Supplementary Materials

A Proof of Theorem [2: Asymptotic Convergence of Robust Q-Learning

In this section we show that the robust Q-learning converges exactly to the optimal robust Q function
Q*. Recall that the optimal robust Q function Q* is the solution to the robust Bellman operator T

* . : * : * . * T
Q (s,a) *6(57a)+70?§((gg}%Q (5170’)752262 (527(1)3"'3%1262 (S|5\7a)) ) (14)
It can be shown that the estimated update is an unbiased estimation of T. More specifically,

TQ(s,a) = c(s,a) +yopa (V)
= e(s.) +9(1~ R)p)TV + Rmaxc V(s)

c(s,a) +9(1 = R) Y (1 )V (s) + Rmax V(s')

’

S

=c(s,0) +7) Pl ((1—R)(181>TV+RmaquV>, (15)
’ ’ q
which is the expectation of the estimated update in line 5 of Algorithm T}

A.1 Robust Bellman operator is a contraction

It was shown in [Iyengar, 2005, |[Roy et al., 2017] that the robust Bellman operator is a contrac-
tion. Here, for completeness, we include the proof for our R-contamination uncertainty set. More
specifically,

ITQ(s,a) — TQ' (s, a)]

= |e(s,a) + 7092 (V) = c(s,a) = y0pa (V)]

=opa (V) = o3a (V')

= ylmax{(1 = R)(pl) "V + Rq "V} —max {(1 = R)(p3) V' + R "V'} |

=7 [D_pie (L= RV(s) + RmaxV(s') = 3 pl o (1= R)V'(s)) — Rmax V'(s')

s'es s'e8

B
s'e8

=Y e (L=R)(V(s) = V'(s) + R(max V(s) — max V'(S’))|

<9 | X st B (1 Qs 0) - min Q')

s'e8

+yR(|max V(s') — max V'(s")])

<9 Y 2 B)|(min Qo) - mn Q') )| + 2 Rmax (V) - V'(5)

s'€S

(a)
<> ple(1-R)IQ-Qw+7RIQ - Qs

s'e8

<@ - Qe (16)

where (a) can be shown as below. Assume that a; = arg min, Q(s’, a) and b; = argmin, Q' (s', a).
Then if Q(s',a1) > Q'(s',b1), then

‘Q(Slval) - Q/(S/ab1)| = Q(Slaal) - Q/(Slvbl) < Q(s/abl) - Q/(Slvbl) < ”Q - QIHOO (17)

Similarly, it can also be shown when Q(s’,a1) < Q’(s’, b1), and hence the inequality (a) holds.
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A.2 Asymptotic Convergence of Robust Q-Leaning

With the definition of T, the update (3) of robust Q-learning can be re-written as a stochastic
approximation:

Qi1(s¢,a) = (1 — ) Qi (8¢, ar) + (T Qy (8¢, ar) +ne(S¢, ar, 5141))s (18)

where the noise term is
Ne(St, Aty Se11) = (8t ar) + ’yRIl’lELX Vi(s) + v(1 = R)Vi(st11) — TQ:(st, at). (19)
From (I5)), we have that
E[n: (S, At, St41)|St = s¢, Ay = a] = 0. (20)
The variance can be bounded by

E[(n:(Se, A, Se41))%] <47 (1 — R)Z(n;%x Q7 (s,a)), (21)

where the last inequality is from V;(s;41) < max, Vi(s) < max, , Q:(s, a). Thus the noise term 7,
has zero mean and bounded variance. From [Borkar and Meyn, [2000], we know that the stochastic
approximation (I8) converges to the fixed point of T, i.e., @*. Hence we showed that robust
Q-learning converges to optimal optimal robust Q function @* with probability 1.

B Finite-Time Analysis of Robust Q-Learning
In this section, we develop the finite-time analysis of the Algorithm [T}

B.1 Notations

We first introduce some notations. For a vector v = (v, vg, ..., vy, ), we denote the entry wise absolute

value ([v1], ..., [vn|) by |v]. For a sample O; = (s¢, ay, s¢41), define A, € RISIMIXISIAL 5
a, if(s,a)=(s,a") = (s¢,ar),
Ary1((s,a), (s',a") = { 0, (ea) =1 ) ot}Ee;Wi;g. 22)

Also we define the sample transition matrix P, € RISIMIXISI a5

1, if(s,a,8") =0,
Pii1((s,a),s") = { 0, ( oth)erwisé. @3

We also define the transition kernel matrix P € RISIAIXISI ag
P((s,a),s") = p o (24)

We use CF € RISIA and V; € RISI to denote the vectors of value functions. Denote the cost function
c € RISIMI with entry ¢(s, a) being the cost received at (s, a). Then the update of robust Q-learning
() can be written in matrix form as

Qi == 4)Qi1 + Ai(c+7(1 = R)RViy +9RmaxVioi(s)P1),  (29)

where 1 denotes the vector (1,1,1,....,1)" € RI8!. The robust Bellman equation can be written as

Q"=c+~v(1—-R)PV* +4R max V*(s)P1. (26)
se

B.2 Analysis

Define ¢; = Q; — Q*, then by and (26)), we have that

Yy =Qr — Q"
=T —A)Qi—1+ A(c+~v(1 — R)PV;—1 + ’er;leasx Vic1(s)P1) — QF
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= - A)(Qi-1— Q") + A(c+v(1 = R)PV;—1 + 7R1?€a§< Vie1(s) Pl — Q)
= (I = A1 + A(3(1 = R)PViey +yRmax Vi (s) P = (1 = R)PV"

— vaan V*(s)P1)
se
= = A1 +v(1 = R)Ay (P Vi — PVT)
—_—
k1
+yRA; (masx Vic1(s)P1 — max V*(s)P1)). (27)
sE sE

k2
The term k7 can be written as
PV, 1 —PV*=PV, 1 —PV*+PV*—PV*=P,(V_1 - V*)+ (P, — P)V*. (28)

