
Under review as a conference paper at ICLR 2024

A BATCHED COMPUTATIONS

In Algorithm 2 we report the same operations of Algorithm 1 when a mini-batch of size b is provided
by the stream at each time instant. The case of batched computations is pretty straightforward, with
a major difference in the key scrambling routine. As a matter of fact, scrambling would require to
serialize the processing of the element in the mini-batch, that is not a desirable feature. For this
reason, we restrict to 1 the number of weak keys that can be potentially replaced for each mini-batch,
selecting the one associated to the batch element that is returning the smallest similarity score with
respect to K.

Algorithm 2 Learning with a Continual Memory Neuron when a batch of b samples is provided
at each time instant by the stream. Notice that X is the mini-batch matrix (b × d), function α is
intended to compute attention scores for each element of the batch, † and o are now arrays of length b.
Scrambling involves up to 1 key for each mini-batch (function SCRAMBLEONE).

Require: Stream S; generic loss function loss(. . .), learning rates ρ, β; K ← rand, M ← rand, µ ← 0’s,
η ← τη’s.
while true do

X ← next neuron inputs(S) ▷ X is a b× d matrix
A,S ← α(X,K, δ) ▷ A and S are b×m matrices
†h ← argmaxj∈{1,...,m}{Ahj}, h = 1, . . . , b

▷ Indices of the winning keys
K, M , †, µ← SCRAMBLEONE(X,K,M,S, †, µ, η)

▷ Possibly replace a weak key
K†h ← K†h + β∇sim(ψ(Xh),K†h), h = 1, . . . , b,

▷ Upd. winning keys, Eq. 6
A← α(X,K, δ) ▷ Refresh attention (from scratch)
µ†h ← µ†h + 1, η†h ← 0, h = 1, . . . , b

▷ Increase winning keys usages, reset ages
η = η + b ▷ Increase all ages
W ← AM ▷ Generate weights, Eq. 3, W is a b× d matrix
oh ←WhX

′
h, h = 1, . . . , b ▷ Compute output, Eq. 2

M† ←M† − ρ∇M† loss(o) ▷ Upd. winning memory unit
end while
function SCRAMBLEONE(X , K, M , S, †, µ, η)
W ← {z : µz < τµ ∧ ηz ≥ τη} ▷ Set of weak keys (if any)
k ← argminh∈{1,...,b}{Sh†h

}
▷ Idx of the sample with lowest similarity to its winning key

if Sk†k < τα ∧W ̸= ∅ then ▷ If the current match is loose
j ← argmaxz∈W{ηz} ▷ The weakest key is the oldest
Kj ← ψ(Xk) ▷ Replace weakest key with data sample
Mj ←M† ▷ Warm-start for replaced memory unit
µj ← 0 ▷ Reset usage counter
†k ← j ▷ Update winning key index

end if
return K, M , †, µ
end function

B METRICS

Following the notation of Section 4, we are given a data stream S partitioned into non-overlapping
time intervals, and we indicate with tj the last time instant of the j-th interval Ij , with tN = T . In the
following description, we assume class indices to be ordered with respect to the time in which they
become available, to keep the notation simple. We indicate with p(x|Ii) the data distribution in the
i-th interval, with θj is the model developed up to tj (being it a CMN-based network or the network
of another competitor), while Di is an held out test set with data sampled from p(x|Ii). Then, we
indicate with

acc
θj
i = accuracy(Di, θj)

13

Under review as a conference paper at ICLR 2024

the accuracy on data sampled from p(x|Ii) computed using the model parameters at tj , i.e., θj . We
collect the following matrix of accuracies during the learning procedure,

Model/Test Data D1 D2 . . . Dj . . . DN

θ1 accθ11 accθ12 . . . accθ1h . . . accθ1N
θ2 accθ21 accθ22 . . . accθ2j . . . accθ2N
. .

θj acc
θj
1 acc

θj
2 . . . acc

θj
j . . . acc

θj
N

. .

θN accθN1 accθN2 . . . accθNj . . . accθNN


that we indicate as continual confusion matrix (CCM, being CCMj the matrix up to tj), and we
exploit it to compute the following measures. Notice that it is a square matrix.

• The average accuracy at tz is defined as the average of the z-th row of the CCM, up to the
z-th column (included),

avg accuracy(CCMz) =
1

z

z∑
i=1

accθzi ,

and we commonly measure the average accuracy (ACC of Section 4) at the end of training,
tz = tN .

• The average forgetting at tz can be defined as

avg forgetting(CCMz) =
1

z − 1

z−1∑
i=1

(
acc⋆i − accθzi

)
,

where acc⋆i is the best accuracy obtained on data Di so far, i.e., maxθk∈{θ1,...,θz−1} acc
θk
i

(maximum of the i-th column up to row z−1). We commonly measure the average forgetting
(FORG of Section 4) at the end of training, tz = tN .

