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ABSTRACT
With the wide application of deep neural network models in various
computer vision tasks, there has been a proliferation of adversar-
ial example generation strategies aimed at exploring model secu-
rity deeply. However, existing adversarial training defense models,
which rely on single or limited types of attacks under a one-time
learning process, struggle to adapt to the dynamic and evolving na-
ture of attack methods. Therefore, to achieve defense performance
improvements for models in long-term applications, we propose
a novel Sustainable Self-evolution Adversarial Training (SSEAT)
framework. Specifically, we introduce a continual adversarial de-
fense pipeline to realize learning from various kinds of adversarial
examples across multiple stages. Additionally, to address the is-
sue of model catastrophic forgetting caused by continual learning
from ongoing novel attacks, we propose an adversarial data re-
play module to better select more diverse and key relearning data.
Furthermore, we design a consistency regularization strategy to
encourage current defense models to learn more from previously
trained ones, guiding them to retain more past knowledge and
maintain accuracy on clean samples. Extensive experiments have
been conducted to verify the efficacy of the proposed SSEAT de-
fense method, which demonstrates superior defense performance
and classification accuracy compared to competitors.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Adversarial Training, Model Defense, Adversarial Examples, Con-
tinue Learning

1 INTRODUCTION
Deep learning has been widely applied in computer vision tasks
such as image classification [8, 65] and object detection [6, 37],
resulting in significant advancements. However, the vulnerability of
deep learningmodels to adversarial attacks [16, 26, 49] has become a
critical concern. Adversarial examples involve intentionally crafted
small perturbations that deceive deep learningmodels, leading them
to produce incorrect outputs. This poses a serious threat to the
reliability and security of these models in real-world applications.
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Figure 1: A conceptual overview of our Sustainable Self-
evolution Adversarial Training (SSEAT) method. When con-
fronted with the challenge of ongoing generated new ad-
versarial examples in complex and long-term multimedia
applications, existing adversarial training methods struggle
to adapt to iteratively updated attack methods. In contrast,
our SSEAT model achieves sustainable defense performance
improvements by continuously absorbing new adversarial
knowledge.

Consequently, research on defense mechanisms [17, 22, 34] has
become increasingly essential and urgent.

Nowadays, researchers study various model defense methods to
address highly destructive adversarial samples, including input sam-
ple denoising [21, 24] and attack-aware detection [14, 15]. Among
these defense methods, adversarial training [12, 67] stands out as
one of the most effective defense strategies. Adversarial training
is a game-based training approach aimed at maximizing perturba-
tions while minimizing adversarial expected risk. Its core idea is
to integrate generated adversarial examples into the training set,
enabling the model to learn from these examples during training
and enhance its robustness.

Current adversarial training strategies often rely on one or lim-
ited types of adversarial examples to achieve robust learning, and
focus on improving the defense performance against attacks and
the efficiency of the adversarial training process. However, in real-
world applications, as researchers delve deeper into model defense
and security, various new attack strategies continue to emerge (Ac-
cording to our incomplete statistics, over the past five years, more
than 200 papers on adversarial attack algorithms have been pub-
lished in top journals and conferences every year across various
fields including multimedia, artificial intelligence, and computer

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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vision), existing adversarial training strategies obviously struggle
to address such complex scenario.

Therefore, it is essential for deep models to achieve sustainable
improvement in defense performance for long-term application
scenarios, as shown in Fig. 1. This has brought about the following
challenges: (1) How to achieve the sustainability of the adversarial
training strategy when new adversarial examples are constantly
being born; (2) How to solve the model catastrophic forgetting prob-
lem caused by continuous exposure to new adversarial examples;
(3) How to balance the model’s robustness on adversarial examples
and accuracy on clean data.

In this study, to address the above three challenges for the de-
fense model against the ongoing generation of new adversarial
examples, we propose a novel and task-driven Sustainable Self-
evolution Adversarial Training (SSEAT) framework to ensure the
model maintains its accuracy and possesses robust and continu-
ous defense capabilities. Our SSEAT defense method comprises
three components: Continual Adversarial Defense (CAD), Adver-
sarial Data Reply (ADR), and Consistency Regularization Strategy
(CRS). To achieve sustainability in the adversarial training strategy
(Challenge (1)), drawing inspiration from the continue learning
paradigm, we propose a CAD pipeline, which learns from one type
of adversarial example at each training stage to address the contin-
ual generation of new attack algorithms. To address the issue of
catastrophic forgetting when continuously learning from various
attacks (Challenge (2)), we introduce an ADRmodule to establish an
effective re-learning sample selection scheme, advised by classifica-
tion uncertainty and data augmentation. Meanwhile, to realize the
trade-off between the model’s robustness against adversarial exam-
ples and accuracy on clean data (Challenge (3)), We designed a CRS
module to help the model not overfit to current attacks and prevent
the model from losing knowledge on clean samples. Overall, our
SSEAT method effectively addresses a range of defense challenges
arising from continuously evolving attack strategies, maintaining
high classification accuracy on clean samples, and ensuring lifelong
defense performance against ongoing new attacks.

We summarize the main contributions of this paper as follows:
• We recognize the challenges of continuous defense setting,
where adversarial training models must adapt to ongoing
new kinds of attacks. This deep model defense task is of
significant practical importance in real-world applications.

• We propose a novel sustainable self-evolution adversarial
training algorithm to tackle the problems under continuous
defense settings.