Similarly, we have that
ky = (Iglélg(vt—l(s) —maxV (5)>Pt1 +max V*(s)(F — P)L. 29)

Hence (27) can be written as
Yr=0Qr— Q"
= = A1 +v(1 = R)A(P (Vi = V) + (P, — P)VY)

+ vRA, ((max Vi—1(s) — max V*(s)) P11+ max V*(s)(P; — P)l)
sES SES sES

= (1= s + (41— RUALP — PIV) 4 2R A e V* ()P~ P)1))

" (m — R)A(PAVit — V7)) + A RA, (<m§< Viei(s) — max V*(s)) m)) . G0

sES

By applying (30) recursively, we have that

t

¢r = [T = A5)0

j=1
k1t
t t t t
+71 =R [ = 4)A(P =PV +yR> [] (I — 4;)Aimax V*(s)(P: — P)1
i=1 j=i+1 i=1 j=i+1 s€s
kot

t t t t

+70-R)Y . [ G- 4)AP(Viea = V) +4RY . J] (1 Aj)Ai(max Vi (s) — max V7(s)) Pi1.
i=1 j—it+1 i=1 j—it+1

k3.t
€2y
We then bound terms k; ; separately.

AIS[IAT
5

Lemma 1. Define tfqme = % log . Then with probability at least 1 — §, for any (s,a) €

8 x A and any t > tpame, k1t can be bounded as

t

Hmin
2

lkagl < (1 - )

[0/l 0c1; (32)
andfort < tfmme,
k1,6l < llvollocl- (33)

Proof. First note that the (s, a)-entry of k ; can be written as
Fi(s,a) = (1= @) (s, a), (34)

where K (s, a) denotes the times that the sample trajectory visits (s, a) before the time step . We
introduce a lemma from [Li et al., [2020] first:
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Lemma 2. (Lemma 5 [Li et al.| |2020)]) For a time-homogeneous and uniformly ergodic Markov

chain with state space X and any 0 < § < 1, ift > 443t"”* log -5 X , then for any y € X,
. ty(x)
Px,—y axex:;w{j:xg 5 (S0 (35)
=

where t,,;, = min {t s maxgex dry(p, PH(-|z)) < %} 14 Is the stationary distribution of the Markov
chain, and pimin, = mingex p(x).

From this lemma, we know that for any (s,a) € 8 X A and any ¢ > 443t‘““ log 4‘SH6A|T, we have that
t min
Ki(s.a) > 200, (36)
with probability at least 1 — 4.
Thus (34) can be bounded as
[kre(s,0)] < (1= )" 2 (s, a)| 37)

48| AT
]

with probability at least 1 — 0 for any (s,a) € 8 x A and any ¢ > 4;63?"‘“ log , which shows

the claim.

For ¢ < tframe, the bound is obvious by noting that || — A,|| < 1. O

Lemma 3. There exists some constant ¢, such that for any § < 1 and any t < T that satisfies

|8HA\T . .- . 5
0 < alog < 1, with probability at least 1 TSTIATE

A TISIAl . .
sl < 5 atog T =1, 68)
Proof. Recall that

oy =71-R)Y ] ¢ (P =PV +yR>  [[ (- A)A(P; = P)w*, (39)

=1 j=141 1=1 j=141
where w* £ maxgeg V*(s)1. Then the (s, a)-th entry of ko ; can be written as

Ky(s,a)
koa(s,a) =y(1—R) > a(l—a)E07(P, (s,a) — P(s,a))V"
=1

K, (s,a)
+9R Z @) K0Py L (s,0) — P(s, a))w’, (40)

where ¢;(s, a) is the time step when the trajectory visits (s, a) for the i-th time. We define Varp (V') €
RISIMI being a vector, where Varp(V)(s,a) = D oses pgys,(V(s’)2) = (Dges p?_’S,V(s’))2 £
Varpa [V] for any V' € RIS,
From Section E.1 in [Li et al., 2020]], we know that

Var

Z (1 — )]~ (P,11(s,a) — P(s,0))V*| = aVarps[V*] £ 0% (41)

for some constant a%( and any K < T'. Moreover, note that

K

S a(l - a) (P 1i(s,a) - Ps, a>>w*]

=1

Var
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K
(i) Za2(1 o a)QK?zivar[(Pti-ﬁ-l(Sa (I) _ P(S, a))w*]

K
(®) Zaz(l — a)?2 =2 Var[max V*(s) ((Ps,41(s, a) — P(s,a))1)]

=0, (42)

where equation (a) is due to the fact that { P}, 11(s, a), Py, +1(s,a), ..., Pt,41(s,a)},y are indepen-
dent (Equation (101) in [Li et al., [2020]), (b) is from the definition of w*, and the last equation is
because the sum of each entries of Py, 11(s,a) — P(s,a) is 0.

the last equality is due to the fact that every entries of w* are the same and hence Varpa [w*] = 0.

