Supplementary Materials

A Proof of Theorem 2: Asymptotic Convergence of Robust Q-Learning

In this section we show that the robust Q-learning converges exactly to the optimal robust Q function Q^* . Recall that the optimal robust Q function Q^* is the solution to the robust Bellman operator T:

$$Q^*(s,a) = c(s,a) + \gamma \sigma_{\mathcal{P}^a_s} ((\min_{a \in \mathcal{A}} Q^*(s_1, a), \min_{a \in \mathcal{A}} Q^*(s_2, a), ..., \min_{a \in \mathcal{A}} Q^*(s_{|\mathcal{S}|}, a))^\top).$$
(14)

It can be shown that the estimated update is an unbiased estimation of T. More specifically,

$$\mathbf{T}Q(s,a) = c(s,a) + \gamma \sigma_{\mathcal{P}_{s}^{a}}(V)$$

$$= c(s,a) + \gamma (1-R)(p_{s}^{a})^{\top}V + R \max_{s'} V(s')$$

$$= c(s,a) + \gamma (1-R) \sum_{s'} (p_{s,s'}^{a})V(s') + R \max_{s'} V(s')$$

$$= c(s,a) + \gamma \sum_{s'} p_{s,s'}^{a} \left((1-R)(\mathbb{1}_{s'})^{\top}V + R \max_{q} q^{\top}V \right), \tag{15}$$

which is the expectation of the estimated update in line 5 of Algorithm 1.

A.1 Robust Bellman operator is a contraction

It was shown in [Iyengar, 2005, Roy et al., 2017] that the robust Bellman operator is a contraction. Here, for completeness, we include the proof for our R-contamination uncertainty set. More specifically,

$$\begin{aligned} &|\mathbf{T}Q(s,a) - \mathbf{T}Q'(s,a)| \\ &= |c(s,a) + \gamma \sigma_{\mathcal{P}_{s}^{a}}(V) - c(s,a) - \gamma \sigma_{\mathcal{P}_{s}^{a}}(V')| \\ &= \gamma |\sigma_{\mathcal{P}_{s}^{a}}(V) - \sigma_{\mathcal{P}_{s}^{a}}(V')| \\ &= \gamma |\max_{q} \left\{ (1 - R)(p_{s}^{a})^{\top}V + Rq^{\top}V \right\} - \max_{q'} \left\{ (1 - R)(p_{s}^{a})^{\top}V' + Rq'^{\top}V' \right\} | \\ &= \gamma \left| \sum_{s' \in \mathbb{S}} p_{s,s'}^{a} \left((1 - R)V(s') \right) + R \max_{s'} V(s') - \sum_{s' \in \mathbb{S}} p_{s,s'}^{a} \left((1 - R)V'(s') \right) - R \max_{s'} V'(s') \right| \\ &= \gamma \left| \sum_{s' \in \mathbb{S}} p_{s,s'}^{a} (1 - R) \left(V(s') - V'(s') \right) + R(\max_{s'} V(s') - \max_{s'} V'(s')) \right| \\ &\leq \gamma \left| \sum_{s' \in \mathbb{S}} p_{s,s'}^{a} (1 - R) \left(\min_{a} Q(s',a) - \min_{b} Q'(s',b) \right) \right| + \gamma R(\max_{s'} V(s') - \max_{s'} V'(s')|) \\ &\leq \gamma \sum_{s' \in \mathbb{S}} p_{s,s'}^{a} (1 - R) \left| \left(\min_{a} Q(s',a) - \min_{b} Q'(s',b) \right) \right| + \gamma R \max_{s} |(V(s) - V'(s))| \\ &\leq \gamma \sum_{s' \in \mathbb{S}} p_{s,s'}^{a} (1 - R) \|Q - Q'\|_{\infty} + \gamma R \|Q - Q'\|_{\infty} \\ &\leq \gamma \|Q - Q'\|_{\infty}, \end{aligned} \tag{16}$$

where (a) can be shown as below. Assume that $a_1 = \arg\min_a Q(s', a)$ and $b_1 = \arg\min_a Q'(s', a)$. Then if $Q(s', a_1) > Q'(s', b_1)$, then

$$|Q(s', a_1) - Q'(s', b_1)| = Q(s', a_1) - Q'(s', b_1) \le Q(s', b_1) - Q'(s', b_1) \le ||Q - Q'||_{\infty}.$$
 (17)

Similarly, it can also be shown when $Q(s', a_1) \leq Q'(s', b_1)$, and hence the inequality (a) holds.

A.2 Asymptotic Convergence of Robust Q-Leaning

With the definition of T, the update (5) of robust Q-learning can be re-written as a stochastic approximation:

$$Q_{t+1}(s_t, a_t) = (1 - \alpha_t)Q_t(s_t, a_t) + \alpha_t(\mathbf{T}Q_t(s_t, a_t) + \eta_t(s_t, a_t, s_{t+1})), \tag{18}$$

where the noise term is

$$\eta_t(s_t, a_t, s_{t+1}) = c(s_t, a_t) + \gamma R \max_{s} V_t(s) + \gamma (1 - R) V_t(s_{t+1}) - \mathbf{T} Q_t(s_t, a_t).$$
 (19)

From (15), we have that

$$\mathbb{E}[\eta_t(S_t, A_t, S_{t+1})|S_t = s_t, A_t = a_t] = 0.$$
(20)

The variance can be bounded by

$$\mathbb{E}[(\eta_t(S_t, A_t, S_{t+1}))^2] \le \gamma^2 (1 - R)^2 (\max_{s, a} Q_t^2(s, a)), \tag{21}$$

where the last inequality is from $V_t(s_{t+1}) \leq \max_s V_t(s) \leq \max_{s,a} Q_t(s,a)$. Thus the noise term η_t has zero mean and bounded variance. From [Borkar and Meyn, 2000], we know that the stochastic approximation (18) converges to the fixed point of T, i.e., Q^* . Hence we showed that robust Q-learning converges to optimal optimal robust Q function Q^* with probability 1.

B Finite-Time Analysis of Robust Q-Learning

In this section, we develop the finite-time analysis of the Algorithm 1.

B.1 Notations

We first introduce some notations. For a vector $v=(v_1,v_2,...,v_n)$, we denote the entry wise absolute value $(|v_1|,...,|v_n|)$ by |v|. For a sample $O_t=(s_t,a_t,s_{t+1})$, define $\Lambda_{t+1}\in\mathbb{R}^{|\mathcal{S}||\mathcal{A}|\times|\mathcal{S}||\mathcal{A}|}$ as

$$\Lambda_{t+1}((s,a),(s',a')) = \begin{cases}
\alpha, & \text{if } (s,a) = (s',a') = (s_t,a_t), \\
0, & \text{otherwise.}
\end{cases}$$
(22)

Also we define the sample transition matrix $P_{t+1} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|}$ as

$$P_{t+1}((s,a),s') = \begin{cases} 1, & \text{if } (s,a,s') = O_t, \\ 0, & \text{otherwise.} \end{cases}$$
 (23)

We also define the transition kernel matrix $P \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|}$ as

$$P((s,a),s') = p_{s,s'}^{a}. (24)$$

We use $Q_t \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ and $V_t \in \mathbb{R}^{|\mathcal{S}|}$ to denote the vectors of value functions. Denote the cost function $c \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ with entry c(s,a) being the cost received at (s,a). Then the update of robust Q-learning (5) can be written in matrix form as

$$Q_t = (I - \Lambda_t)Q_{t-1} + \Lambda_t \left(c + \gamma(1 - R)P_t V_{t-1} + \gamma R \max_{s \in \mathcal{S}} V_{t-1}(s)P_t \mathbf{1} \right), \tag{25}$$

where **1** denotes the vector $(1, 1, 1, ..., 1)^{\top} \in \mathbb{R}^{|S|}$. The robust Bellman equation can be written as

$$Q^* = c + \gamma (1 - R)PV^* + \gamma R \max_{s \in S} V^*(s) P \mathbf{1}.$$
 (26)

B.2 Analysis

Define $\psi_t = Q_t - Q^*$, then by (25) and (26), we have that

$$\psi_t = Q_t - Q^*$$
= $(I - \Lambda_t)Q_{t-1} + \Lambda_t(c + \gamma(1 - R)P_tV_{t-1} + \gamma R \max_{s \in S} V_{t-1}(s)P_t\mathbf{1}) - Q^*$

$$= (I - \Lambda_{t})(Q_{t-1} - Q^{*}) + \Lambda_{t}(c + \gamma(1 - R)P_{t}V_{t-1} + \gamma R \max_{s \in \mathcal{S}} V_{t-1}(s)P_{t}\mathbf{1} - Q^{*})$$

$$= (I - \Lambda_{t})\psi_{t-1} + \Lambda_{t}(\gamma(1 - R)P_{t}V_{t-1} + \gamma R \max_{s \in \mathcal{S}} V_{t-1}(s)P_{t}\mathbf{1} - \gamma(1 - R)PV^{*}$$

$$- \gamma R \max_{s \in \mathcal{S}} V^{*}(s)P\mathbf{1})$$

$$= (I - \Lambda_{t})\psi_{t-1} + \gamma(1 - R)\Lambda_{t}\underbrace{(P_{t}V_{t-1} - PV^{*})}_{k_{1}}$$

$$+ \gamma R\Lambda_{t}\underbrace{(\max_{s \in \mathcal{S}} V_{t-1}(s)P_{t}\mathbf{1} - \max_{s \in \mathcal{S}} V^{*}(s)P\mathbf{1}))}_{k_{2}}.$$
(27)

The term k_1 can be written as

$$P_t V_{t-1} - PV^* = P_t V_{t-1} - P_t V^* + P_t V^* - PV^* = P_t (V_{t-1} - V^*) + (P_t - P)V^*.$$
 (28)

Similarly, we have that

$$k_2 = \left(\max_{s \in \mathcal{S}} V_{t-1}(s) - \max_{s \in \mathcal{S}} V^*(s)\right) P_t \mathbf{1} + \max_{s \in \mathcal{S}} V^*(s) (P_t - P) \mathbf{1}.$$
 (29)

Hence (27) can be written as

$$\psi_{t} = Q_{t} - Q^{*}
= (I - \Lambda_{t})\psi_{t-1} + \gamma(1 - R)\Lambda_{t}(P_{t}(V_{t-1} - V^{*}) + (P_{t} - P)V^{*})
+ \gamma R\Lambda_{t} \left(\left(\max_{s \in S} V_{t-1}(s) - \max_{s \in S} V^{*}(s) \right) P_{t} \mathbf{1} + \max_{s \in S} V^{*}(s)(P_{t} - P) \mathbf{1} \right)
= (I - \Lambda_{t})\psi_{t-1} + \left(\gamma(1 - R)\Lambda_{t}(P_{t} - P)V^{*} \right) + \gamma R\Lambda_{t} \left(\max_{s \in S} V^{*}(s)(P_{t} - P) \mathbf{1} \right)
+ \left(\gamma(1 - R)\Lambda_{t}(P_{t}(V_{t-1} - V^{*})) + \gamma R\Lambda_{t} \left(\left(\max_{s \in S} V_{t-1}(s) - \max_{s \in S} V^{*}(s) \right) P_{t} \mathbf{1} \right) \right). (30)$$

By applying (30) recursively, we have that

$$\psi_{t} = \underbrace{\prod_{j=1}^{t} (I - \Lambda_{j}) \psi_{0}}_{k_{1,t}} + \gamma (1 - R) \sum_{i=1}^{t} \prod_{j=i+1}^{t} (I - \Lambda_{j}) \Lambda_{i} (P_{i} - P) V^{*} + \gamma R \sum_{i=1}^{t} \prod_{j=i+1}^{t} (I - \Lambda_{j}) \Lambda_{i} \max_{s \in \mathbb{S}} V^{*}(s) (P_{i} - P) \mathbf{1}}_{k_{2,t}} + \gamma (1 - R) \sum_{i=1}^{t} \prod_{j=i+1}^{t} (I - \Lambda_{j}) \Lambda_{i} P_{i} (V_{i-1} - V^{*}) + \gamma R \sum_{i=1}^{t} \prod_{j=i+1}^{t} (I - \Lambda_{j}) \Lambda_{i} (\max_{s \in \mathbb{S}} V_{i-1}(s) - \max_{s \in \mathbb{S}} V^{*}(s)) P_{i} \mathbf{1}}_{k_{3,t}}.$$
(21)

We then bound terms $k_{i,t}$ separately.

