the reliability of deep-learning based solutions M 5 o TUM/YM&RH 3.99x10° 6.95x10 "
: : - . . : - 112 v 0.002 By - bel67/DEEP_.UL | 1.29x10~* 1.39x10~*
» post-processing of filtered-backprojections (FBPs) with U-Nets may not yield min 7 Z ||F[9fan](xl) -y, S J — de{ap};/— 1.59;0“1 1.?1i10-3
satisfactory results in CT reconstruction (Figure from [Sidky et al., 2020]) o i=1 2 0.001 ° o o sinogram|] Haimiao/HBB 1.81x10 % 1.24x10°°
Estimation of additional filtered-backprojection parameters Oy, > !- » + unknown Results from the challenge report [Sidky et al., 2021]
FBP 128 CNN prediction CNN diff. TVmin TVmin diff. TVmin diff. M ﬂ'n[ggnnn = DhDS SBOLC
i 1 Z Hxi FBP[B H ](y,) H2 average image RMSE
A o fan, YIbp .
Oy M . Data Consistency
~ forward model F _ F[Hfan] and filtered_backprojection FBP _ FBP[Hfbp] ,,.Tl (RMSE-Uﬁ) (RMSE=3.03e-D413.206) (RMSE = 1.56e-05 = 6.1e-06) »
Step 2: Pre-Training a U-Net
[0.174,0.253] [0.174,0.253] = 120.002,0.002) [0.174,0.253] %1071 107 [-0.002,0.002] N N
Challenge Setup: Empirical risk minimization learns the parameters @ of a U-Net U[6] that post- -
, ' processes the FBP estimated in Step 1: The D e B .,
” : : : e Deeper the better!
The goal of the challenge was to “identify the state-of-the-art in solving the 1 i I. " 2 - P
CT inverse problem with data-driven techniques”. [Sidky et al., 2021] N Z Hx — (U]6] o FBP)(y )H2 + - (10113 soneor| @) O wonume
I:]. * -§ ItNet (shared)
- . | Step 3: Constructing an lterative Scheme o
» synthetic images comparable to mid-plane breast CT [Sidky et al., 2021]
» fanbeam CT sinograms and FBPs provided The iterative procedure .
N K ~ 8.00e-05 \‘\\:\\
[ unknown fanbeam geometry ItNGtK[g] Rm — R , Y —> |:Ok1 (DC)\k,y O U[Hk]) O FBPi| (y) 6.006-05 ] K: NN
Our Approach: with learnable parameters @ = {0, A} X, and data-consistency layer - |
) DC}\k’y: RN — RN’ X — X — >\k . FBP(FX L y) 0 l 2 " # Forward Op. evaluations B

High accuracy is possible if the forward model (estimated from the provided is trained analogous to Step 2.

data) is explicitly incorporated into the solution map. Nt Net-post Conclusions

I R signal data " 2 » end-to-end neural networks can achieve near-perfect accuracy

enhancement consistency | 12 8 : : : . .
; — Ktimzs 3 i 52 » our iterative scheme invokes the forward operator only 5 times (FBP 6 times),
| ‘ o ! ) = .
| i | | = much less than classical model-based solvers
Y —| FBP ; U ; DCy i Xrec | L . . . .
| 3 | | : » careful training is more important than specific architecture details
******************************************************************************** R N I N O 200 400 600 500 » there is a sweetspot regarding depth at about K = 5 iterations, after which
epoch epoch epoch

the improvement in accuracy is negligable and only training time increases
Further reading:
accuracy: arxiv.org/abs/2106.00280, openreview.net/forum?id=IhI3ZhtZGUo
robustness: arxiv.org/abs/2011.04268