Additionally, we have that
a1 = a) (P 41(s,a) — P(s,a)V*|__ < 2a|V*(s)]lec £ D, (43)
where we denote the bound by D. Also,
(1 = @)~ (Pr,41(s,a) — P(s,a))w*|| _ < D. (44)
Hence from the Bernstein inequality ([Li et al.|[2020]]), we have that
lkae(s,a)|

<ot s (T ¢ g PB041) e o T
T|8
< 5yér/ alog %\\V*(s)uw, 45)

for some constant ¢ with probability at least 1 — W, and the last step is due to the fact that
Varpa [V*] < [[V*[| and alog lSHAlT < 1. This hence completes the proof. O
Lemmad. Foranyt>T,
t t
LERTIS ’YZ l1%i—11lo0o H (L — A;)(A:)1. (46)
i=1 j=i+1l
Proof. First note that for any ¢,
[1Pi(Vier = Voo < [[Pill1[[Vies = V¥loo = [Vier = Voo < l[9i-1lloo) (47)

where the last inequality is from
Vier = Voo = max[Vii(s) = V*(s)| = [Via(s7) = V7 (s7)]
= |mgnQi71(3*7a) - mbinQ*(s*,b)| <Qi—1 — Q"o (48)

where s* = argmax |V;_1(s) — V*(s)|. Similarly,

1 (s) — *(s))Pi1
H(r;lgg‘/z 1(s) — max V*(s)) P

< |max Vioy(s) — max V*(s)| < [[9i-1oo; (49)
se8 sES

‘ o0

where the last inequality is from | maxseg Vi—1(8) — maxses V*(s)| < [|[Vic1 = V*|loo < ||Qiz1 —
Q" ||s- Hence K3 ; can be bounded as

t

t
sol <Y il ] (7= 4))(A0)1. (50)

i=1 j=i+1

O
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Now combine the bounds for terms k; ;, k2 ; and k3, we have the bound on 1), as follows.

For t < tfame, We have that

Wl < ol + 592 fartor Do oy 1

t t

+ ) ialle TT (7= A5)(40)1; (1)
i=1 j=it+1

and for ¢t > tfame, We have that
[l < (1~ ) 22 gl + 572 alog T ()1
t t
+ Y il JT (7= 45)(40)1 (52)
i=1 j=i+1

This bound exactly matches the bound in Equation (42) in [Li et al.,2020] and hence the remaining
proof for Theorem[3|can be obtained by following the proof in [Li et al.,2020]. We omit the remaining
proof and only state the result.

Theorem 6. Define

2log %6
ty = max { (717)27 tframe} ) (53)
O fhmin
1
Hframe = é,ufmintframe; (54)
p= (1= = (1—a)rm), (55)

then for any 6 < 1 and any € < ﬁ there exists a universal constant ¢ and cq (determined by ¢),
such that with probability at least 1 — 60, the following bound holds for any t < T':

(1-p)* Qo — Q* [l , 5&v
+
1—7v 1-—

ISIIAIT

Q- @l < .

alog +¢, (56)

where k = max {0, Ltt;t’hj } as long as
“frame

T>c¢ ( 1 + mix )10 <T|S||A|)lo (1 >
= (T =52 " (1 =7) ) 2\ 6 E\ei—72)"

and step size 0 < alog (%) <1

This theorem implies that the convergence rate of our robust Q-learning is as fast as the one of the
vanilla Q-learning algorithm in [Li et al., 2020](except the constant ¢).

Finally, to show Theorem [3] we only need to show each term in (56) is smaller than e. It
can be verified that there exists constants cj, such that if we choose the step size a =

gy min (t;x, 62(1;”4), then 1=20120=Q"ll= < ¢ (inequality (51) in [Li et al,2020]) and

Y

%\/a log M < € (by choosing suitable constant ¢;). Then we have that ||Q; — Q*||c < 3e.
This completes the proof.

C Proof of Theoremd;: Approximation of Smoothing Robust Bellman
Operator

In this section we prove Theorem First note that for any z,y € RIS,
LSE(r) ~ LSE()| < sup [VLSE(Gr + (1= 0)llle ~ vl (57)
te[o,1
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It can be shown that the gradient of LSE is softmax, i.e.,

OLSE(z) 2%
ox; B Ej €%’

(58)
Hence
[VLSE(2)|l; = 1,7z € RISI, (59)

which implies that [LSE(z) — LSE(y)| < || — y]|oo. Hence for any ,y € RIS!, we have that

[ Tr(s) — Try(s)| = |Ea R) Y po(x(s') — y(s") + yR(LSE(x) —LSE(y))H
s'e8
<Y1 = R)z =yl + 7Rl — ¥l
<9llz = yllo- (60)

This means that T is a contraction, which implies that it has a fixed point.

We then show the limit of the fixed points of ’i‘,r is the fixed point of T,; Note that TV} = V; and
T,.Vo = V5, hence

Vi = Vallso
= | TxVi = T2 V2 oo
S HTﬂ'Vl - Tw‘/2||oo + ||T7r‘/2 - Tﬂ"/QHoo

= max { Zps o V1 (") +yRmax V; ()
—R) Y _plVa () = yRmax Vs (s’)] ‘
+ max E. [7R (m;}sz (s') — LSE(Vg))} ’

<max[E,
S

—R)> pity (Vi(s) = Vals

Ex [’YR (msax Vo (s') - LSE(Vz)” ’

”yR (max Vi (s') — msz}ng (s’)) ”

-+ max
S

(a)
< maxy|Vi (3) = Va (5)

log |8
< A|[Vi = Vallow + 7R gg' | ©1)

Ex [yR (maxVa (s') — LSE(V2) ) |

where (a) is from |V (s") — Va(s)| < max, [Vi(s) — Va(s)] = [|[ViI — Va|leo and | maxy Vi (s') —
maxy Va(s')] < ||Vi — V||, and the last inequality is from LSE(V) — maxV =

1 ‘gV(s) —1 4QmaxV 49‘/(8) _ log .
08(3.,e?” ") loge = llog 7%51;,(\/ = élog 3 eeV (s memaxV < —Oggls‘. Hence this com-

o
pletes the proof.

D Proof of Theorem S: Finite-Time Analysis of Robust TDC with Linear
Function Approximation

In this section we develop the finite-time analysis of the robust TDC algorithm. In the following
proofs, ||v|| denotes the I3 norm if v is a vector; and || A|| denotes the operator norm if A is a matrix.