Lemma 1. Define $t_{frame} = \frac{443t_{mix}}{\mu_{\min}} \log \frac{4|\mathcal{S}||\mathcal{A}|T}{\delta}$. Then with probability at least $1 - \delta$, for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and any $t \geq t_{frame}$, $k_{1,t}$ can be bounded as

$$|k_{1,t}| \le (1-\alpha)^{\frac{t_{\min}}{2}} \|\psi_0\|_{\infty} \mathbf{1};$$
 (32)

and for $t < t_{frame}$,

$$|k_{1,t}| \le \|\psi_0\|_{\infty} \mathbf{1}. \tag{33}$$

Proof. First note that the (s, a)-entry of $k_{1,t}$ can be written as

$$k_{1,t}(s,a) = (1-\alpha)^{K_t(s,a)} \psi_0(s,a),$$
 (34)

where $K_t(s, a)$ denotes the times that the sample trajectory visits (s, a) before the time step t. We introduce a lemma from [Li et al., 2020] first:

Lemma 2. (Lemma 5 [Li et al., 2020]) For a time-homogeneous and uniformly ergodic Markov chain with state space $\mathfrak X$ and any $0<\delta<1$, if $t\geq \frac{443t_{mix}}{\mu_{\min}}\log\frac{|\mathfrak X|}{\delta}$, then for any $y\in\mathfrak X$,

$$\mathbb{P}_{X_1=y}\left\{\exists x \in \mathcal{X} : \sum_{j=1}^t \mathbb{1}X_j = x \le \frac{t\mu(x)}{2}\right\} \le \delta,\tag{35}$$

where $t_{mix} = \min \{t : \max_{x \in \mathcal{X}} d_{TV}(\mu, P^t(\cdot|x)) \leq \frac{1}{4} \}$; μ is the stationary distribution of the Markov chain, and $\mu_{\min} \triangleq \min_{x \in \mathcal{X}} \mu(x)$.

From this lemma, we know that for any $(s,a) \in \mathcal{S} \times \mathcal{A}$ and any $t \geq \frac{443t_{\mathrm{mix}}}{\mu_{\mathrm{min}}} \log \frac{4|\mathcal{S}||\mathcal{A}|T}{\delta}$, we have that

$$K_t(s,a) \ge \frac{t\mu_{\min}}{2},\tag{36}$$

with probability at least $1 - \delta$.

Thus (34) can be bounded as

$$|k_{1,t}(s,a)| \le (1-\alpha)^{\frac{t\mu_{\min}}{2}} |\psi_0(s,a)|$$
 (37)

with probability at least $1 - \delta$ for any $(s, a) \in \mathbb{S} \times \mathcal{A}$ and any $t \geq \frac{443t_{\text{mix}}}{\mu_{\text{min}}} \log \frac{4|\mathcal{S}||\mathcal{A}|T}{\delta}$, which shows the claim.

For
$$t < t_{\text{frame}}$$
, the bound is obvious by noting that $||I - \Lambda_j|| \le 1$.

Lemma 3. There exists some constant \hat{c} , such that for any $\delta < 1$ and any $t \leq T$ that satisfies $0 < \alpha \log \frac{|\mathbb{S}||\mathcal{A}|T}{\delta} < 1$, with probability at least $1 - \frac{\delta}{|\mathbb{S}||\mathcal{A}|T}$,

$$|k_{2,t}| \le 5\gamma \hat{c} \sqrt{\alpha \log \frac{T|\mathcal{S}||\mathcal{A}|}{\delta}} ||V^*(s)||_{\infty} \mathbf{1}, \tag{38}$$

Proof. Recall that

$$k_{2,t} = \gamma(1-R)\sum_{i=1}^{t} \prod_{j=i+1}^{t} (I-\Lambda_j)\Lambda_i(P_i-P)V^* + \gamma R\sum_{i=1}^{t} \prod_{j=i+1}^{t} (I-\Lambda_j)\Lambda_i(P_i-P)w^*, (39)$$

where $w^* \triangleq \max_{s \in S} V^*(s) \mathbf{1}$. Then the (s, a)-th entry of $k_{2,t}$ can be written as

$$k_{2,t}(s,a) = \gamma (1-R) \sum_{i=1}^{K_t(s,a)} \alpha (1-\alpha)^{K_t(s,a)-i} (P_{t_i+1}(s,a) - P(s,a)) V^*$$

$$+ \gamma R \sum_{i=1}^{K_t(s,a)} \alpha (1-\alpha)^{K_t(s,a)-i} (P_{t_i+1}(s,a) - P(s,a)) w^*,$$
(40)

where $t_i(s,a)$ is the time step when the trajectory visits (s,a) for the *i*-th time. We define $\operatorname{Var}_P(V) \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ being a vector, where $\operatorname{Var}_P(V)(s,a) = \sum_{s' \in \mathcal{S}} p_{s,s'}^a(V(s')^2) - (\sum_{s' \in \mathcal{S}} p_{s,s'}^aV(s'))^2 \triangleq \operatorname{Var}_{P_s^a}[V]$ for any $V \in \mathbb{R}^{|\mathcal{S}|}$.

From Section E.1 in [Li et al., 2020], we know that

$$\operatorname{Var}\left[\sum_{i=1}^{K} \alpha (1-\alpha)^{K-i} (P_{t_i+1}(s,a) - P(s,a)) V^*\right] = \alpha \operatorname{Var}_{P_s^a}[V^*] \triangleq \sigma_K^2 \tag{41}$$

for some constant σ_K^2 and any $K \leq T$. Moreover, note that

$$\operatorname{Var} \left[\sum_{i=1}^{K} \alpha (1 - \alpha)^{K-i} (P_{t_i+1}(s, a) - P(s, a)) w^* \right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{K} \alpha^{2} (1 - \alpha)^{2K - 2i} \operatorname{Var}[(P_{t_{i}+1}(s, a) - P(s, a)) w^{*}]$$

$$\stackrel{(b)}{=} \sum_{i=1}^{K} \alpha^{2} (1 - \alpha)^{2K - 2i} \operatorname{Var}[\max_{s} V^{*}(s) ((P_{t_{i}+1}(s, a) - P(s, a)) \mathbf{1})]$$

$$= 0, \tag{42}$$

where equation (a) is due to the fact that $\{P_{t_1+1}(s,a), P_{t_2+1}(s,a), ..., P_{t_i+1}(s,a)\}_{i\in\mathbb{N}}$ are independent (Equation (101) in [Li et al., 2020]), (b) is from the definition of ω^* , and the last equation is because the sum of each entries of $P_{t_i+1}(s,a) - P(s,a)$ is 0.

the last equality is due to the fact that every entries of w^* are the same and hence $\operatorname{Var}_{P_s^a}[w^*] = 0$. Additionally, we have that

$$\|\alpha(1-\alpha)^{K-i}(P_{t_i+1}(s,a) - P(s,a))V^*\|_{\infty} \le 2\alpha \|V^*(s)\|_{\infty} \triangleq D,$$
(43)

where we denote the bound by D. Also,

$$\|\alpha(1-\alpha)^{K-i}(P_{t_i+1}(s,a)-P(s,a))w^*\|_{\infty} \le D.$$
 (44)

Hence from the Bernstein inequality ([Li et al., 2020]), we have that

$$|k_{2,t}(s,a)|$$

$$\leq \gamma (1 - R) \hat{c} \left(\sqrt{\sigma_K^2 \log \left(\frac{T|\mathcal{S}||\mathcal{A}|}{\delta} \right)} + D \log \frac{T|\mathcal{S}||\mathcal{A}|}{\delta} \right) + \gamma R \hat{c} \left(D \log \frac{T|\mathcal{S}||\mathcal{A}|}{\delta} \right) \\
\leq 5 \gamma \hat{c} \sqrt{\alpha \log \frac{T|\mathcal{S}||\mathcal{A}|}{\delta}} \|V^*(s)\|_{\infty}, \tag{45}$$

for some constant \hat{c} with probability at least $1-\frac{\delta}{|\mathcal{S}||\mathcal{A}|T}$, and the last step is due to the fact that $\operatorname{Var}_{P^a_s}[V^*] \leq \|V^*\|_\infty^2$ and $\alpha \log \frac{|\mathcal{S}||\mathcal{A}|T}{\delta} < 1$. This hence completes the proof.

Lemma 4. For any $t \geq T$,

$$|k_{3,t}| \le \gamma \sum_{i=1}^{t} \|\psi_{i-1}\|_{\infty} \prod_{j=i+1}^{t} (I - \Lambda_j)(\Lambda_i) \mathbf{1}.$$
 (46)

Proof. First note that for any i,

$$||P_i(V_{i-1} - V^*)||_{\infty} \le ||P_i||_1 ||V_{i-1} - V^*||_{\infty} = ||V_{i-1} - V^*||_{\infty} \le ||\psi_{i-1}||_{\infty}, \tag{47}$$

where the last inequality is from

$$||V_{i-1} - V^*||_{\infty} = \max_{s} |V_{i-1}(s) - V^*(s)| = |V_{i-1}(s^*) - V^*(s^*)|$$

$$= |\min_{a} Q_{i-1}(s^*, a) - \min_{b} Q^*(s^*, b)| \le ||Q_{i-1} - Q^*||_{\infty},$$
(48)

where $s^* = \arg \max |V_{i-1}(s) - V^*(s)|$. Similarly,

$$\left\| \left(\max_{s \in \mathcal{S}} V_{i-1}(s) - \max_{s \in \mathcal{S}} V^*(s) \right) P_i \mathbf{1} \right\|_{\infty} \le \left| \max_{s \in \mathcal{S}} V_{i-1}(s) - \max_{s \in \mathcal{S}} V^*(s) \right| \le \|\psi_{i-1}\|_{\infty}, \tag{49}$$

where the last inequality is from $|\max_{s\in\mathbb{S}}V_{i-1}(s)-\max_{s\in\mathbb{S}}V^*(s)|\leq \|V_{i-1}-V^*\|_{\infty}\leq \|Q_{i-1}-Q^*\|_{\infty}$. Hence $K_{3,t}$ can be bounded as

$$|k_{3,t}| \le \gamma \sum_{i=1}^{t} \|\psi_{i-1}\|_{\infty} \prod_{j=i+1}^{t} (I - \Lambda_j)(\Lambda_i) \mathbf{1}.$$
 (50)

Now combine the bounds for terms $k_{1,t}, k_{2,t}$ and $k_{3,t}$, we have the bound on ψ_t as follows.

