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Abstract
Artificial intelligence (AI) techniques are trans-

forming analog circuit design by automating
device-level tuning and enabling system-level
co-optimization. This paper integrates two ap-
proaches: (1) AI-assisted transistor sizing using
Multi-Objective Bayesian Optimization (MOBO)
for direct circuit parameter optimization, demon-
strated on a linearly tunable transconductor; and
(2) AI-integrated circuit transfer function modeling
for system-level optimization in a keyword spotting
(KWS) application, demonstrated by optimizing an
analog bandpass filter within a machine learning
training loop. The combined insights highlight
how AI can improve analog performance, reduce
design iteration effort, and jointly optimize analog
components and application-level metrics.

1. Introduction
AI and machine learning methods are increas-

ingly critical in analog circuit design, addressing
complex trade-offs and automating design explo-
ration. Traditional analog design relies heavily on
iterative tuning tomeet specifications,which is time-
consuming and suboptimal in high-dimensional de-
sign spaces [1]. In this paper, we enhance two key as-
pects of circuit design using AI-assisted approaches:
at the circuit level, by directly optimizing device pa-
rameters to improve performance, and at the sys-
tem level, by integrating circuit behavior models into
application-driven optimization frameworks. First,
a MOBO framework is utilized to automate transis-
tor sizing for a tunable transconductor circuit, ef-
ficiently balancing trade-offs among design specifi-
cations. Second, the transfer function of an analog
filter is incorporated into a neural network training
process enables joint optimization of analog front-
end and classifier in KWS task.

2. AI for Circuit Schematic Design
MOBO has emerged as a powerful tool for ana-

log circuit sizing, offering efficient exploration of de-
sign spaces with minimal simulations [2]. Figure 1
shows the framework to optimize circuit parame-
ters usingMOBO,which features a complete Python-
based optimization that enables agile tuning of cir-
cuit parameters in various specifications. Instead of
building surrogate models for circuit topologies, the
parallel qEHVI acquisition function [3] interfaces di-
rectly with the SPICE simulator, eliminating map-
ping errors. Meanwhile, updated circuit parameters

Fig. 1: Proposed analog circuit optimization frame-
work using MOBO.

Fig. 2: MOBO process on (left) tunable parameters
and (right) performancemetrics through 35 trials.

are immediately fed into the circuit netlist, result-
ing in a rapid optimization process. A linearly tun-
able transconductor proposed in [4] exhibits linear
tuning characteristic ofGm-VG. However, the size of
the transistors and the voltage of the common-mode
VCM affect the linear range, amplified gains and
other specifications. Thus, this optimization prob-
lem is formulated as Equation 1, where R,Γ, B, P
andN represent tunableGm range,Gm-VG linearity,
bandwidth, power consumption, and input referred
noise (IRN), respectively. These objective functions
are obtained based on circuit performance metrics
after SPICE simulation. The circuit is written into
netlist and incorporates a vector of learnable circuit
paramters xn in the search space.

min(−R(xn),−Γ(xn),−B(xn), P (xn), N(xn)) (1)

Figure 2 shows the MOBO process, where a
smooth Gaussian process (GP) model is constructed
based on the observations fromfirst 10 trails. TheGP
model enables predictions at unobserved parame-
terizations and quantifies uncertainty around them.
These predictions and uncertainty estimates feed
into acquisition functionqEHVI,which evaluates the
value of observing a specific parameterization for
the next 25 trials. Within 35 trials, the MOBO is con-
verged to maximize Pareto front coverage. The opti-
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Fig. 3: The block diagram of the proposed learnable
audio AFE and the schematic of the analog filters.

mized circuit reduced the IRNby24%, also increased
the tunable linearGm range by 102%.

3. AI for System-Level Optimization
While circuit-level optimization improves indi-

vidual block metrics, AI can also be used to co-
optimize analog circuits within system-level appli-
cations. The proposed audio analog front-end ar-
chitecture for always-on KWS is illustrated in Fig-
ure 3 [5]. In conventional designs, the analog fil-
ter for feature extraction is designed separately from
the machine learning model, potentially leading to
suboptimal system performance. Here, we adopt a
circuit-algorithm co-design approach: the transfer
function (Equation 2) of analog bandpass filters is
embedded into the training loop of the KWS classi-
fier. Thus, the circuit parameters (gm1, gm2, C1, C2)
are learned by gradient backpropagation in train-
ing. This means the neural network not only learns
classifier weights but also fine-tunes the analog fil-
ter’s behavior (center frequency, quality factor, gain)
to maximize overall accuracy. Initial SPICE simula-
tions provide a starting point for the filter param-
eters, and then each training epoch updates them,
which are feedback to SPICE for validation.