For the convenience of proof, we add a projection step to the algorithm, i.e., we let

e?Vo (g, T
Or+1 « g | Op +a | 0c(01)pr — ’Y(( R)gr1+ R m >¢t we ) |
es

SES
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wi1 ¢ i (Wt + B(6:(0¢) — ¢:Wt)¢t) ) (62)

for some constant K. We note that recently there are several works [Srikant and Ying, 2019, |Xu
and Liang, 2021] [Kaledin et al., 2020] on finite-time analysis of RL algorithms that do not need
the projection. However, a direct generalization of their approach does not necessarily work in our
case. Specifically, the problem in [Srikant and Ying| 2019] is for one time scale linear stochastic
approximation. and doesn’t need to consider the effect of the w; introduced, also their work highly
depends on the bound of the update functions of 6; (see inequality (18) in [Srikant and Ying} [2019]).
The parameter 6, in [Srikant and Ying, |2019] is bounded using itself at a previous timestep by taking
advantage of the fact that the update of 6 is linear. However, in our problem, the update is not linear
in 6, and our update rule is two time-scale. The approach in [Kaledin et al.| 2020]] transforms the
original two time-scale updates into two asymptotically independent updates via a linear mapping,
which is however challenging for our non-linear updates. Some other work, e.g., [Xu and Liang,
2021]], gets around this issue by imposing additional assumptions on the function class. Specifically,
it is assumed that Vj (non-linear function approximation) is bounded for all 8. For the linear function
approximation setting considered in this paper, this assumption is equivalent to the assumption of a
finite 0, which is guaranteed by the projection step in this paper.

D.1 Lipschitz Smoothness

In this section, we first show that VJ(6) is Lipschitz. We begin with an important lemma.

Lemma 5. Forany (s,a,s’) € 8 X A X 8, both § 4+ (0) and Vi 4 s (0) are bounded and Lipschitz,
i.e., for any 0 and ¢,

log |8
‘55,(1,5’ (9)| S Cmax + ’YR(K + Ogg||) + (1 + ’Y)K £ 05, (63)
85,0, (0) = 050,50 (0] < (L +)[10 — 0’| £ Ls]|6 — &', (64)
V05,06 (8) = Vis,a0,.6(0")| < 27Roll6 — 0'|| = L5160 — 6] (65)

Proof. 1. ¢ is bounded:

Recall that
.
B0 (0) = (5, @) 4 2 (1 — RYVi(s') + 7R e M) (66)
First we have that
105,a,5 (0)] < Cmax +7(1 = R)K + WRM +7RK + K
= Cmax + YR(K + log—|S|) + (1 +7)K. (67)

2. § is Lipschitz:

The Lipschitz smoothness of d; , s+ can be showed by finding the bound of Vd; ,, s-. We first recall
that

2 EQGT@@‘
Vis,a,s(0) =7(1 — R)¢s + ’YRW — ¢s. (68)
J
Hence
[Visas @) <v(1=R)+1+yR=1+1. (69)

3. V¢ is Lipschitz:

Finally we need to verify the Lipschitz smoothness of Vi, 4 ¢ (6), which can be implied from the
bound of V2551a75/ (0). First we have that

T (it T (it
Zi,j e20 (¢z+¢u)¢;¢i_zm e0f (¢l+¢1)¢?¢j

V20,.0.0(0) = 1R 2
s (0) = 7Re (%, e )2

< 2vRp. (70)

O
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With this lemma, we then show that V.J(6) is Lipschitz as follows.
Lemma 6. For any 6 and 0', we have that

L CsLf
930 - v <2 ( 5+ B jo— ) 2 Lo

Proof. From Lemma[5] we have that
Eu. [(Vis,a,5(0)¢s]l| < Ls

and
I, [(Vds,4,5(0))¢s] — B, [(Vis,as(0)¢s]|| < L0 — ']

Also it is easy to see that

_ 1

IC™ "y, [05,4,5 (0)$s]]l < $C,
and
_ _ 1
|C By, 65,45 (0)0s] = C By 65,45 ()65l < L6 — ¢/,
Thus this implies that
L?  CsLj
w36 - vl <2 (52 + S 1o - o1

and hence completes the proof.

D.2 Tracking Error

(71)

(72)

(73)

(74)

(75)

(76)

In this section, we study the bound of the tracking error, which is defined as z; = wy — w(6;). First

we can rewrite the fast time-scale update in Algorithm T]as follows:
Zir1 = wip1 — w(0py1)
= wi + B(8:(0:) — &/ wi)pr — w(Br1)
(01) + B(6:(0:) — ¢ wi)r — w(Bry1)
=z +w(0:) + B(8:(0:) — &/ (2 + ()t — w(Br11)
= 20+ w(0) + BOu(0:) b1 — B/ 2 — B, w(B:)r — w(Bii1)
= 20— Boud] 2+ BO(0) b1 — did! w(Br)) + w(Br) — w(Br11).
Thus taking the norm of both sides implies that

=z +w

H2t+1||2 HZtII2 +36%|21* + 382(16:(80)61 — ded w(00)[1* + 3l|w(8) — w(Gera)l|?