• Forward transfer measures how learning at checkpoint tz (positively) influences predictions
on data introduced in future intervals,

forward(CCMz) =
2

z(z − 1)

z−1∑
i=1

z∑
j=i+1

acc
θj
i ,

i.e., it is the average of the upper-triangular portion of the CCM (excluding the diagonal).
Similarly to the previous cases, we commonly measure it at tz = tN , yielding FWD of
Section 4.

C COMPUTATIONAL COST

A classic neuron model in a neural network requires u products to compute the output score, being u
the size of the input, Eq. 1. We compare this cost in terms of the operations performed by CMNs,
still using products as a reference. Computing the output of a CMN involves three main operations:
(1) evaluating ψ(x), whose cost is C(ψ), that transforms the neuron input in a customizable manner,
being ũ the size of the ψ-output; (2) computing the attention scores by α, Eq. 4, with cost mũ plus
the cost of the softmaxδ operation, that is δ; (3) blending memories, δu products, due to the sparsity
of the attention scores; (4) computing the usual output function as in a classic neuron, u products. In
total, we have C(ψ) +mũ+ δ + δu+ u. The cost of a layer of n classic neurons trivially becomes
un, while the cost of a layer of CMNs that share the same K is

C(ψ) +mũ+ δ + δun+ un, (7)

where only the last two terms depends on n, since the first three ones are about operations that are
performed only once, being K shared. In order to reasonable relate the cost of classic and CM
neurons, some basic considerations must be introduced. First of all, the cost C(ψ) is expected
to be way smaller than the cost of the whole layer. For example, when ψ is just limited to the

14

Under review as a conference paper at ICLR 2024

L2 normalization of x. Moreover, depending on the considered problem, there could be room for
designing ψ such that ũ is smaller than u. Of course, this does not always hold. It is reasonable to
assume the term δ in Eq. 7 to be way smaller than the other ones (being it a strong sparsity index,
always < m), thus we discard it. As a result, we can compute the ratio R between the cost of a CMN
layer and the corresponding classic layer,

RC =
mũ+ (δ + 1)un

un
=
mũ

nu
+ δ + 1. (8)

In case of multi-layer nets, with ℓ layers, we have

RC =

∑ℓ
i=1m(i)ũ(i) + (δ(i) + 1)d(i)n(i)∑ℓ

i=1 d(i)n(i)
, (9)

being i the layer index. In terms of memory consumption, a layer of n CMNs stores matrix K and n
matrices of memory units (M), that is a total of mũ+mun floating point numbers, while in a classic
layer only the weight matrix is stored (un floating point values). The ratio RM for ℓ layer is then,

RM =

∑ℓ
i=1m(i)ũ(i) +m(i)u(i)n(i)

u(i)n(i)
(10)

while the additional memory usage introduced by ℓ CMN layers is
UM = m(i)ũ(i) + (m(i) − 1)u(i)n(i). (11)

A candidate way to compare CMN-based net with models that replay data from memory buffers, is to
use the exact same network architecture, using classic neurons in place of CMNs. Then, we allow
replay-based methods to sample RC − 1 examples from the buffer at each time step. In fact, these
buffer-based models make a prediction on a mini-batch of buffer data in addition to the currently
streamed sample, according to the continual online learning setting experimented in this paper. Of
course, when comparing with models that have more layers that the CMN-net, it is harder to keep
a perfect balance in term of computational cost, so we allowed competitors to have a cost that is
slightly larger than the one of the CMN-net, making the comparison more challenging. Moreover, we
recall that the replay-based methods learn by exploiting the label-related information they store on
the replay-buffer, while no-label-information is stored by the CMN-net (this the comparison becomes
unfair when using very large replay buffers).

D HYPER-PARAMETERS

We evaluated multiple combinations of values for the main hyper-parameters of CMNs and competi-
tors, that we summarize in the following, in addition to the already described parameter values of the
main paper. In the case of CMN-based nets, in MODES and MOONS, we selected m = 8 memory
units with δ = 2, while we tested β ∈ {10−4, 10−3, 10−2, 1}, τµ ∈ {50, 200}, τη ∈ {50, 200},
τα ∈ {0.85, 0.95}, γ ∈ {1, 5, 25}. In NS-IMAGENET we considered m ∈ {10, 25, 50, 100},
δ ∈ {2, 5}, β ∈ {10−3, 10−2}, τµ ∈ {50, 500, 5000}, τη ∈ {50, 500, 5000}, τα ∈ {0.7, 0.85, 0.95},
γ ∈ {1, 5, 25}. The hidden layer size has been evaluated in h ∈ {5, 25} for 2D data, while
in h ∈ {50, 100} for NS-IMAGENET. In all the models, we considered a learning rate ρ ∈
{10−4, 10−3, 10−2, 1}, and trained with fixed-step-size gradient descent. We also evaluated the
case of Adam, which yielded lower results on average. Indeed, adopting optimizers with memory
such as Adam may be tricky: at every step, the model might select a different set of weights to be
updated, making the statistics of the optimizer invalid. We leave the investigation about the effect
of such optimizers for future work, restricting our analysis to memoryless optimizers, which do
not suffer from this issue. We also considered a weight decay factor DECAY for the optimizers
∈ {10−4, 10−3, 0}. We trained GDumb for 10 epochs on the buffer data. Other minor internal param-
eters of the competitors were set to the values suggested in the respective papers. The results reported
in the main paper are averaged over three runs with different seeds in {1234, 123456, 12346578}.
For all the experiments in this work we used PyTorch, running on a Linux machine–NVIDIA GeForce
RTX 3090 GPU (24 GB).