H(S) = −
gm1

2C1
s

s2 + gm1

2C2
s+ gm1gm2

4C1C2

(2)

It should be noted that the filter parameters such
as gm and C may have huge value difference to the
order of 103 or even more. Such differences compli-
cate training due to its impact on the learning rates
and potentially leading to vanishing gradient. To ad-
dress it, two trainable scaling factors (ϕg and ϕC) are
introduced in Equation 3. These scaling factors rep-
resent the ratio of two coupled parameters, allow-
ing for more balanced updates during the training
process. Here, C1 is designated as the unit capacitor
with a value of 3.2 pF, and gm1 is scaled to 3.84 nS.

ϕg =
gm2

gm1
, ϕC =

C2

C1
(3)

To concurrently optimize the classifier and the
AFE, a novel loss function, LBPF , is proposed. This
function integratesmultiple objectives to ensure bal-
anced system-level optimization. In addition to the
cross-entropy loss (LCE) for classifier, AFE power
loss (LP ) and area loss (LA) are incorporated into

Fig. 4: Frequency response of (a)(c) initial and (b)(d)
learned BPFs at different Q-factor initialization.

Fig. 5: (a) Performance through SNR-aware training.
(b) Hardware utilization through co-design.

LBPF . As depicted in Equation 4, LP and LA are
formulated using the scaling factors ϕg and ϕC . The
power consumption of BPF, expressed as 2VDD(I1 +
I3), is directly proportional to ϕg. Similarly, ϕg

encapsulates the area contributions of capacitors,
which form a significant portion of the circuit lay-
out. To balance the influence of these terms, regu-
larization coefficients λCE, λP , λA are introduced to
adjust the importance of each loss components.

LBPF = LCE + LP + LA

→ LBPF = λCELCE + λP

∑16
i=1 ϕg,i + λA

∑16
i=1 ϕc,i

(4)

The performance of the proposed design is evalu-
ated with the Google Speech CommandDataset. The
optimized frequency response under two different
initial Q-factor levels are shown in Figure 4, high-
lighting nonuniform gains and Q-factors across the
16 channels. Figure 5 (a) shows the results of SNR-
aware training that enhances the noise resilience
and improves KWS accuracy. Figure 5 (b) illus-
trates the significant improvement on reducing cir-
cuit power and area under different Q-factor levels.

4. Conclusion
This paper presents twoAI-driven frameworks for

analog circuit design: circuit-level transistor sizing
via MOBO, and system-level co-design through inte-
grated circuit transfer functions within model train-
ing. Results highlight the significant potential of
AI-drivenmethodologies to accelerate analog design
and improve outcomes beyond traditional methods.



AI4X 2025, Singapore, 8–11 July 2025

Acknowledgment
This work was supported by by the Agency for

Science, Technology and Research (A*STAR), Singa-
pore under the High Linearity Silicon Germanium
Photonic Modulator for 6G Analog Radio over Fiber
Project, Grant No. M24M8b0004.

References

[1] Mingjie Liu, Keren Zhu, Xiyuan Tang, Biying Xu,
Wei Shi, Nan Sun, and David Z. Pan. Closing the
design loop: Bayesian optimization assisted hi-
erarchical analog layout synthesis. In 2020 57th
ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2020.

[2] Guojin Chen, Keren Zhu, Seunggeun Kim, Han-
qing Zhu, Yao Lai, Bei Yu, and David Z. Pan.
Llm-enhanced bayesian optimization for effi-
cient analog layout constraint generation, 2024.

[3] Samuel Daulton, Maximilian Balandat, and Ey-
tan Bakshy. Differentiable expected hypervol-
ume improvement for parallel multi-objective
bayesian optimization. In Proceedings of the
34th International Conference on Neural Informa-
tion Processing Systems, NeurIPS’20, Red Hook,
NY, USA, 2020.

[4] BelÉn Calvo, Santiago Celma, Maria Teresa Sanz,
Juan Pablo Alegre, and Francisco Aznar. Low-
voltage linearly tunable cmos transconductor
with common-mode feedforward. IEEE Trans-
actions on Circuits and Systems I: Regular Papers,
55(3):715–721, 2008.

[5] Jinhai Hu, Zhongyi Zhang, Cong Sheng Leow,
Wang Ling Goh, and Yuan Gao. Late breaking re-
sults: Circuit-algorithm co-design for learnable
audio analog front-end. In Proceedings of the 61st
ACM/IEEEDesignAutomation Conference, DAC ’24,
New York, NY, USA, 2024.


	Introduction
	AI for Circuit Schematic Design
	AI for System-Level Optimization
	Conclusion