+ 2(z¢, —Bbid, z) + 2(z1, B(6:(08)br — P w(0:))) + 2(21, w(0r) — w(Brt1))

(77

= |lzell* = 282/ Czt + 38| 24l|” + 38%[16:(8:) e — bep w(B:)||” + 3[|w(6:) — w(Beqr) |
+28(z, (C — ¢t¢t )ze) + 2(z¢, B(0:(0) b — ¢t¢jw(9t))> + 2(z¢,w(0;) — w(Bry1))

b)
< (143B8% = 28N)||2e]|* 4+ B2C1 + 2B(z, (C — ¢/ )2t) + 2(z1,w(0;) — w(041))

+ 2(z4, B(6:(01) e — Pedf w(By))),

(78)

where(a) is from ||z + y + z||> < 3||z||? + 3|y||* + 3||z||? for any x,y,z € RN, (b) is from
2 Cz > A|z|*, and Cy = 3(Cs5 + %)2 +3(Cs+(1+ 2RQK)%)2 is the upper bound of

3(106(00) b — dudyf w(B)IP + 5z lw(Be) — w(Brrr)|I-
Taking expectation on both sides and applying recursively (78], we obtain that

t t
Elllze1]1%] < ¢ lzoll? +2 " 9 BEf (2, 0)] + 2 ¢ BElg (21,67, 0;)]

Jj=0 Jj=0
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+23 ¢ (z,w(0;) —w(011)) 6012qt 7, (79)

where
q= 1438 —28),
f(z,0 )é<zj,(C’ ¢J¢) i),

9(zj,05,0;) = (2,05(0;)¢; — ¢j¢j w(6;))- (80)

To simplify notations, let
9,54,_1 <— 9t =+ aGt(Gt,wt), (81)
Wi < wy + BH (0, wy), (82)

where G4 (0, w) = 6:(0)p; — 'y<( R)pi1 + RW)QSZM and H;(0,w) = (6:(6;) —
¢/ wi) b J
We have

1G:(8,w)]| < Cs + Kv £ Ca. (83)
The upper bound of H;(,w) is straightforward:

|Hy(6,w)|| < C5 + K £ Cy. (84)
With these two bounds we can then find the upper bound of the update of tracking error:

lzt41 — 2] < ||Ht(9t’wt)|| + [Jw (B 1) — w(04)]]

< BCH +a ||Gt(9t7wt)||
C’aCG
N

where (a) is from the Lipschitz of w(6): Hw(@tH) — w(@t)H <L S0 1 — 0] < aL“ |G (0, wr)]|.
Then for the Lipschitz smoothness of function g in , it is stralghtforward to see that

l9(6, 2,0:) — g(0', 2, O]

= (2,0;(0)9; — ¢;0; w(B)) — (2',6;(6")d; — b0 w(9))

=(2,6;(0)0; — ¢;0; w(0)) — (2,8;(0")d; — d;¢; w(6'))

+(2,0;(0")p5 — ¢50; w(B')) — (£/,8;(8")d; — ¢j0] w(8))

1 1
<ty (143 ) 10-014Cs (14 5) o=, 56)

where K, 2 K + % being a rough bound on the track error. Also it can be shown that

1f(2,01) = f(z,00)] = (2,(C = ¢s8] )2) — (', (C — ] )2')
= (2,(C = ¢/ )2) — (2, (C — ¢r0/ )2')
+(2,(C = ¢t )2') = (2, (C — d:8] )2")
< 4K, |z — 7. (87)

< BCH+ «

(85)

It is easy to see that

[Gi(0,w1) — Gi(0,w2)|| < (v + 27RoK)||w1 — wa|. (88)

With these bounds and Lipschitz constants, the following two lemmas can be proved using the similar
method of decoupling the Markovian noise in [Wang and Zou, 2020, |Bhandari et al.,|2018| Zou et al.|
2019].
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Lemma 7. Define 75 = min {k : mp* < B}. Ift < 75, then
E[f (2, O)] < 4KZ; (89)
and if t > 1, then
E[f(2t,Or)] < mgB 4 mly7sp, (90)
where my = 8K?2 andm'f = 8K, (C’H + %)

A similar result on E[g(6;, z¢, O¢)] can also be implied:
Lemma 8. [ft < 74, then

1
E[g(0s, 2, Or)] < 2K, (1 + )\> Cs; oD
and if t > 7, then
E[g(eta Zt, Ot)] S mgﬂ + m/gTﬁﬁ7 (92)
where mg = 4K (1+ 1) Cs and m/, = AK.L;Cc (1 + ) + Cs (1 + 1) (Cm + €552).
One more lemma is needed to bound the tracking error.

Lemma 9. Define h(0, z,0,) = <z, —Vw(h) (Gt(&w(ﬂ)) + v‘;(e))>, then if t < 7,

E[h(0t, 21, Or)] < K.Ch; (93)
and if t > 7,
E[h(0y, 2, Op)] < mpf + my, 750, (94)
where my, = 2K,Cp, and mj, = C}, (C’H + %) + K, L,Cq.

Proof. First we show the Lipschitz smoothness of h as follows. For any 6, 6’, z and z’, we have that

0, z,0¢) — h(0,2,04)
_ <z V(6 (Gt(ﬁ,w(e)) + WQ(Q))> - <z V(@) (Gt(e/,w(e/)) + WQ(Q/)»

) <Z vu) (Gt(ﬂ,w(H)) N VJQ(0>>> - <Z —Vw(0) (Gt(e,w(a)) + WQ@»

(5 =9l0) (Guto.00) + T4 ) ) = (1 vee) (G @) + T ) )
©3)

We note that

H_w(e) (Gt(M(G)) * Wf)) ‘

L C 2LsC,
< 7‘3 <C§ +y(1—R)+ 291@37‘5 + i 5) 20, (96)
and
J(0 J(O
H—Vw(&) (Gt(97w(9)) + V;)) + Vw(0") (Gt(6’7w(9’)) + v 2( )) H
L LsLg- LsLy
= —_9' & —o'l.
< (pon+ M L B oo 2 Lo - o) ©7)
Hence we have that
h(0,2,0;) — h(0',2',0;) < Chllz = 2| + K. Lp||0 — ¢ (98)
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We have shown before in (83)) that

CsCa

l|ze41 — 2] < BCH + h\

Hence, we have that

Cs;Ca

|n (O, 2, Or) — h(0i—+, 27, O¢)| < Cp <5CH + « ) T+ K. L,CgTa.