For $t < t_{\text{frame}}$, we have that

$$\|\psi_t\|_{\infty} \leq \|\psi_0\|_{\infty} \mathbf{1} + 5\gamma \hat{c} \sqrt{\alpha \log \frac{T|\mathcal{S}||\mathcal{A}|}{\delta}} \|V^*(s)\|_{\infty} \mathbf{1}$$
$$+ \gamma \sum_{i=1}^t \|\psi_{i-1}\|_{\infty} \prod_{j=i+1}^t (I - \Lambda_j)(\Lambda_i) \mathbf{1}; \tag{51}$$

and for $t \geq t_{\text{frame}}$, we have that

$$\|\psi_{t}\|_{\infty} \leq (1 - \alpha)^{\frac{t\mu_{\min}}{2}} \|\psi_{0}\|_{\infty} \mathbf{1} + 5\gamma \hat{c} \sqrt{\alpha \log \frac{T|\mathcal{S}||\mathcal{A}|}{\delta}} \|V^{*}(s)\|_{\infty} \mathbf{1}$$

$$+ \gamma \sum_{i=1}^{t} \|\psi_{i-1}\|_{\infty} \prod_{j=i+1}^{t} (I - \Lambda_{j})(\Lambda_{i}) \mathbf{1}.$$
(52)

This bound exactly matches the bound in Equation (42) in [Li et al., 2020] and hence the remaining proof for Theorem 3 can be obtained by following the proof in [Li et al., 2020]. We omit the remaining proof and only state the result.

Theorem 6. Define

$$t_{th} = \max \left\{ \frac{2\log \frac{1}{(1-\gamma)^2 \epsilon}}{\alpha \mu_{\min}}, t_{frame} \right\}; \tag{53}$$

$$\mu_{frame} = \frac{1}{2} \mu_{\min} t_{frame}; \tag{54}$$

$$\rho = (1 - \gamma)(1 - (1 - \alpha)^{\mu_{frame}}), \tag{55}$$

then for any $\delta < 1$ and any $\epsilon < \frac{1}{1-\gamma}$, there exists a universal constant \hat{c} and c_0 (determined by \hat{c}), such that with probability at least $1-6\delta$, the following bound holds for any t < T:

$$\|Q_t - Q^*\|_{\infty} \le \frac{(1-\rho)^k \|Q_0 - Q^*\|_{\infty}}{1-\gamma} + \frac{5\hat{c}\gamma}{1-\gamma} \sqrt{\alpha \log \frac{|\mathcal{S}||\mathcal{A}|T}{\delta}} + \epsilon, \tag{56}$$

where $k = \max \left\{0, \left\lfloor \frac{t - t_{th}}{t_{frame}} \right\rfloor \right\}$, as long as

$$T \geq c_0 \left(\frac{1}{\mu_{\min}(1 - \gamma)^5 \epsilon^2} + \frac{t_{\min}}{\mu_{\min}(1 - \gamma)} \right) \log \left(\frac{T|\mathcal{S}||\mathcal{A}|}{\delta} \right) \log \left(\frac{1}{\epsilon(1 - \gamma)^2} \right),$$

and step size $0 < \alpha \log \left(\frac{|\mathcal{S}||\mathcal{A}|T}{\delta} \right) < 1$.

This theorem implies that the convergence rate of our robust Q-learning is as fast as the one of the vanilla Q-learning algorithm in [Li et al., 2020](except the constant \hat{c}).

Finally, to show Theorem 3, we only need to show each term in (56) is smaller than ϵ . It can be verified that there exists constants c_1 , such that if we choose the step size $\alpha = \frac{c_1}{\log\left(\frac{T\|S\|\|A\|}{\delta}\right)} \min\left(\frac{1}{t_{\text{mix}}}, \frac{\epsilon^2(1-\gamma)^4}{\gamma^2}\right)$, then $\frac{(1-\rho)^k\|Q_0-Q^*\|_\infty}{1-\gamma} \le \epsilon$ (inequality (51) in [Li et al., 2020]) and $\frac{5\hat{c}\gamma}{1-\gamma}\sqrt{\alpha\log\frac{|S\|A|T}{\delta}} \le \epsilon$ (by choosing suitable constant c_1). Then we have that $\|Q_t-Q^*\|_\infty \le 3\epsilon$. This completes the proof.

C Proof of Theorem 4: Approximation of Smoothing Robust Bellman Operator

In this section we prove Theorem 4. First note that for any $x, y \in \mathbb{R}^{|\mathcal{S}|}$,

$$|LSE(x) - LSE(y)| \le \sup_{t \in [0,1]} \|\nabla LSE(tx + (1-t)y)\|_1 \|x - y\|_{\infty}.$$
 (57)

It can be shown that the gradient of LSE is softmax, i.e.,

$$\frac{\partial \text{LSE}(x)}{\partial x_i} = \frac{e^{\varrho x_i}}{\sum_j e^{\varrho x_j}}.$$
 (58)

Hence

$$\|\nabla LSE(z)\|_1 = 1, \forall z \in \mathbb{R}^{|S|},\tag{59}$$

which implies that $|LSE(x) - LSE(y)| \le ||x - y||_{\infty}$. Hence for any $x, y \in \mathbb{R}^{|S|}$, we have that

$$|\hat{\mathbf{T}}_{\pi}x(s) - \hat{\mathbf{T}}_{\pi}y(s)| = \left| \mathbb{E}_{A} \left[\gamma(1-R) \sum_{s' \in \mathbb{S}} p_{s,s'}^{A}(x(s') - y(s')) + \gamma R(\mathsf{LSE}(x) - \mathsf{LSE}(y)) \right] \right|$$

$$\leq \gamma(1-R) \|x - y\|_{\infty} + \gamma R \|x - y\|_{\infty}$$

$$\leq \gamma \|x - y\|_{\infty}.$$
(60)

This means that $\hat{\mathbf{T}}_{\pi}$ is a contraction, which implies that it has a fixed point.

We then show the limit of the fixed points of $\hat{\mathbf{T}}_{\pi}$ is the fixed point of \mathbf{T}_{π} Note that $\mathbf{T}_{\pi}V_1 = V_1$ and $\hat{\mathbf{T}}_{\pi}V_2 = V_2$, hence

$$\|V_{1} - V_{2}\|_{\infty}$$

$$= \|\mathbf{T}_{\pi}V_{1} - \hat{\mathbf{T}}_{\pi}V_{2}\|_{\infty}$$

$$\leq \|\mathbf{T}_{\pi}V_{1} - \mathbf{T}_{\pi}V_{2}\|_{\infty} + \|\mathbf{T}_{\pi}V_{2} - \hat{\mathbf{T}}_{\pi}V_{2}\|_{\infty}$$

$$= \max_{s} \left| \mathbb{E}_{\pi} \left[\gamma \left(1 - R \right) \sum_{s'} p_{s,s'}^{A} V_{1} \left(s' \right) + \gamma R \max_{s'} V_{1} \left(s' \right) \right] \right|$$

$$- \gamma \left(1 - R \right) \sum_{s'} p_{s,s'}^{A} V_{2} \left(s' \right) - \gamma R \max_{s'} V_{2} \left(s' \right) \right] \right|$$

$$+ \max_{s} \left| \mathbb{E}_{\pi} \left[\gamma R \left(\max_{s'} V_{2} \left(s' \right) - LSE(V_{2}) \right) \right] \right|$$

$$\leq \max_{s} \mathbb{E}_{\pi} \left[\left| \gamma \left(1 - R \right) \sum_{s'} p_{s,s'}^{A} \left(V_{1} \left(s' \right) - V_{2} \left(s' \right) \right) \right| + \left| \gamma R \left(\max_{s'} V_{1} \left(s' \right) - \max_{s'} V_{2} \left(s' \right) \right) \right| \right]$$

$$+ \max_{s} \left| \mathbb{E}_{\pi} \left[\gamma R \left(\max_{s'} V_{2} \left(s' \right) - LSE(V_{2}) \right) \right] \right|$$

$$\leq \max_{s} \gamma |V_{1} \left(s \right) - V_{2} \left(s \right) \right| + \left| \mathbb{E}_{\pi} \left[\gamma R \left(\max_{s'} V_{2} \left(s' \right) - LSE(V_{2}) \right) \right] \right|$$

$$\leq \gamma \|V_{1} - V_{2}\|_{\infty} + \gamma R \frac{\log |\mathcal{S}|}{\varrho}, \tag{61}$$

D Proof of Theorem 5: Finite-Time Analysis of Robust TDC with Linear Function Approximation

In this section we develop the finite-time analysis of the robust TDC algorithm. In the following proofs, ||v|| denotes the l_2 norm if v is a vector; and ||A|| denotes the operator norm if A is a matrix.

For the convenience of proof, we add a projection step to the algorithm, i.e., we let

$$\theta_{t+1} \leftarrow \mathbf{\Pi}_K \left(\theta_t + \alpha \left(\delta_t(\theta_t) \phi_t - \gamma \left((1 - R) \phi_{t+1} + R \sum_{s \in \mathcal{S}} \left(\frac{e^{\varrho V_{\theta}(s)} \phi_s}{\sum_{j \in \mathcal{S}} e^{\varrho V_{\theta}(j)}} \right) \right) \phi_t^{\top} \omega_t \right) \right),$$

$$\omega_{t+1} \leftarrow \Pi_K \left(\omega_t + \beta (\delta_t(\theta_t) - \phi_t^\top \omega_t) \phi_t \right), \tag{62}$$

for some constant K. We note that recently there are several works [Srikant and Ying, 2019, Xu and Liang, 2021, Kaledin et al., 2020] on finite-time analysis of RL algorithms that do not need the projection. However, a direct generalization of their approach does not necessarily work in our case. Specifically, the problem in [Srikant and Ying, 2019] is for one time scale *linear* stochastic approximation. and doesn't need to consider the effect of the ω_t introduced, also their work highly depends on the bound of the update functions of θ_t (see inequality (18) in [Srikant and Ying, 2019]). The parameter θ_t in [Srikant and Ying, 2019] is bounded using itself at a previous timestep by taking advantage of the fact that the update of θ is linear. However, in our problem, the update is not linear in θ , and our update rule is two time-scale. The approach in [Kaledin et al., 2020] transforms the original two time-scale updates into two asymptotically independent updates via a linear mapping, which is however challenging for our non-linear updates. Some other work, e.g., [Xu and Liang, 2021], gets around this issue by imposing additional assumptions on the function class. Specifically, it is assumed that V_{θ} (non-linear function approximation) is bounded for all θ . For the linear function approximation setting considered in this paper, this assumption is equivalent to the assumption of a finite θ , which is guaranteed by the projection step in this paper.

