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Abstract

Artificial intelligence (AI) techniques are trans-
forming analog circuit design by automating
device-level tuning and enabling system-level
co-optimization. This paper integrates two ap-
proaches: (1) Al-assisted transistor sizing using
Multi-Objective Bayesian Optimization (MOBO)
for direct circuit parameter optimization, demon-
strated on a linearly tunable transconductor; and
(2) Al-integrated circuit transfer function modeling
for system-level optimization in a keyword spotting
(KWS) application, demonstrated by optimizing an
analog bandpass filter within a machine learning
training loop. The combined insights highlight
how AI can improve analog performance, reduce
design iteration effort, and jointly optimize analog
components and application-level metrics.

1. Introduction

AT and machine learning methods are increas-
ingly critical in analog circuit design, addressing
complex trade-offs and automating design explo-
ration. Traditional analog design relies heavily on
iterative tuning to meet specifications, which is time-
consuming and suboptimal in high-dimensional de-
sign spaces [1]. In this paper, we enhance two key as-
pects of circuit design using Al-assisted approaches:
at the circuit level, by directly optimizing device pa-
rameters to improve performance, and at the sys-
tem level, by integrating circuit behavior models into
application-driven optimization frameworks. First,
a MOBO framework is utilized to automate transis-
tor sizing for a tunable transconductor circuit, ef-
ficiently balancing trade-offs among design specifi-
cations. Second, the transfer function of an analog
filter is incorporated into a neural network training
process enables joint optimization of analog front-
end and classifier in KWS task.

2. Al for Circuit Schematic Design

MOBO has emerged as a powerful tool for ana-
log circuit sizing, offering efficient exploration of de-
sign spaces with minimal simulations [2]. Figure 1
shows the framework to optimize circuit parame-
ters using MOBO, which features a complete Python-
based optimization that enables agile tuning of cir-
cuit parameters in various specifications. Instead of
building surrogate models for circuit topologies, the
parallel gEHVI acquisition function [3] interfaces di-
rectly with the SPICE simulator, eliminating map-
ping errors. Meanwhile, updated circuit parameters
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Fig. 1: Proposed analog circuit optimization frame-
work using MOBO.
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Fig. 2: MOBO process on (left) tunable parameters
and (right) performance metrics through 35 trials.

are immediately fed into the circuit netlist, result-
ing in a rapid optimization process. A linearly tun-
able transconductor proposed in [4] exhibits linear
tuning characteristic of G,,-V. However, the size of
the transistors and the voltage of the common-mode
Ve affect the linear range, amplified gains and
other specifications. Thus, this optimization prob-
lem is formulated as Equation 1, where R, T, B, P
and N represent tunable G,, range, G,,,-V¢ linearity,
bandwidth, power consumption, and input referred
noise (IRN), respectively. These objective functions
are obtained based on circuit performance metrics
after SPICE simulation. The circuit is written into
netlist and incorporates a vector of learnable circuit
paramters x,, in the search space.

min(—R(xn), _F(l’n)y —B(.’L’n), P(xn)7 N(!L‘n)) (1)

Figure 2 shows the MOBO process, where a
smooth Gaussian process (GP) model is constructed
based on the observations from first 10 trails. The GP
model enables predictions at unobserved parame-
terizations and quantifies uncertainty around them.
These predictions and uncertainty estimates feed
into acquisition function qEHVI, which evaluates the
value of observing a specific parameterization for
the next 25 trials. Within 35 trials, the MOBO is con-
verged to maximize Pareto front coverage. The opti-
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Fig. 3: The block diagram of the proposed learnable
audio AFE and the schematic of the analog filters.

mized circuit reduced the IRN by 24%, also increased
the tunable linear G, range by 102%.

3. Al for System-Level Optimization

While circuit-level optimization improves indi-
vidual block metrics, Al can also be used to co-
optimize analog circuits within system-level appli-
cations. The proposed audio analog front-end ar-
chitecture for always-on KWS is illustrated in Fig-
ure 3 [5]. In conventional designs, the analog fil-
ter for feature extraction is designed separately from
the machine learning model, potentially leading to
suboptimal system performance. Here, we adopt a
circuit-algorithm co-design approach: the transfer
function (Equation 2) of analog bandpass filters is
embedded into the training loop of the KWS classi-
fier. Thus, the circuit parameters (¢,,1, gm2, C1, C2)
are learned by gradient backpropagation in train-
ing. This means the neural network not only learns
classifier weights but also fine-tunes the analog fil-
ter’s behavior (center frequency, quality factor, gain)
to maximize overall accuracy. Initial SPICE simula-
tions provide a starting point for the filter param-
eters, and then each training epoch updates them,

which are feedback to SPICE for validation.
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It should be noted that the filter parameters such
as g,, and C may have huge value difference to the
order of 10? or even more. Such differences compli-
cate training due to its impact on the learning rates
and potentially leading to vanishing gradient. To ad-
dress it, two trainable scaling factors (¢, and ¢¢) are
introduced in Equation 3. These scaling factors rep-
resent the ratio of two coupled parameters, allow-
ing for more balanced updates during the training
process. Here, C; is designated as the unit capacitor

with a value of 3.2 pF, and g,,,1 is scaled to 3.84 nS.
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To concurrently optimize the classifier and the
AFE, a novel loss function, Lgpr, is proposed. This
function integrates multiple objectives to ensure bal-
anced system-level optimization. In addition to the
cross-entropy loss (Lcog) for classifier, AFE power
loss (Lp) and area loss (L 4) are incorporated into
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Fig. 4: Frequency response of (a)(c) initial and (b)(d)
learned BPFs at different Q-factor initialization.
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Fig. 5: (a) Performance through SNR-aware training.
(b) Hardware utilization through co-design.

Lppr. As depicted in Equation 4, Lp and L4 are
formulated using the scaling factors ¢, and ¢¢. The
power consumption of BPF, expressed as 2Vpp (1 +
I3), is directly proportional to ¢,. Similarly, ¢,
encapsulates the area contributions of capacitors,
which form a significant portion of the circuit lay-
out. To balance the influence of these terms, regu-
larization coefficients A\cg, Ap, A4 are introduced to
adjust the importance of each loss components.

Lppr =Lecg+Lp+La
— Lppr = AceLce + Ap Z}il $g,i +Aa 2321 Pe,i

The performance of the proposed design is evalu-
ated with the Google Speech Command Dataset. The
optimized frequency response under two different
initial Q-factor levels are shown in Figure 4, high-
lighting nonuniform gains and Q-factors across the
16 channels. Figure 5 (a) shows the results of SNR-
aware training that enhances the noise resilience
and improves KWS accuracy. Figure 5 (b) illus-
trates the significant improvement on reducing cir-
cuit power and area under different Q-factor levels.

)

4. Conclusion

This paper presents two Al-driven frameworks for
analog circuit design: circuit-level transistor sizing
via MOBO, and system-level co-design through inte-
grated circuit transfer functions within model train-
ing. Results highlight the significant potential of
Al-driven methodologies to accelerate analog design
and improve outcomes beyond traditional methods.
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