Define an independent random variable O = (S, A, §") ~ pux x P(:|S, A), then we have
Eplh(0,2,0)] =0

for any 6 and z. Thus by uniform ergodicity, we have that

E[h(etf‘lv Rt—T> Ot)] S E[h(atha Zt—Ts Ot)] - E() [h(ata 2ty O)] S 2chhmp7—'
Then if ¢ < 73, we have the straightforward bound
E[h(gtvztvOt)] < K.Chp;

and if ¢ > 73, we have that

CsC
E[h(0;, 2, O4)) < E[R(Br—ry, 24—y, O1)] + Ch (ﬁCH +a “A G) 75+ K. LyCarsa

CsCa

< 2K, Cpmp™ + Cy, <ﬂC’H + a ) 78 + K, Ly,Catga

£ mpfB + m;LT,gﬂ,

where my, = 2K.C), and m}, = Cy, (Cy + €2°¢) + K. L;,Cg. This completes the proof.

Now we bound the tracking error in (79). We first rewrite it as

t t

Elllze41%] < ¢ ll20l1* +2)_ ¢" 7 BE[f (7, 01)] +2 ) ¢ BElg(21, 65, 0;)]

j=0 §=0
Ay By
t t )
+2) ¢z, w(05) — w(Bi41)) +B°CL Y q' .
§=0 §=0
Ci

The second term A; can be bounded as follows:

Ay =2 q"IBE[f(2,0,)]
j=0
T3—1 t
=2 " BE[f(2;,0/)] +2 > q"BE[f(2;, 0;)]

0 J=T3

.
I

3

p—1 t
8 q"K.B+2) " ¢ B(mysB + mTsp)

j=0 J=T78

IN

qt+1—'r5 , 1— qt—7'5+1
+ 2B(mf5 + melgﬁ)

IN

16K,
p 1—g¢q 1—g¢q
Similarly, we have that

qt+1_7'5 1— qt—TﬂJFl

B, < 4K, 83 (1 + i) Cs + 26(my B 4 my7sf3)

1—g¢q 1—g¢q
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For C}, we first note that

E[(zi,w (0:) = w (0i11))]

YR (21, Vo (6) (0 — Oi1) + Ro)]

=E[{z;, —aVw (0;) G; (0;,w;) + Ra)]

- E|:<Zi7 —aVuw (0;) (Gi (0;,07) — Gy (05,0 (6:)) + G (61, w (6:)) + VJ2(9i) B VJ2(0i)>

- [<zi,—avw (6:) (Gi (05,0 (6:)) + VJ2(91)) >]

(b)
+E |:<ZZ, —aVw (91) (Gl (9i7wi) - GZ‘ (Qi,w (9») - VJ2(91)> + R2>:| s (108)
(e)
where (a) follows from the Taylor expansion, and Ry is the remaining term with norm || Ra|| = O(a?).

Term (b) can be bounded using Lemma[9] where

E Kz —aVw (6;) <Gi (05,0 (6:)) + Wf’) >} = aE[h(0;,2,0:)].  (109)

Term (c) can be bounded as follows.

<z1-, —aVw (6;) (Gi (6;,w;) — Gy (65,0 (6;)) — w(&g) + RQ>

2
(@ \ 2 0; 2
L2+ 2 lave 0) (6 6w — G 0w 0)) — YO 4 g,
8 A8 2

A8

§§||Zi||2
6 v.J (6,

+w<||avw(ei)(ai<ei,Wi)—Gi(ei,wwi)))nﬁHawwi) 10 +||R2|2>

AB 5 602 L2 oy 2 302 L2 9 6 2
< 220202 4 22525 (4 4 2y RoK )2 |52 + oo S5 V(0,1 + || Ra % 1
< e + 52 4y mor il + S B w0 + i) (110)

where (d) is from (z,y) < 22|z + %Hy”2 for any 2,y € RY and the fact that ||G;(6,w;) —
Gi(0,w2)|| < (v + 2voRK)||wy — we|| for any ||0|| < R and wy, we, which is from (88 .

Finally the term C can be bounded as follows.

7=0
t
(A8 602 L2 302 .2 6
2 L | P B it} 92 K222 + 22 26 o2+ 5 )
+ j:oq (8 l[2:l" + G w2 (7 + 27 RoK )|z +2/\B/\2HVJ( )| +ABHRQH
t
£9 thfﬂ'a]E[h(ej, 2, 0;)] + My, (111)
7=0
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e L3 o L
where M, = 2575 '~/ (32)12i]12 + 55 5 (v + 2vRoK %112 + 35 IV I 0 + 1 Rall?).
From Lemma[9] we have that
t
23 " q'JaE[h(0;, 2, 0;)]
=0
T3—1
th JE gjazja th JE ojazjao)]
J=1p
T3 — 1

<4K.Cha Y "7 + 20(mpB + mi,7s) Z ¢

=0 =75
qt-‘rl T3 qt—T5+1
=4K,Cha T + 2a(mpp + thgﬂ)li, (112)
—q
and this implies that
qt+1—7ﬂ 1— qt_TB+1
Cy < 4K,Cha . + 2a(mpB + mﬁﬁgﬁ)li + M,. (113)
- —q
Now we plug the bounds on A;, B; and C; in (79), we have that
E[llze4111%]
1— qt+1 1 qt+177'[.;
< qt+1||z0||2 + 6201?{] + (IGKZB +4K,Csp <1 + )\) + 4KZC’;L04> ¢
/ / / 1- qt77—ﬁ+1
+ (28(mgB + my7sP8) + 2B(mgB + my7sp) + 20(mp 8 + mj,753)) B + M,
1 ) ) 1— t+1 t+1 3 , 1— qthﬁJrl
Sq+ ||Zo|| +6 017q+czﬂ s +ﬂ(mzﬂ+m27ﬂﬂ)ﬁ+Mt, (114)

where C; = 16K + 4K.C5 (1 + 5) + 4K.Cp%, m. = 2my + 2m, + 2%my, and m/, = 2m’; +
2my + %‘Xm;l Note that ¢ = 1 + 382 — 28\ £ 1 —uf < e ", where u = 2\ — 3/3. Hence it
implies that
=0 Ell=])
T
1