D.1 Lipschitz Smoothness

In this section, we first show that $\nabla J(\theta)$ is Lipschitz. We begin with an important lemma.

Lemma 5. For any $(s, a, s') \in S \times A \times S$, both $\delta_{s,a,s'}(\theta)$ and $\nabla \delta_{s,a,s'}(\theta)$ are bounded and Lipschitz, i.e., for any θ and θ' ,

$$|\delta_{s,a,s'}(\theta)| \le c_{\max} + \gamma R(K + \frac{\log |\mathcal{S}|}{\varrho}) + (1 + \gamma)K \triangleq C_{\delta}, \tag{63}$$

$$\|\delta_{s,a,s'}(\theta) - \delta_{s,a,s'}(\theta')\| \le (1+\gamma)\|\theta - \theta'\| \triangleq L_{\delta}\|\theta - \theta'\|,\tag{64}$$

$$\|\nabla \delta_{s,a,s'}(\theta) - \nabla \delta_{s,a,s'}(\theta')\| \le 2\gamma R\varrho \|\theta - \theta'\| \triangleq L_{\delta}' \|\theta - \theta'\|. \tag{65}$$

Proof. 1. δ is bounded:

Recall that

$$\delta_{s,a,s'}(\theta) = c(s,a) + \gamma(1-R)V_{\theta}(s') + \gamma R \frac{\log(\sum_{j \in \mathcal{S}} e^{\varrho \theta' \cdot \phi_j})}{\varrho} - V_{\theta}(s). \tag{66}$$

First we have that

$$|\delta_{s,a,s'}(\theta)| \le c_{\max} + \gamma (1 - R)K + \gamma R \frac{\log |\mathcal{S}| e^{K\varrho}}{\varrho} + \gamma RK + K$$

$$= c_{\max} + \gamma R (K + \frac{\log |\mathcal{S}|}{\varrho}) + (1 + \gamma)K. \tag{67}$$

2. δ is Lipschitz:

The Lipschitz smoothness of $\delta_{s,a,s'}$ can be showed by finding the bound of $\nabla \delta_{s,a,s'}$. We first recall that

$$\nabla \delta_{s,a,s'}(\theta) = \gamma (1 - R) \phi_{s'} + \gamma R \frac{\sum_{i} e^{\varrho \theta^{\top} \phi_{i}} \phi_{i}}{\sum_{j} e^{\varrho \theta^{\top} \phi_{j}}} - \phi_{s}.$$
 (68)

Hence

$$\|\nabla \delta_{s,a,s'}(\theta)\| \le \gamma (1-R) + 1 + \gamma R = 1 + \gamma.$$
 (69)

3. $\nabla \delta$ is Lipschitz:

Finally we need to verify the Lipschitz smoothness of $\nabla \delta_{s,a,s'}(\theta)$, which can be implied from the bound of $\nabla^2 \delta_{s,a,s'}(\theta)$. First we have that

$$\nabla^2 \delta_{s,a,s'}(\theta) = \gamma R \varrho \frac{\sum_{i,j} e^{\varrho \theta^\top (\phi_i + \phi_j)} \phi_i^\top \phi_i - \sum_{i,j} e^{\varrho \theta^\top (\phi_i + \phi_j)} \phi_i^\top \phi_j}{(\sum_i e^{\varrho \theta^\top \phi_j})^2} \le 2\gamma R \varrho. \tag{70}$$

With this lemma, we then show that $\nabla J(\theta)$ is Lipschitz as follows.

Lemma 6. For any θ and θ' , we have that

$$\|\nabla J(\theta) - \nabla J(\theta')\| \le 2\left(\frac{L_{\delta}^2}{\lambda} + \frac{C_{\delta}L_{\delta}'}{\lambda}\right)\|\theta - \theta'\| \triangleq L_J\|\theta - \theta'\|. \tag{71}$$

Proof. From Lemma 5, we have that

$$\|\mathbb{E}_{\mu_{\pi}}[(\nabla \delta_{S,A,S'}(\theta))\phi_S]\| \le L_{\delta} \tag{72}$$

and

$$\|\mathbb{E}_{\mu_{\pi}}[(\nabla \delta_{S,A,S'}(\theta))\phi_S] - \mathbb{E}_{\mu_{\pi}}[(\nabla \delta_{S,A,S'}(\theta'))\phi_S]\| \le L'_{\delta}\|\theta - \theta'\|. \tag{73}$$

Also it is easy to see that

$$||C^{-1}\mathbb{E}_{\mu_{\pi}}[\delta_{S,A,S'}(\theta)\phi_S]|| \le \frac{1}{\lambda}C_{\delta},\tag{74}$$

and

$$||C^{-1}\mathbb{E}_{\mu_{\pi}}[\delta_{S,A,S'}(\theta)\phi_{S}] - C^{-1}\mathbb{E}_{\mu_{\pi}}[\delta_{S,A,S'}(\theta')\phi_{S}]|| \le \frac{1}{\lambda}L_{\delta}||\theta - \theta'||.$$
 (75)

Thus this implies that

$$\|\nabla J(\theta) - \nabla J(\theta')\| \le 2\left(\frac{L_{\delta}^2}{\lambda} + \frac{C_{\delta}L_{\delta}'}{\lambda}\right)\|\theta - \theta'\|,\tag{76}$$

and hence completes the proof.

D.2 Tracking Error

In this section, we study the bound of the tracking error, which is defined as $z_t = \omega_t - \omega(\theta_t)$. First we can rewrite the fast time-scale update in Algorithm 1 as follows:

$$z_{t+1} = \omega_{t+1} - \omega(\theta_{t+1})$$

$$= \omega_t + \beta(\delta_t(\theta_t) - \phi_t^\top \omega_t)\phi_t - \omega(\theta_{t+1})$$

$$= z_t + \omega(\theta_t) + \beta(\delta_t(\theta_t) - \phi_t^\top \omega_t)\phi_t - \omega(\theta_{t+1})$$

$$= z_t + \omega(\theta_t) + \beta(\delta_t(\theta_t) - \phi_t^\top (z_t + \omega(\theta_t)))\phi_t - \omega(\theta_{t+1})$$

$$= z_t + \omega(\theta_t) + \beta\delta_t(\theta_t)\phi_t - \beta\phi_t^\top z_t\phi_t - \beta\phi_t^\top \omega(\theta_t)\phi_t - \omega(\theta_{t+1})$$

$$= z_t - \beta\phi_t\phi_t^\top z_t + \beta(\delta_t(\theta_t)\phi_t - \phi_t\phi_t^\top \omega(\theta_t)) + \omega(\theta_t) - \omega(\theta_{t+1}). \tag{77}$$

Thus taking the norm of both sides implies that

$$||z_{t+1}||^{2} \stackrel{(a)}{\leq} ||z_{t}||^{2} + 3\beta^{2} ||z_{t}||^{2} + 3\beta^{2} ||\delta_{t}(\theta_{t})\phi_{t} - \phi_{t}\phi_{t}^{\top}\omega(\theta_{t})||^{2} + 3||\omega(\theta_{t}) - \omega(\theta_{t+1})||^{2}$$

$$+ 2\langle z_{t}, -\beta\phi_{t}\phi_{t}^{\top}z_{t}\rangle + 2\langle z_{t}, \beta(\delta_{t}(\theta_{t})\phi_{t} - \phi_{t}\phi_{t}^{\top}\omega(\theta_{t}))\rangle + 2\langle z_{t}, \omega(\theta_{t}) - \omega(\theta_{t+1})\rangle$$

$$= ||z_{t}||^{2} - 2\beta z_{t}^{\top}Cz_{t} + 3\beta^{2} ||z_{t}||^{2} + 3\beta^{2} ||\delta_{t}(\theta_{t})\phi_{t} - \phi_{t}\phi_{t}^{\top}\omega(\theta_{t})||^{2} + 3||\omega(\theta_{t}) - \omega(\theta_{t+1})||^{2}$$

$$+ 2\beta\langle z_{t}, (C - \phi_{t}\phi_{t}^{\top})z_{t}\rangle + 2\langle z_{t}, \beta(\delta_{t}(\theta_{t})\phi_{t} - \phi_{t}\phi_{t}^{\top}\omega(\theta_{t}))\rangle + 2\langle z_{t}, \omega(\theta_{t}) - \omega(\theta_{t+1})\rangle$$

$$\stackrel{(b)}{\leq} (1 + 3\beta^{2} - 2\beta\lambda)||z_{t}||^{2} + \beta^{2}C_{1} + 2\beta\langle z_{t}, (C - \phi_{t}\phi_{t}^{\top})z_{t}\rangle + 2\langle z_{t}, \omega(\theta_{t}) - \omega(\theta_{t+1})\rangle$$

$$+ 2\langle z_{t}, \beta(\delta_{t}(\theta_{t})\phi_{t} - \phi_{t}\phi_{t}^{\top}\omega(\theta_{t}))\rangle,$$

$$(78)$$

where (a) is from $||x+y+z||^2 \le 3||x||^2 + 3||y||^2 + 3||z||^2$ for any $x,y,z \in \mathbb{R}^N$, (b) is from $z_t^\top C z_t \ge \lambda ||z_t||^2$, and $C_1 = 3\left(C_\delta + \frac{C_\delta}{\lambda}\right)^2 + 3\left(C_\delta + (1 + 2R\varrho K)\frac{C_\delta}{\lambda}\right)^2$ is the upper bound of $3||\delta_t(\theta_t)\phi_t - \phi_t\phi_t^\top\omega(\theta_t)||^2 + \frac{3}{\beta^2}||\omega(\theta_t) - \omega(\theta_{t+1})||^2$.

Taking expectation on both sides and applying recursively (78), we obtain that

$$\mathbb{E}[\|z_{t+1}\|^2] \le q^{t+1} \|z_0\|^2 + 2\sum_{j=0}^t q^{t-j} \beta \mathbb{E}[f(z_j, O_j)] + 2\sum_{j=0}^t q^{t-j} \beta \mathbb{E}[g(z_j, \theta_j, O_j)]$$

$$+2\sum_{j=0}^{t} q^{t-j} \langle z_{j}, \omega(\theta_{j}) - \omega(\theta_{j+1}) \rangle + \beta^{2} C_{1} \sum_{j=0}^{t} q^{t-j},$$
 (79)

where

$$q \triangleq 1 + 3\beta^{2} - 2\beta\lambda,$$

$$f(z_{j}, O_{j}) \triangleq \langle z_{j}, (C - \phi_{j}\phi_{j}^{\top})z_{j}\rangle,$$

$$g(z_{j}, \theta_{j}, O_{j}) \triangleq \langle z_{j}, \delta_{j}(\theta_{j})\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta_{j})\rangle.$$
(80)

To simplify notations, let

$$\theta_{t+1} \leftarrow \theta_t + \alpha G_t(\theta_t, \omega_t),$$
 (81)

$$\omega_{t+1} \leftarrow \omega_t + \beta H_t(\theta_t, \omega_t),$$
 (82)

where
$$G_t(\theta,\omega) = \delta_t(\theta)\phi_t - \gamma \left((1-R)\phi_{t+1} + R \frac{\sum_i e^{\theta^{\theta^{\top}}\phi_i}\phi_i}{\sum_j e^{\theta^{\theta^{\top}}\phi_j}} \right) \phi_t^{\top}\omega$$
, and $H_t(\theta,\omega) = (\delta_t(\theta_t) - \phi_t^{\top}\omega_t)\phi_t$.