D.1 OPTIMAL HYPER-PARAMETERS

We report in Table 2 the best selected hyperparameters for the CMN model in all the considered
datasets and settings described in the main paper.

15

Under review as a conference paper at ICLR 2024

Table 2: Optimal parameters. The best selected hyperparameters for the proposed CMN model, drawn from the
grids described in the text, for the datasets. See the code for further details.

MODES MOONS NS-IMAGENET

Parameters CI CDI CDID CI CDI CDID -

δ 2 2 2 2 2 2 5
β 10−2 10−2 10−2 10−2 10−2 10−1 10−3

ρ 10−2 10−1 10−2 10−1 10−2 10−2 10−4

γ 25 25 25 25 25 5 1
m 8 8 8 8 8 8 100
τα 0.95 0.95 0.95 0.95 0.95 0.85 0.7
τη 50 50 50 50 200 200 5000
τµ 50 50 50 50 50 50 500

DECAY 0. 0. 0. 0. 0. 10−3 10−3

MODES MOONS

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

vanilla

agem

aser

bic-kd

der

der++

er-rnd

er-res

ensemble

gdumb

mir

MoE

cmn

Figure 6: MODES and MOONS data, best test accuracy (reference only) and std in the three setting we analyzed
(CI, CDI, CDID).

E NETWORKS OF CMNS

We report in Figure 7 a more detailed view of the process of input projection, memory blending and
WTA update occurring in each CMN. We now briefly discuss the specific case of convolutional layers
and on networks with multiple stacked CMN-based layers.

In a convolutional layer, each spatial coordinate is associated with a neuron4 whose input is differently
shifted with respect to every other neuron of the layer. At a first glance, this makes less obvious how
to share keys (if need) among the neurons of the layer. However, neurons are still expected to share
the same weights/filter, thus the key-attention scores should be the same for all of them, in order to
coherently blend memories and generate the same filter. In this case, it is convenient to go back to
the standard definition of convolution operation, where the whole input map of the layer is one of
its operands, thus ψ(x) is a projection of the whole input of the layer, and it is the same for all the
neurons. As a result, the attention scores are computed only once per layer, independently of the
resolution of the input map.

Layers of CMNs can be stacked into multi-layer networks, as usual. However, while the input of
the first layer is not affected by CMN dynamics, the input of any other layer comes from the CMNs
of the layer below. The proposed WTA key update scheme is not gradient-based, so that we also
avoid gradients to propagate through the key-matching process, i.e., we consider ŵ(x,K,M) of
Eq. 2 to not depend on x for gradient computation purposes. As a result, gradients flow from the

4We consider a single filter/output-feature-map in this description, for simplicity. For the same reason, and
without any loss of generality, we describe infinitely supported filters.

16

Under review as a conference paper at ICLR 2024

output layer down to the output of the layer below, as usual, and not through ŵ. Another intuition
that we followed is that CMNs belonging to the lower layers in a deep convolutional network should
have a smaller number of memory units than CMNs on the top layers, since lower-level features
are likely to be more shared across inputs than the higher-level ones, where the semantics emerge
(e.g., edge-like filters in the lowest levels vs. objects/object-parts related filters in the highest ones).
Of course, in non-convolutional nets this is harder to say in advance, but we still follow the same
intuition motivated by the need of reducing the variability in the outputs of the lower layers, to favor
stability in the learning process of the upper layers. Investigating the interaction among layer requires
specific studies that go beyond the scope of this paper.

F ADDITIONAL EXPERIMENTAL RESULTS

In Fig. 6 we report the upper-bound of the results presented in the main paper, obtained by selecting
the best-performing model on the test data. Of course, these results are only intended to be a
reference to understand the maximum performance each model could achieve, and not a way to make
comparisons across different approaches. We remark that this is different from what we did in the
main paper (Fig. 3), where we cross-validated the hyper-parameter values on the validation part of
the stream and evaluated performance on the out-of-sample test sets.

Comparing Fig. 6 with Fig. 3, we notice that the CMN-based net is actually able to reach similar
performance, thus being able to make the most out of the validation procedure. Since the validation
set is limited to the first part of the streamed data, this results is very promising in terms of what can
be achieved when working on longer streams with limited time-span dedicated to the validation of
the parameters.

d
o
t

p
r
o
d
u
c
t

dot

Figure 7: Larger instance of the contents of Fig. 1, for better readability.

17

	Introduction and Related Work
	Neuron Model
	Insights on the Computational Scheme

	Continual Learning
	Experiments
	Conclusions and Future Work
	Batched Computations
	Metrics
	Computational Cost
	Hyper-parameters
	Optimal Hyper-parameters

	Networks of CMNs
	Additional Experimental Results