HZOH2 2 2
< - = 4+ 4K
T<1—e—“ﬁ B=Ch 6+ T8

t=15—1 'LLB

t+1 T8 , 1 _ qtf‘l'[-}+1
+ Z ( L 4 BB+ ml ) — L — +Mt)

ET ole_utﬁ ! TN
+ CzﬂtT B(m.B+ szﬁﬁ)ﬁ + ; M,
B ST AP SR SR I
T wp T ) ey TR

T—1
oy Mt)
t=0
Cy

_ 1 _ll=l? 2 i T
_T<1—e“ﬁ+ﬂc +4KTB+W+(mZﬁ+mZT56)E+;Mt
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T-1
T C, 1 _o M,
: + (m.B+ m;Tﬁﬁ)E 4 &==0

—T(1 — e uh) T u(l—e BT T
T-1
o M
AQT‘F t_z(l !
1 M,
_ o L = 1
O(TﬁJrﬂT +T+ T ) (115)
where Qr = % +ﬁ% +4K2% + m + (m2B + mlzTBﬂ)i
We then compute Y, ' M;. Recall that M, = 22;:0 qtfj(¥|\zi||2 + %%(’y +
29vRoK)?||z|? + g’f\‘;iSHVJ(HZ)HQ + %HRQHQ). From double sum trick, i.e.,
Z:ol Z::o e ut=DBy, < —— ZZ:OI x¢ for any z; > 0, we have that
T-1
2 B
S s s (4 5y 5+ 29ReK) )ZEnztn
2 30® [~ 2
— E[[[V.J(6:) ——— || Ro|]*T. 116
Note that 1 — e ¥ = O(ﬁ), thus we can choose « and S such that

2 (A2 4+ 82 L (4 1 2yReK)?) < 1. then by plugging Y0 ' M, i h
=P 532 (Y +2vReK)?) < 3, then by plugging >, ;' M; in (TI5) we have
that

1320 Efllz] 2 3a® L} E[[VJ(8:)]%] 2 2
== - KL - -
2 T SQ@r+ =5 203 \2 T + ABI—@‘“BHRQH ’
117)
and this implies that
T-1 2
iy [II z)|’] < 2 302L33, o E[IVJ@)IP] , 6 4 2
=0 TN 1 9 = = i
Ort == 35 )\2 T T T e 172l
_ 1 a? E[[[VJ(6:)]|]
O( 6+6m+62 T , (118)

which completes the development of error bound on the tracking error.

D.3 Finite-Time Error Bound

Now with the tracking error in (TT8), we derive the finite-time error of the robust TDC. From Lemma
[]and Taylor expansion, we have that

L
T(Or1) < T(O0) + (VT (00), 01 — ) + (1601 — 00

L
= J(0:) + 0 (VJ(0,), G101, w)) + =5 || Ge(0r, o)
v.J(6,)
2

=J(O) —« <VJ(9t), —Gy(0r,wr) — + Gi(0r,w(6y)) — Gt(et,w(et))>

~ 2O + a2 Gulb, w0
= J(0:) — a(VJ(0;), —Ge(0s,w) + G(6,w(6;)))
\Y

+a (9700, 75 4 Gulbrt)) ~ §ITIO + Fa?l|Gulbr, )

< J(0) + allVIO)(y + 2y RE ) [w(6:) — well = SV T(00)]*
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+a <w(9t) v 2(9t>

By taking expectation on both sides and summing up from 0 to 7" — 1, we have that

Ly
L G(bw <9t>>>+a2|at(et,wt>||. (119)

T-1

E[|VJ(0:)]7]

Y o)

t=0

T-1
< J(6y) — J(07) + oy + 2yRK 0) J ZE V. (6,)]|2] $ > E[flz?]
t=0

+j2:1a KVJ (6y), v Q(Qt) + G (0, w( >} ZO‘ [1Ge (B, we)|?], (120)

which follows from the Cauchy -Schwartz  inequality: _1 E[|VJ@)l||zll] <
T-1
L VEIVIOIPEI=R < \/Srd BIVI00)]2y S0 Bl To bound the

Markovian noise term, i.e., VJ( ), V‘IQG) + G(0,w(0 ))> we first need some bounds and
smoothness conditions. It can be shown that

C
|G (60,0(O))]l < Cs + 52 (7 + 20KR) £ C, (121)
L C
|G1(6,(68)) — Gi(6w(6)] < (La + 520+ 2yReK) + ;Ls) 10 =0l & Leullo — 0]
(122)

Lemma 10. Define ((6,0;) = <VJ(9), VJTW) + Gt(97w(9))>, and let 7o, 2 min {k : mp* < a}.
Ift < 7, then

CsLs (CsL
E[¢(0:, Or)] < ‘; 2 < 5; +Cc;*> £ Cy; (123)
and if t > 14, then
E[¢(6:, Or)] < mea 4+ miTaa, (124)

where m¢ = 2C¢ and mc Ca (L"C°L5 + 05L°LG* + LJCG*)

Next we plug the tracking error (T18) in (T120).
-1
E(V0)|
t=0

T-1 T-1
J(80) = J(61) +aly + ng)J > E[llwwt)H?}J 2 Qr +2Y | M,
t=0

t=0

L
+ ar,Ce + (T — 7o) (me + MeTa) + %aQC’éT. (125)