We have

$$||G_t(\theta,\omega)|| \le C_\delta + K\gamma \triangleq C_G. \tag{83}$$

The upper bound of $H_t(\theta, \omega)$ is straightforward:

$$||H_t(\theta,\omega)|| \le C_\delta + K \triangleq C_H. \tag{84}$$

With these two bounds we can then find the upper bound of the update of tracking error:

$$||z_{t+1} - z_t|| \le ||H_t(\theta_t, \omega_t)|| + ||\omega(\theta_{t+1}) - \omega(\theta_t)||$$

$$\stackrel{(a)}{\le} \beta C_H + \alpha \frac{C_\delta}{\lambda} ||G_t(\theta_t, \omega_t)||$$

$$\le \beta C_H + \alpha \frac{C_\delta C_G}{\lambda},$$
(85)

where (a) is from the Lipschitz of $\omega(\theta)$: $\|\omega(\theta_{t+1}) - \omega(\theta_t)\| \le \frac{L_\delta}{\lambda} \|\theta_{t+1} - \theta_t\| \le \frac{\alpha L_\delta}{\lambda} \|G_t(\theta_t, \omega_t)\|$. Then for the Lipschitz smoothness of function g in (80), it is straightforward to see that

$$|g(\theta, z, O_{t}) - g(\theta', z', O_{t})|$$

$$= \langle z, \delta_{j}(\theta)\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta)\rangle - \langle z', \delta_{j}(\theta')\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta')\rangle$$

$$= \langle z, \delta_{j}(\theta)\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta)\rangle - \langle z, \delta_{j}(\theta')\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta')\rangle$$

$$+ \langle z, \delta_{j}(\theta')\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta')\rangle - \langle z', \delta_{j}(\theta')\phi_{j} - \phi_{j}\phi_{j}^{\top}\omega(\theta')\rangle$$

$$\leq K_{z}L_{\delta}\left(1 + \frac{1}{\lambda}\right) \|\theta - \theta'\| + C_{\delta}\left(1 + \frac{1}{\lambda}\right) \|z - z'\|,$$
(86)

where $K_z \triangleq K + \frac{C_{\delta}}{\lambda}$ being a rough bound on the track error. Also it can be shown that

$$|f(z, O_{t}) - f(z', O_{t})| = \langle z, (C - \phi_{t}\phi_{t}^{\top})z \rangle - \langle z', (C - \phi_{t}\phi_{t}^{\top})z' \rangle$$

$$= \langle z, (C - \phi_{t}\phi_{t}^{\top})z \rangle - \langle z, (C - \phi_{t}\phi_{t}^{\top})z' \rangle$$

$$+ \langle z, (C - \phi_{t}\phi_{t}^{\top})z' \rangle - \langle z', (C - \phi_{t}\phi_{t}^{\top})z' \rangle$$

$$\leq 4K_{z}||z - z'||.$$
(87)

It is easy to see that

$$||G_i(\theta, \omega_1) - G_i(\theta, \omega_2)|| \le (\gamma + 2\gamma R\varrho K)||\omega_1 - \omega_2||. \tag{88}$$

With these bounds and Lipschitz constants, the following two lemmas can be proved using the similar method of decoupling the Markovian noise in [Wang and Zou, 2020, Bhandari et al., 2018, Zou et al., 2019].

Lemma 7. Define $\tau_{\beta} = \min \{k : m\rho^k \leq \beta\}$. If $t < \tau_{\beta}$, then

$$\mathbb{E}[f(z_t, O_t)] \le 4K_z^2; \tag{89}$$

and if $t \geq \tau_{\beta}$, then

$$\mathbb{E}[f(z_t, O_t)] \le m_f \beta + m_f' \tau_\beta \beta, \tag{90}$$

where $m_f = 8K_z^2$ and $m_f' = 8K_z \left(C_H + \frac{C_G C_\delta}{\lambda}\right)$.

A similar result on $\mathbb{E}[g(\theta_t, z_t, O_t)]$ can also be implied:

Lemma 8. If $t < \tau_{\beta}$, then

$$\mathbb{E}[g(\theta_t, z_t, O_t)] \le 2K_z \left(1 + \frac{1}{\lambda}\right) C_\delta; \tag{91}$$

and if $t \geq \tau_{\beta}$, then

$$\mathbb{E}[g(\theta_t, z_t, O_t)] \le m_g \beta + m_g' \tau_\beta \beta, \tag{92}$$

where $m_g = 4K_z \left(1 + \frac{1}{\lambda}\right) C_\delta$ and $m_g' = 4K_z L_\delta C_G \left(1 + \frac{1}{\lambda}\right) + C_\delta \left(1 + \frac{1}{\lambda}\right) \left(C_H + \frac{C_G C_\delta}{\lambda}\right)$.

One more lemma is needed to bound the tracking error.

Lemma 9. Define
$$h(\theta, z, O_t) = \left\langle z, -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) \right\rangle$$
, then if $t < \tau_{\beta}$,
$$\mathbb{E}[h(\theta_t, z_t, O_t)] \leq K_z C_h; \tag{93}$$

and if $t \geq \tau_{\beta}$,

$$\mathbb{E}[h(\theta_t, z_t, O_t)] \le m_h \beta + m_h' \tau_\beta \beta, \tag{94}$$

where $m_h = 2K_zC_h$ and $m_h' = C_h\left(C_H + \frac{C_\delta C_G}{\lambda}\right) + K_zL_hC_G$.

Proof. First we show the Lipschitz smoothness of h as follows. For any θ, θ', z and z', we have that $h(\theta, z, O_t) - h(\theta', z', O_t)$

$$= \left\langle z, -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) \right\rangle - \left\langle z', -\nabla \omega(\theta') \left(G_t(\theta', \omega(\theta')) + \frac{\nabla J(\theta')}{2} \right) \right\rangle$$

$$= \left\langle z, -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) \right\rangle - \left\langle z', -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) \right\rangle$$

$$+ \left\langle z', -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) \right\rangle - \left\langle z', -\nabla \omega(\theta') \left(G_t(\theta', \omega(\theta')) + \frac{\nabla J(\theta')}{2} \right) \right\rangle. \tag{95}$$

We note that

$$\left\| -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) \right\|$$

$$\leq \frac{L_{\delta}}{\lambda} \left(C_{\delta} + \gamma (1 - R) + 2\varrho K \gamma R \frac{C_{\delta}}{\lambda} + \frac{2L_{\delta} C_{\delta}}{\lambda} \right) \triangleq C_h, \tag{96}$$

and

$$\left\| -\nabla \omega(\theta) \left(G_t(\theta, \omega(\theta)) + \frac{\nabla J(\theta)}{2} \right) + \nabla \omega(\theta') \left(G_t(\theta', \omega(\theta')) + \frac{\nabla J(\theta')}{2} \right) \right\|$$

$$\leq \left(\frac{L'_{\delta}}{L_{\delta}} C_h + \frac{L_{\delta} L_{G^*}}{\lambda} + \frac{L_{\delta} L_J}{2\lambda} \right) \|\theta - \theta'\| \triangleq L_h \|\theta - \theta'\|.$$
(97)

Hence we have that

$$h(\theta, z, O_t) - h(\theta', z', O_t) \le C_h ||z - z'|| + K_z L_h ||\theta - \theta'||.$$
 (98)

We have shown before in (85) that

$$||z_{t+1} - z_t|| \le \beta C_H + \alpha \frac{C_\delta C_G}{\lambda}. \tag{99}$$

Hence, we have that

$$|h(\theta_t, z_t, O_t) - h(\theta_{t-\tau}, z_{t-\tau}, O_t)| \le C_h \left(\beta C_H + \alpha \frac{C_\delta C_G}{\lambda}\right) \tau + K_z L_h C_G \tau \alpha. \tag{100}$$

Define an independent random variable $\hat{O}=(\hat{S},\hat{A},\hat{S}')\sim \mu_\pi\times \mathsf{P}(\cdot|\hat{S},\hat{A})$, then we have

$$\mathbb{E}_{\hat{O}}[h(\theta, z, \hat{O})] = 0 \tag{101}$$

for any θ and z. Thus by uniform ergodicity, we have that

$$\mathbb{E}[h(\theta_{t-\tau}, z_{t-\tau}, O_t)] \le \mathbb{E}[h(\theta_{t-\tau}, z_{t-\tau}, O_t)] - \mathbb{E}_{\hat{O}}[h(\theta_t, z_t, \hat{O})] \le 2K_z C_h m \rho^{\tau}. \tag{102}$$

Then if $t \leq \tau_{\beta}$, we have the straightforward bound

$$\mathbb{E}[h(\theta_t, z_t, O_t)] \le K_z C_h; \tag{103}$$

and if $t > \tau_{\beta}$, we have that

$$\mathbb{E}[h(\theta_{t}, z_{t}, O_{t})] \leq \mathbb{E}[h(\theta_{t-\tau_{\beta}}, z_{t-\tau_{\beta}}, O_{t})] + C_{h} \left(\beta C_{H} + \alpha \frac{C_{\delta} C_{G}}{\lambda}\right) \tau_{\beta} + K_{z} L_{h} C_{G} \tau_{\beta} \alpha$$

$$\leq 2K_{z} C_{h} m \rho^{\tau_{\beta}} + C_{h} \left(\beta C_{H} + \alpha \frac{C_{\delta} C_{G}}{\lambda}\right) \tau_{\beta} + K_{z} L_{h} C_{G} \tau_{\beta} \alpha$$

$$\triangleq m_{h} \beta + m'_{h} \tau_{\beta} \beta, \tag{104}$$

where $m_h=2K_zC_h$ and $m_h'=C_h\left(C_H+\frac{C_\delta C_G}{\lambda}\right)+K_zL_hC_G$. This completes the proof.

Now we bound the tracking error in (79). We first rewrite it as

$$\mathbb{E}[\|z_{t+1}\|^{2}] \leq q^{t+1}\|z_{0}\|^{2} + 2\sum_{j=0}^{t} q^{t-j}\beta \mathbb{E}[f(z_{j}, O_{j})] + 2\sum_{j=0}^{t} q^{t-j}\beta \mathbb{E}[g(z_{j}, \theta_{j}, O_{j})] + 2\sum_{j=0}^{t} q^{t-j}\beta \mathbb{E}[g(z_{j}, \theta_{j}, O_{j})] + 2\sum_{j=0}^{t} q^{t-j}\langle z_{j}, \omega(\theta_{j}) - \omega(\theta_{j+1})\rangle + \beta^{2}C_{1}\sum_{j=0}^{t} q^{t-j}.$$

$$(105)$$

The second term A_t can be bounded as follows:

$$A_{t} = 2 \sum_{j=0}^{t} q^{t-j} \beta \mathbb{E}[f(z_{j}, O_{j})]$$

$$= 2 \sum_{j=0}^{\tau_{\beta}-1} q^{t-j} \beta \mathbb{E}[f(z_{j}, O_{j})] + 2 \sum_{j=\tau_{\beta}}^{t} q^{t-j} \beta \mathbb{E}[f(z_{j}, O_{j})]$$

$$\leq 8 \sum_{j=0}^{\tau_{\beta}-1} q^{t-j} K_{z} \beta + 2 \sum_{j=\tau_{\beta}}^{t} q^{t-j} \beta (m_{f} \beta + m'_{f} \tau_{\beta} \beta)$$

$$\leq 16 K_{z} \beta \frac{q^{t+1-\tau_{\beta}}}{1-q} + 2\beta (m_{f} \beta + m'_{f} \tau_{\beta} \beta) \frac{1-q^{t-\tau_{\beta}+1}}{1-q}.$$
(106)

Similarly, we have that

$$B_t \le 4K_z \beta \left(1 + \frac{1}{\lambda} \right) C_\delta \frac{q^{t+1-\tau_\beta}}{1-q} + 2\beta (m_g \beta + m_g' \tau_\beta \beta) \frac{1 - q^{t-\tau_\beta + 1}}{1-q}.$$
 (107)

For C_t , we first note that

$$\mathbb{E}\left[\left\langle z_{i}, \omega\left(\theta_{i}\right) - \omega\left(\theta_{i+1}\right)\right\rangle\right] \\
\stackrel{(a)}{=} \mathbb{E}\left[\left\langle z_{i}, \nabla\omega\left(\theta_{i}\right)\left(\theta_{i} - \theta_{i+1}\right) + R_{2}\right\rangle\right] \\
= \mathbb{E}\left[\left\langle z_{i}, -\alpha\nabla\omega\left(\theta_{i}\right)G_{i}\left(\theta_{i}, \omega_{i}\right) + R_{2}\right\rangle\right] \\
= \mathbb{E}\left[\left\langle z_{i}, -\alpha\nabla\omega\left(\theta_{i}\right)G_{i}\left(\theta_{i}, \omega_{i}\right) - G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) + G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) + \frac{\nabla J\left(\theta_{i}\right)}{2} - \frac{\nabla J\left(\theta_{i}\right)}{2}\right) \\
+ R_{2}\right\rangle\right] \\
= \mathbb{E}\left[\left\langle z_{i}, -\alpha\nabla\omega\left(\theta_{i}\right)\left(G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) + \frac{\nabla J\left(\theta_{i}\right)}{2}\right)\right\rangle\right] \\
+ \mathbb{E}\left[\left\langle z_{i}, -\alpha\nabla\omega\left(\theta_{i}\right)\left(G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) - \frac{\nabla J\left(\theta_{i}\right)}{2}\right) + R_{2}\right\rangle\right], \tag{108}$$

where (a) follows from the Taylor expansion, and R_2 is the remaining term with norm $||R_2|| = O(\alpha^2)$. Term (b) can be bounded using Lemma 9, where

$$\mathbb{E}\left[\left\langle z_{i}, -\alpha \nabla \omega\left(\theta_{i}\right)\left(G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) + \frac{\nabla J\left(\theta_{i}\right)}{2}\right)\right\rangle\right] = \alpha \mathbb{E}\left[h\left(\theta_{i}, z_{i}, O_{i}\right)\right]. \tag{109}$$

Term (c) can be bounded as follows.

$$\left\langle z_{i}, -\alpha \nabla \omega \left(\theta_{i}\right) \left(G_{i}\left(\theta_{i}, \omega_{i}\right) - G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) - \frac{\nabla J\left(\theta_{i}\right)}{2}\right) + R_{2}\right\rangle$$

$$\stackrel{(d)}{\leq} \frac{\lambda \beta}{8} \|z_{i}\|^{2} + \frac{2}{\lambda \beta} \left\|\alpha \nabla \omega \left(\theta_{i}\right) \left(G_{i}\left(\theta_{i}, \omega_{i}\right) - G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right) - \frac{\nabla J\left(\theta_{i}\right)}{2}\right) + R_{2}\right\|^{2}$$

$$\leq \frac{\lambda \beta}{8} \|z_{i}\|^{2}$$

$$+ \frac{6}{\lambda \beta} \left(\left\|\alpha \nabla \omega \left(\theta_{i}\right) \left(G_{i}\left(\theta_{i}, \omega_{i}\right) - G_{i}\left(\theta_{i}, \omega\left(\theta_{i}\right)\right)\right)\right\|^{2} + \left\|\alpha \nabla \omega \left(\theta_{i}\right) \frac{\nabla J\left(\theta_{i}\right)}{2}\right\|^{2} + \|R_{2}\|^{2}\right)$$

$$\leq \frac{\lambda \beta}{8} \|z_{i}\|^{2} + \frac{6\alpha^{2}}{\lambda \beta} \frac{L_{\delta}^{2}}{\lambda^{2}} (\gamma + 2\gamma R \varrho K)^{2} \|z_{i}\|^{2} + \frac{3\alpha^{2}}{2\lambda \beta} \frac{L_{\delta}^{2}}{\lambda^{2}} \|\nabla J(\theta_{i})\|^{2} + \frac{6}{\lambda \beta} \|R_{2}\|^{2}.$$
(110)

where (d) is from $\langle x,y \rangle \leq \frac{\lambda\beta}{8} \|x\|^2 + \frac{2}{\lambda\beta} \|y\|^2$ for any $x,y \in \mathbb{R}^N$ and the fact that $\|G_i(\theta,\omega_1) - G_i(\theta,\omega_2)\| \leq (\gamma + 2\gamma\varrho RK) \|\omega_1 - \omega_2\|$ for any $\|\theta\| \leq R$ and ω_1,ω_2 , which is from (88) .

Finally the term C_t can be bounded as follows.

$$C_{t} = 2\sum_{j=0}^{t} q^{t-j} \langle z_{j}, \omega(\theta_{j}) - \omega(\theta_{j+1}) \rangle$$

$$= 2\sum_{j=0}^{t} q^{t-j} \alpha \mathbb{E}[h(\theta_{j}, z_{j}, O_{j})]$$

$$+ 2\sum_{j=0}^{t} q^{t-j} \left(\frac{\lambda \beta}{8} \|z_{i}\|^{2} + \frac{6\alpha^{2}}{\lambda \beta} \frac{L_{\delta}^{2}}{\lambda^{2}} (\gamma + 2\gamma R \varrho K)^{2} \|z_{i}\|^{2} + \frac{3\alpha^{2}}{2\lambda \beta} \frac{L_{\delta}^{2}}{\lambda^{2}} \|\nabla J(\theta_{i})\|^{2} + \frac{6}{\lambda \beta} \|R_{2}\|^{2}\right)$$

$$\triangleq 2\sum_{j=0}^{t} q^{t-j} \alpha \mathbb{E}[h(\theta_{j}, z_{j}, O_{j})] + M_{t}, \qquad (111)$$

where $M_t = 2\sum_{j=0}^t q^{t-j} \left(\frac{\lambda \beta}{8} \|z_i\|^2 + \frac{6\alpha^2}{\lambda \beta} \frac{L_{\delta}^2}{\lambda^2} (\gamma + 2\gamma R \varrho K)^2 \|z_i\|^2 + \frac{3\alpha^2}{2\lambda \beta} \frac{L_{\delta}^2}{\lambda^2} \|\nabla J(\theta_i)\|^2 + \frac{6}{\lambda \beta} \|R_2\|^2 \right)$. From Lemma 9, we have that

$$2\sum_{j=0}^{t} q^{t-j} \alpha \mathbb{E}[h(\theta_{j}, z_{j}, O_{j})]$$

$$\leq 2\alpha \left(\sum_{j=0}^{\tau_{\beta}-1} q^{t-j} \mathbb{E}[h(\theta_{j}, z_{j}, O_{j})] + \sum_{j=\tau_{\beta}}^{t} q^{t-j} \mathbb{E}[h(\theta_{j}, z_{j}, O_{j})]\right)$$

$$\leq 4K_{z}C_{h}\alpha \sum_{j=0}^{\tau_{\beta}-1} q^{t-j} + 2\alpha (m_{h}\beta + m'_{h}\tau_{\beta}\beta) \sum_{j=\tau_{\beta}}^{t} q^{t-j}$$

$$= 4K_{z}C_{h}\alpha \frac{q^{t+1-\tau_{\beta}}}{1-q} + 2\alpha (m_{h}\beta + m'_{h}\tau_{\beta}\beta) \frac{1-q^{t-\tau_{\beta}+1}}{1-q}, \tag{112}$$

and this implies that

$$C_t \le 4K_z C_h \alpha \frac{q^{t+1-\tau_\beta}}{1-q} + 2\alpha (m_h \beta + m_h' \tau_\beta \beta) \frac{1 - q^{t-\tau_\beta + 1}}{1-q} + M_t.$$
 (113)

Now we plug the bounds on A_t , B_t and C_t in (79), we have that

$$\mathbb{E}[\|z_{t+1}\|^2]$$

$$\leq q^{t+1} \|z_0\|^2 + \beta^2 C_1 \frac{1 - q^{t+1}}{1 - q} + \left(16K_z \beta + 4K_z C_\delta \beta \left(1 + \frac{1}{\lambda} \right) + 4K_z C_h \alpha \right) \frac{q^{t+1 - \tau_\beta}}{1 - q} \\
+ \left(2\beta (m_f \beta + m'_f \tau_\beta \beta) + 2\beta (m_g \beta + m'_g \tau_\beta \beta) + 2\alpha (m_h \beta + m'_h \tau_\beta \beta) \right) \frac{1 - q^{t - \tau_\beta + 1}}{1 - q} + M_t \\
\leq q^{t+1} \|z_0\|^2 + \beta^2 C_1 \frac{1 - q^{t+1}}{1 - q} + C_z \beta \frac{q^{t+1 - \tau_\beta}}{1 - q} + \beta (m_z \beta + m'_z \tau_\beta \beta) \frac{1 - q^{t - \tau_\beta + 1}}{1 - q} + M_t, \quad (114)$$

where $C_z=16K_z+4K_zC_\delta\left(1+\frac{1}{\lambda}\right)+4K_zC_h\frac{\alpha}{\beta}, m_z=2m_f+2m_g+2\frac{\alpha}{\beta}m_h$ and $m_z'=2m_f'+2m_g'+\frac{2\alpha}{\beta}m_h'$. Note that $q=1+3\beta^2-2\beta\lambda\triangleq 1-u\beta\leq e^{-u\beta}$, where $u=2\lambda-3\beta$. Hence it implies that