Divided both sides by %, we have that

o E[IVI(6)]?]
T
_ 2J(60) = 2J(6r) Sr L E(IVI(8)]2) —o M,
S——7—+ 2(y + 2yRK o) T 2Qr +2552—
QTQOC / 2
+ T + 2a(mg + mCTa) + L]OéCG. (126)
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T—1 2 T—1
We know from (TT8) that22t=; Me o 2 30% Ly dmo E[”v‘](gt)u 4 x5 o= || Ra||?, thus

= T—e—%B AB A
o E(IVI(0)]7]
T
2J(60) — 2J (6 T LR[|VJ(6,)]2
- 2J(00) = 2(0n) +2(7+27RK9)\/L_0 1970)12)
ol T
6 4 2 3a’L} E[[[VJ(6:)]%]
2 - 2 -
\/ @r + 231 ——up 1 Bell? + \/1 “euB N3 A2 T
27,C,
+ C—|—20¢(m§—|—m<7'a)—Q—L]ozC’G
2J(6o) —2J(07) 2 3a2Lj E[|[VJ(6:)]*]
ol 20+ N RE N T =m g e T
6 4 Yo ElIVJ(6:)]12]
2
(\/2QT+ N1 Tz |1 B2l > 2(y +27RK ) \/ T
27,,C
+ C—i—Q(Jz(mC—|—mc7'a)—&—L‘]ozC'G
2J(0g) —2J(0 VJ(0;) [(IvVJ(o 27,C
o 200~ 2I00r) | SIEIVIGO] +K\/z BT 6O | 2
o T
+ 2a(m¢ + meTa) + LjaCg, (127)
where Ki = 2(y + 2RKoh/2w3EH = 0 (%) and K, =
(\/2QT+%1_€4—1LB ||R2||2) 2y + 2yRKp) = (‘)( %3+T15+675). Thus we can
choose « and 3 such that Ky < Q,then we have that
o E[IVI(6:)]?]
T
4 J(0 4t
< YO0 | o, \/ Lizo BIVIODP) | 470CC | oy 4 1ug ) + 21503
J 0

where U = /(%) 4J(9T) + 4T“C< +da(m¢ +mp1a) +2L;aCE = O(ats + 57) and V = 2K,
Hence, we have that
-1
—o E[IVJ(6:)]1%]
T

2
_ <V+\/V2+4U>

2

8J(00) - 8J(9T) + 8TaOC
oT T

@
v o
<16 (21 + 15 s IRl ) (3 4+ 29 RE 0)? +

+ 8a(m¢ + miTa) + 4L ;aCE
1 1
S (R , 12
o( - tata+ Tﬁ+5m) (129)

llzoll?

where Q1 = Ta—ewmy T B% + 4K2%5 + u(l_giiﬁ)ﬁf + (m.8 + mlzTgﬁ)%.
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D.4 Constants

In this section we list all the constants occurred in our proof for the readers’ reference.

log |8
06 :Cmax'i_’yR Og‘ ‘ +(1+’7)K7 (130)
Ls = (1+7), (131)
L5 = 29Rp, (132)
L2 CsL
Ly=2(=8 4 2228 1
J <)\ + \ ) (133)
Cs\ 2 s\ 2
C:1=3 C(S—’_T +3 C&+(1+2RQK)T s (134)
Cq = Cs +vK + 2voRK?, (135)
Cy =Cs+ K, (136)
K=K+, (137)
1
my = 4K, (1+A) Cs, (138)
; 1 1 CeCs
mg—4KzL60G <1+/\>+Cg (1+)\> (CH+ h\ , (139)
my = 8K?2, (140)
m, = 8K, <CH + CCf“) : (141)

mp, = 2K,Ch, (142)

m, = C, (CH + C5CG> + K, L,Cg, (143)
Cs
Caw = Cs + (7 + 20K R), (144)
L C
Loy = Ls + 7‘5(7 + 2yRoK) + 7‘5 . (145)
L LsLa- LsLy
Lh—féch+ 3 + TN (146)
L Cs;  2Ls;C,
Ch = 75 (05 +~(1—R)+ 291(71%7‘S + i 5) , (147)
_ CsLs (CsLs
Cc= =% ( o +CG*>, (148)
m¢ = 2C, (149)
L;CsL LsLax
mg :Ca( "(;‘5 LS. ;G +LJCG*> (150)

E Experiments

Experiments in Section [6.1}

Frozen Lake Problem. We consider a 4 x 4 Frozen Lake problem. We set v = 0.96, o = 0.8.
Cart-Pole Problem. We set v = 0.95, o = 0.2.

Experiments in Section [6.2;
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Frozen Lake Problem. We consider a 4 x 4 Frozen Lake problem. We set @ = 0.1, § = 0.5 and
v = 0.9. The initialization is § = (1,1,1,1,1) € R® and w = (0,0, 0,0,0). Each entry of every
base function ¢, is generated uniformly at random between (0, 1).

Additional Experiments on the Taxi Problem.

We use the same setting as in Section [6.1] to demonstrate the robustness of our robust Q-learning
algorithm. For the step size and discount factor, we set &« = 0.3 and v = 0.8. The results are shown
in fig. 5} from which the same observation that our robust Q-learning is robust to model uncertainty,
and achieves a much higher reward when the mismatch between the training and test MDPs enlarges.

—— Robust Q-learning
—— Non-robust Q-learning

—— Robust Q-learning
—— Non-robust Q-learning

—— Robust Q-learning
—— Non-robust Q-learning

accumulated discounted reward
accumulated discounted reward
accumulated discounted reward

) ED W0 100 2000 2500 G 250 0 70 1000 150 1300 1750 2000 G 20 0 750 1000 150 100 1750 2000
number of samples number of samples number of samples

(a) p=0.1, R=0.1 (b) p=0.05, R=0.2 (c) p=0.1, R=0.2

Figure 5: Taxi-v3: robust Q-learning v.s. non-robust Q-learning.
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