$$\begin{split} & \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|z_t\|^2]}{T} \\ & \leq \frac{1}{T} \left(\frac{\|z_0\|^2}{1 - e^{-u\beta}} + \beta^2 C_1 \frac{T}{u\beta} + 4K_z^2 \tau_\beta \right. \\ & \quad + \sum_{t=\tau_\beta - 1}^{T-1} \left(C_z \beta \frac{q^{t+1-\tau_\beta}}{u\beta} + \beta (m_z\beta + m_z'\tau_\beta\beta) \frac{1 - q^{t-\tau_\beta + 1}}{u\beta} + M_t \right) \right) \\ & \leq \frac{1}{T} \left(\frac{\|z_0\|^2}{1 - e^{-u\beta}} + \beta^2 C_1 \frac{T}{u\beta} + 4K_z^2 \tau_\beta \right. \\ & \quad + c_z \beta \frac{\sum_{t=0}^{T-1} e^{-ut\beta}}{u\beta} + \beta (m_z\beta + m_z'\tau_\beta\beta) \frac{T}{u\beta} + \sum_{t=0}^{T-1} M_t \right) \\ & \leq \frac{1}{T} \left(\frac{\|z_0\|^2}{1 - e^{-u\beta}} + \beta^2 C_1 \frac{T}{u\beta} + 4K_z^2 \tau_\beta + c_z \beta \frac{1}{(u\beta)(1 - e^{-u\beta})} + \beta (m_z\beta + m_z'\tau_\beta\beta) \frac{T}{u\beta} \right. \\ & \quad + \sum_{t=0}^{T-1} M_t \right) \\ & = \frac{1}{T} \left(\frac{\|z_0\|^2}{1 - e^{-u\beta}} + \beta C_1 \frac{T}{u} + 4K_z^2 \tau_\beta + \frac{c_z}{u(1 - e^{-u\beta})} + (m_z\beta + m_z'\tau_\beta\beta) \frac{T}{u} + \sum_{t=0}^{T-1} M_t \right) \end{split}$$

$$\leq \frac{\|z_{0}\|^{2}}{T(1-e^{-u\beta})} + \beta \frac{C_{1}}{u} + 4K_{z}^{2} \frac{\tau_{\beta}}{T} + \frac{c_{z}}{u(1-e^{-u\beta})T} + (m_{z}\beta + m'_{z}\tau_{\beta}\beta) \frac{1}{u} + \frac{\sum_{t=0}^{T-1} M_{t}}{T}$$

$$\triangleq Q_{T} + \frac{\sum_{t=0}^{T-1} M_{t}}{T}$$

$$= 0 \left(\frac{1}{T\beta} + \beta\tau_{\beta} + \frac{\tau_{\beta}}{T} + \frac{\sum_{t=0}^{T-1} M_{t}}{T} \right), \tag{115}$$

where $Q_T = \frac{\|z_0\|^2}{T(1-e^{-u\beta})} + \beta \frac{C_1}{u} + 4K_z^2 \frac{\tau_\beta}{T} + \frac{c_z}{u(1-e^{-u\beta})T} + (m_z\beta + m_z'\tau_\beta\beta)\frac{1}{u}$.

We then compute $\sum_{t=0}^{T-1} M_t$. Recall that $M_t = 2\sum_{j=0}^t q^{t-j} \left(\frac{\lambda \beta}{8} \|z_i\|^2 + \frac{6\alpha^2}{\lambda \beta} \frac{L_\delta^2}{\lambda^2} (\gamma + 2\gamma R \varrho K)^2 \|z_i\|^2 + \frac{3\alpha^2}{2\lambda \beta} \frac{L_\delta^2}{\lambda^2} \|\nabla J(\theta_i)\|^2 + \frac{6}{\lambda \beta} \|R_2\|^2 \right)$. From double sum trick, i.e., $\sum_{t=0}^{T-1} \sum_{i=0}^t e^{-u(t-i)\beta} x_i \leq \frac{1}{1-e^{-u\beta}} \sum_{t=0}^{T-1} x_t$ for any $x_t \geq 0$, we have that

$$\sum_{t=0}^{T-1} M_t \leq \frac{2}{1 - e^{-u\beta}} \left(\frac{\lambda \beta}{8} + \frac{6\alpha^2}{\lambda \beta} \frac{L_{\delta}^2}{\lambda^2} (\gamma + 2\gamma R \varrho K)^2 \right) \sum_{t=0}^{T-1} \mathbb{E}[\|z_t\|^2]
+ \frac{2}{1 - e^{-u\beta}} \frac{3\alpha^2}{2\lambda \beta} \frac{L_{\delta}^2}{\lambda^2} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2] + \frac{6}{\lambda \beta} \frac{2}{1 - e^{-u\beta}} \|R_2\|^2 T.$$
(116)

Note that $1-e^{-u\beta}=\mathcal{O}(\beta)$, thus we can choose α and β such that $\frac{2}{1-e^{-u\beta}}\left(\frac{\lambda\beta}{8}+\frac{6\alpha^2}{\lambda\beta}\frac{L_\delta^2}{\lambda^2}(\gamma+2\gamma R\varrho K)^2\right)\leq \frac{1}{2}$, then by plugging $\sum_{t=0}^{T-1}M_t$ in (115) we have that

$$\frac{1}{2} \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|z_t\|^2]}{T} \le Q_T + \frac{2}{1 - e^{-u\beta}} \frac{3\alpha^2}{2\lambda\beta} \frac{L_\delta^2}{\lambda^2} \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} + \frac{6}{\lambda\beta} \frac{2}{1 - e^{-u\beta}} \|R_2\|^2, \tag{117}$$

and this implies that

$$\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|z_t\|^2]}{T} \le 2Q_T + \frac{2}{1 - e^{-u\beta}} \frac{3\alpha^2}{\lambda\beta} \frac{L_{\delta}^2}{\lambda^2} \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} + \frac{6}{\lambda\beta} \frac{4}{1 - e^{-u\beta}} \|R_2\|^2 \\
= \mathcal{O}\left(\frac{1}{T\beta} + \beta\tau_\beta + \frac{\alpha^2}{\beta^2} \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}\right), \tag{118}$$

which completes the development of error bound on the tracking error.

D.3 Finite-Time Error Bound

Now with the tracking error in (118), we derive the finite-time error of the robust TDC. From Lemma 6 and Taylor expansion, we have that

$$\begin{split} J(\theta_{t+1}) &\leq J(\theta_t) + \langle \nabla J(\theta_t), \theta_{t+1} - \theta_t \rangle + \frac{L_J}{2} \|\theta_{t+1} - \theta_t\|^2 \\ &= J(\theta_t) + \alpha \left\langle \nabla J(\theta_t), G_t(\theta_t, \omega_t) \right\rangle + \frac{L_J}{2} \alpha^2 ||G_t(\theta_t, \omega_t)||^2 \\ &= J(\theta_t) - \alpha \left\langle \nabla J(\theta_t), -G_t(\theta_t, \omega_t) - \frac{\nabla J(\theta_t)}{2} + G_t(\theta_t, \omega(\theta_t)) - G_t(\theta_t, \omega(\theta_t)) \right\rangle \\ &- \frac{\alpha}{2} ||\nabla J(\theta_t)||^2 + \frac{L_J}{2} \alpha^2 ||G_t(\theta_t, \omega_t)||^2 \\ &= J(\theta_t) - \alpha \left\langle \nabla J(\theta_t), -G_t(\theta_t, \omega_t) + G_t(\theta_t, \omega(\theta_t)) \right\rangle \\ &+ \alpha \left\langle \nabla J(\theta_t), \frac{\nabla J(\theta_t)}{2} + G_t(\theta_t, \omega(\theta_t)) \right\rangle - \frac{\alpha}{2} ||\nabla J(\theta_t)||^2 + \frac{L_J}{2} \alpha^2 ||G_t(\theta_t, \omega_t)||^2 \\ &\leq J(\theta_t) + \alpha ||\nabla J(\theta_t)|| (\gamma + 2\gamma RK\varrho) ||\omega(\theta_t) - \omega_t|| - \frac{\alpha}{2} ||\nabla J(\theta_t)||^2 \end{split}$$

$$+ \alpha \left\langle \nabla J(\theta_t), \frac{\nabla J(\theta_t)}{2} + G_t(\theta_t, \omega(\theta_t)) \right\rangle + \frac{L_J}{2} \alpha^2 ||G_t(\theta_t, \omega_t)||^2.$$
 (119)

By taking expectation on both sides and summing up from 0 to T-1, we have that

$$\sum_{t=0}^{T-1} \frac{\alpha}{2} \mathbb{E}[\|\nabla J(\theta_t)\|^2]$$

$$\leq I(\theta_t) - I(\theta_t) + \alpha(\alpha + 2\alpha PK_0)$$

$$\leq J(\theta_0) - J(\theta_T) + \alpha(\gamma + 2\gamma RK\varrho) \sqrt{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]} \sqrt{\sum_{t=0}^{T-1} \mathbb{E}[\|z_t\|^2]}$$

$$+ \sum_{t=0}^{T-1} \alpha \mathbb{E}\left[\left\langle \nabla J(\theta_t), \frac{\nabla J(\theta_t)}{2} + G_t(\theta_t, \omega(\theta_t)) \right\rangle \right] + \frac{L_J}{2} \sum_{t=0}^{T-1} \alpha^2 \mathbb{E}[\|G_t(\theta_t, \omega_t)\|^2], \quad (120)$$

which follows from the Cauchy-Schwartz inequality: $\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla J(\theta_t)\|\|z_t\|] \leq \sum_{t=0}^{T-1}\sqrt{\mathbb{E}[\|\nabla J(\theta_t)\|^2]\mathbb{E}[\|z_t\|^2]} \leq \sqrt{\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla J(\theta_t)\|^2]}\sqrt{\sum_{t=0}^{T-1}\mathbb{E}[\|z_t\|^2]}.$ To bound the Markovian noise term, i.e., $\left\langle \nabla J(\theta), \frac{\nabla J(\theta)}{2} + G_t(\theta, \omega(\theta)) \right\rangle$, we first need some bounds and smoothness conditions. It can be shown that

$$||G_t(\theta, \omega(\theta))|| \le C_\delta + \frac{C_\delta}{\lambda} (\gamma + 2\varrho K \gamma R) \triangleq C_{G*}, \tag{121}$$

$$\|G_t(\theta, \omega(\theta)) - G_t(\theta', \omega(\theta'))\| \le \left(L_\delta + \frac{L_\delta}{\lambda} (\gamma + 2\gamma R \varrho K) + \frac{C_\delta}{\lambda} L_\delta'\right) \|\theta - \theta'\| \triangleq L_{G*} \|\theta - \theta'\|.$$
(122)

Lemma 10. Define $\zeta(\theta, O_t) \triangleq \left\langle \nabla J(\theta), \frac{\nabla J(\theta)}{2} + G_t(\theta, \omega(\theta)) \right\rangle$, and let $\tau_{\alpha} \triangleq \min \left\{ k : m\rho^k \leq \alpha \right\}$. If $t < \tau_{\alpha}$, then

$$\mathbb{E}[\zeta(\theta_t, O_t)] \le \frac{C_\delta L_\delta}{\lambda} \left(\frac{C_\delta L_\delta}{2\lambda} + C_{G*} \right) \triangleq C_\zeta; \tag{123}$$

and if $t \geq \tau_{\alpha}$, then

$$\mathbb{E}[\zeta(\theta_t, O_t)] \le m_\zeta \alpha + m_\zeta' \tau_\alpha \alpha,\tag{124}$$

where $m_{\zeta}=2C_{\zeta}$ and $m_{\zeta}'=C_{G}\left(\frac{L_{J}C_{\delta}L_{\delta}}{\lambda}+\frac{C_{\delta}L_{\delta}L_{G*}}{\lambda}+L_{J}C_{G*}\right)$.

Next we plug the tracking error (118) in (120).

$$\sum_{t=0}^{T-1} \frac{\alpha}{2} \mathbb{E}[\|\nabla J(\theta_t)\|^2]$$

$$\leq J(\theta_{0}) - J(\theta_{T}) + \alpha(\gamma + 2\gamma RK\varrho) \sqrt{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]} \sqrt{2TQ_{T} + 2\sum_{t=0}^{T-1} M_{t}}
+ \alpha\tau_{\alpha}C_{\zeta} + \alpha^{2}(T - \tau_{\alpha})(m_{\zeta} + m_{\zeta}'\tau_{\alpha}) + \frac{L_{J}}{2}\alpha^{2}C_{G}^{2}T.$$
(125)

Divided both sides by $\frac{\alpha T}{2}$, we have that

$$\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}$$

$$\leq \frac{2J(\theta_0) - 2J(\theta_T)}{\alpha T} + 2(\gamma + 2\gamma RK\varrho) \sqrt{\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}} \sqrt{2Q_T + 2\frac{\sum_{t=0}^{T-1} M_t}{T}} + \frac{2\tau_\alpha C_\zeta}{T} + 2\alpha(m_\zeta + m_\zeta' \tau_\alpha) + L_J \alpha C_G^2. \tag{126}$$

We know from (118) that
$$2\frac{\sum_{t=0}^{T-1}M_t}{T} \leq \frac{2}{1-e^{-u\beta}}\frac{3\alpha^2}{\lambda\beta}\frac{L_\delta^2}{\lambda^2}\frac{\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} + \frac{6}{\lambda\beta}\frac{4}{1-e^{-u\beta}}\|R_2\|^2$$
, thus
$$\frac{\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} \leq \frac{2J(\theta_0)-2J(\theta_T)}{\alpha T} + 2(\gamma+2\gamma RK\varrho)\sqrt{\frac{\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}}$$

$$\left(\sqrt{2Q_T + \frac{6}{\lambda\beta} \frac{4}{1 - e^{-u\beta}} \|R_2\|^2} + \sqrt{\frac{2}{1 - e^{-u\beta}} \frac{3\alpha^2}{\lambda\beta} \frac{L_\delta^2}{\lambda^2} \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}}\right) + \frac{2\tau_\alpha C_\zeta}{T} + 2\alpha(m_\zeta + m_\zeta' \tau_\alpha) + L_J \alpha C_G^2$$

$$= \frac{2J(\theta_0) - 2J(\theta_T)}{\alpha T} + 2(\gamma + 2\gamma RK\varrho)\sqrt{\frac{2}{1 - e^{-u\beta}} \frac{3\alpha^2}{\lambda\beta} \frac{L_\delta^2}{\lambda^2} \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}}$$

$$\left(\sqrt{2Q_T + \frac{6}{\lambda\beta} \frac{4}{1 - e^{-u\beta}} \|R_2\|^2}\right) 2(\gamma + 2\gamma RK\varrho) \sqrt{\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}} + \frac{2\tau_{\alpha}C_{\zeta}}{T} + 2\alpha(m_{\zeta} + m_{\zeta}'\tau_{\alpha}) + L_{J}\alpha C_{G}^2$$

$$\triangleq \frac{2J(\theta_0) - 2J(\theta_T)}{\alpha T} + K_1 \frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T} + K_2 \sqrt{\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}} + \frac{2\tau_\alpha C_\zeta}{T} + 2\alpha (m_\zeta + m_\zeta' \tau_\alpha) + L_J \alpha C_G^2, \tag{12}$$

where $K_1=2(\gamma+2\gamma RK\varrho)\sqrt{\frac{2}{1-e^{-u\beta}}\frac{3\alpha^2}{\lambda\beta}\frac{L_\delta^2}{\lambda^2}}=\mathcal{O}\left(\frac{\alpha}{\beta}\right)$ and $K_2=\left(\sqrt{2Q_T+\frac{6}{\lambda\beta}\frac{4}{1-e^{-u\beta}}\|R_2\|^2}\right)2(\gamma+2\gamma RK\varrho)=\mathcal{O}\left(\sqrt{\frac{\alpha^4}{\beta^2}+\frac{1}{T\beta}+\beta\tau_\beta}\right)$. Thus we can choose α and β such that $K_1\leq \frac{1}{2}$, then we have that

$$\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_t)\|^2]}{T}$$

$$\leq \frac{4J(\theta_{0}) - 4J(\theta_{T})}{\alpha T} + 2K_{2}\sqrt{\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{T}} + \frac{4\tau_{\alpha}C_{\zeta}}{T} + 4\alpha(m_{\zeta} + m_{\zeta}'\tau_{\alpha}) + 2L_{J}\alpha C_{G}^{2}$$

$$\triangleq U + V\sqrt{\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{T}}, \tag{128}$$

where $U=\frac{4J(\theta_0)-4J(\theta_T)}{\alpha T}+\frac{4\tau_\alpha C_\zeta}{T}+4\alpha(m_\zeta+m_\zeta'\tau_\alpha)+2L_J\alpha C_G^2=\mathcal{O}(\alpha\tau_\alpha+\frac{1}{\alpha T})$ and $V=2K_2$. Hence, we have that

$$\frac{\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\theta_{t})\|^{2}]}{T} \\
\leq \left(\frac{V + \sqrt{V^{2} + 4U}}{2}\right)^{2} \\
\stackrel{(a)}{\leq} V^{2} + 2U \\
\leq 16 \left(2Q_{T} + \frac{6}{\lambda\beta} \frac{4}{1 - e^{-u\beta}} \|R_{2}\|^{2}\right) (\gamma + 2\gamma RK\varrho)^{2} + \frac{8J(\theta_{0}) - 8J(\theta_{T})}{\alpha T} + \frac{8\tau_{\alpha}C_{\zeta}}{T} \\
+ 8\alpha(m_{\zeta} + m'_{\zeta}\tau_{\alpha}) + 4L_{J}\alpha C_{G}^{2} \\
= \mathcal{O}\left(\frac{1}{T\alpha} + \alpha\tau_{\alpha} + \frac{1}{T\beta} + \beta\tau_{\beta}\right), \tag{129}$$
where $Q_{T} = \frac{\|z_{0}\|^{2}}{T(1 - e^{-u\beta})} + \beta \frac{C_{1}}{u} + 4K^{2}\frac{\tau_{\beta}}{T} + \frac{c_{z}}{u(1 - e^{-u\beta})T} + (m_{z}\beta + m'_{z}\tau_{\beta}\beta)\frac{1}{u}.$

D.4 Constants

In this section we list all the constants occurred in our proof for the readers' reference.

$$C_{\delta} = c_{\text{max}} + \gamma R \frac{\log |\mathcal{S}|}{\rho} + (1 + \gamma)K, \tag{130}$$

$$L_{\delta} = (1 + \gamma),\tag{131}$$

$$L_{\delta}' = 2\gamma R\varrho,\tag{132}$$

$$L_J = 2\left(\frac{L_\delta^2}{\lambda} + \frac{C_\delta L_\delta'}{\lambda}\right),\tag{133}$$

$$C_1 = 3\left(C_{\delta} + \frac{C_{\delta}}{\lambda}\right)^2 + 3\left(C_{\delta} + (1 + 2R\varrho K)\frac{C_{\delta}}{\lambda}\right)^2,\tag{134}$$

$$C_G = C_\delta + \gamma K + 2\gamma \varrho R K^2, \tag{135}$$

$$C_H = C_\delta + K, (136)$$

$$K_z = K + \frac{C_\delta}{\lambda},\tag{137}$$

$$m_g = 4K_z \left(1 + \frac{1}{\lambda}\right) C_\delta,\tag{138}$$

$$m_g' = 4K_z L_\delta C_G \left(1 + \frac{1}{\lambda} \right) + C_\delta \left(1 + \frac{1}{\lambda} \right) \left(C_H + \frac{C_G C_\delta}{\lambda} \right), \tag{139}$$

$$m_f = 8K_z^2, (140)$$

$$m_f' = 8K_z \left(C_H + \frac{C_G C_\delta}{\lambda} \right), \tag{141}$$

$$m_h = 2K_z C_h, (142)$$

$$m_h' = C_h \left(C_H + \frac{C_\delta C_G}{\lambda} \right) + K_z L_h C_G, \tag{143}$$

$$C_{G*} = C_{\delta} + \frac{C_{\delta}}{\lambda} (\gamma + 2\varrho K \gamma R), \tag{144}$$

$$L_{G*} = L_{\delta} + \frac{L_{\delta}}{\lambda} (\gamma + 2\gamma R \varrho K) + \frac{C_{\delta}}{\lambda} L_{\delta}', \tag{145}$$

$$L_h = \frac{L_\delta'}{L_\delta} C_h + \frac{L_\delta L_{G^*}}{\lambda} + \frac{L_\delta L_J}{2\lambda},\tag{146}$$

$$C_h = \frac{L_\delta}{\lambda} \left(C_\delta + \gamma (1 - R) + 2\varrho K \gamma R \frac{C_\delta}{\lambda} + \frac{2L_\delta C_\delta}{\lambda} \right), \tag{147}$$

$$C_{\zeta} = \frac{C_{\delta} L_{\delta}}{\lambda} \left(\frac{C_{\delta} L_{\delta}}{2\lambda} + C_{G*} \right), \tag{148}$$

$$m_{\zeta} = 2C_{\zeta},\tag{149}$$

$$m_{\zeta}' = C_G \left(\frac{L_J C_{\delta} L_{\delta}}{\lambda} + \frac{C_{\delta} L_{\delta} L_{G*}}{\lambda} + L_J C_{G*} \right)$$
 (150)

E Experiments

Experiments in Section 6.1:

Frozen Lake Problem. We consider a 4×4 Frozen Lake problem. We set $\gamma=0.96,\,\alpha=0.8$. Cart-Pole Problem. We set $\gamma=0.95,\,\alpha=0.2$.

Experiments in Section 6.2:

Frozen Lake Problem. We consider a 4×4 Frozen Lake problem. We set $\alpha = 0.1$, $\beta = 0.5$ and $\gamma = 0.9$. The initialization is $\theta = (1, 1, 1, 1, 1) \in \mathbb{R}^5$ and $\omega = (0, 0, 0, 0, 0)$. Each entry of every base function ϕ_s is generated uniformly at random between (0, 1).

Additional Experiments on the Taxi Problem.

We use the same setting as in Section 6.1 to demonstrate the robustness of our robust Q-learning algorithm. For the step size and discount factor, we set $\alpha=0.3$ and $\gamma=0.8$. The results are shown in fig. 5, from which the same observation that our robust Q-learning is robust to model uncertainty, and achieves a much higher reward when the mismatch between the training and test MDPs enlarges.

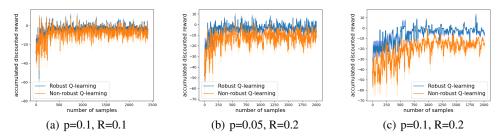


Figure 5: Taxi-v3: robust Q-learning v.s. non-robust Q-learning.