• We introduce a continual adversarial defense pipeline to
learn from diverse types of adversarial examples across mul-
tiple stages, an adversarial data reply module to alleviate the
catastrophic forgetting problem when the model continu-
ously learns from new attacks, and a consistency regulariza-
tion strategy to prevent significant accuracy drop on clean
data.

• Our approach has yielded excellent results, demonstrating
robustness against adversarial examples while maintaining
high

2 RELATEDWORK
2.1 Adversarial Attacks
The impressive success of deep learning models in computer vision
tasks [6, 37, 62] has sparked significant research interest in studying
their security. Many researchers are now focusing on adversarial
example generation [16, 26, 49]. Adversarial examples add subtle
perturbations that are imperceptible to the human eye on clean
data, causing the model to produce incorrect results. Depending
on the access rights to the target model and data, attacks can be
divided into black-box attacks [1, 38, 45, 47] and white-box attacks
[4, 19, 40, 46]. Most white-box algorithms [19, 31, 40] obtain adver-
sarial examples based on the gradient of the loss function to the
inputs by continuously iteratively updating perturbations. In black-
box attacks, some methods [52, 68] involve iteratively querying the
outputs of the target model to estimate its gradients by training a
substitute model, while others [5, 41, 44] concentrate on enhancing
the transferability of adversarial examples between different mod-
els. Over time, new algorithms for generating attack examples are
continually being developed. Therefore, our focus is on addressing
the ongoing creation of new attacks while maintaining the model’s
robustness against them.

2.2 Adversarial Training
Adversarial training [19] is a main method to effectively defend
against adversarial attacks. This approach involves augmenting
the model’s training process by incorporating adversarial exam-
ples, thus the data distribution learned by the model includes not
only clean samples but also adversarial examples. Many adversarial
training research mainly focuses on improving training efficiency
and model robustness [11, 32, 57, 67]. For example, Zhao[66] uses
FGSM instead of PGD during training to reduce training time and
enhance efficiency, Dong [12] investigates the correlation between
network structure and robustness to develop more robust network
modules, Chen [7] uses data enhancement or generative models
to alleviate robust overfitting, and Lyu [39] adopts regularization
training strategies, such as stopping early to smooth the input loss
landscape. Meanwhile, the trade-off between robustness and accu-
racy has attracted much attention [34, 43, 51]. TRADES [63] utilizes
Kullback-Leibler divergence (KL) loss to drive clean and adversarial
samples closer in model output, balancing robustness and accuracy.
In addition, some studies [48, 64] try to use curriculum learning
strategies to improve robustness while reducing the decrease in
accuracy on clean samples. Most current adversarial training ap-
proaches rely on a single or limited adversarial example generation
algorithm to enhance model robustness. However, in real-world
scenarios, existing defense methods struggle to address the ongoing
emergence of diverse adversarial attacks. Inspired by the continue
learning paradigms, we aim to enhance defense capabilities by en-
abling the adaptive evolution of adversarial training algorithms for
long-term application scenarios.

2.3 Contiune Learning
Continue learning [2, 28, 58] aims at the model being able to contin-
uously learn new data without forgetting past knowledge. Continue
learning can be mainly divided into three categories. One is based
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Figure 2: (a) Illustration of our Continual Adversarial Defense (CAD) pipeline. CAD helps the model to learn from new kinds of
attacks in multiple stages continuously. (b) Illustration of our Adversarial Data Replay (ADR) module. ADR guides the model
to select diverse and representative replay data to alleviate the catastrophic forgetting issue. (c) Illustration of our Consistency
Regularization Strategy (CRS) component. CRS encourages the model to learn more from the historically trained models to
maintain classification accuracy.

on the regularization of model parameters [27, 61] by preserving
important parameters from the past while updating less critical
ones. However, this method’s performance is not ideal when ap-
plied to scenarios involving a large number of tasks. One is based on
knowledge playback [3, 9, 35, 42, 50], where important past samples
are stored in memory and used for training when encountering new
tasks. Another approach involves dynamically expanding model pa-
rameters [18, 23, 33] to assign different parameters to different tasks.
This method helps alleviate catastrophic forgetting and enhances
model performance, but it requires significant memory and com-
putational resources. Nevertheless, continue learning models are
also susceptible to adversarial examples. Wang et. al. [54] attempt
to combine adversarial training with continue learning paradigms,
but they do not consider the defensive performance of the current
model against old attacks in long-term application scenarios. Dif-
ferently from previous work, our focus is on ensuring that when
the model continues to encounter new adversarial attacks, it can
maintain robustness against past adversarial examples and improve
resilience against new adversarial attacks.

3 METHODOLOGY
3.1 Task Defination and Framework Overview
Continuous Defense Setting. As deep learning models become
widely used in fields like healthcare, manufacturing, and military,
ensuring their security has become a primary focus for researchers.
Investigating adversarial examples with high transferability pro-
vides valuable insights into deep models. Consequently, there has
been a constant influx of diverse new attack methods [16, 26, 49]
in recent years. To develop defense algorithms suitable for long-
term applications, we have designed a new Continuous Defense
Setting (CDS). In the CDS, a model trained on clean data needs
to continually cope with and learn from newly generated adver-
sarial examples, meanwhile, due to limited storage resources, it is
impractical to retain a vast number of learned samples. Therefore,
our research focuses on addressing the challenge of catastrophic
forgetting, improving the model’s defense against various attacks,
and maintaining high accuracy on clean samples.
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Framework Overview. To address the ongoing generation of di-
verse adversarial samples and tackle model defense challenges in
long-term application scenarios, we propose a Sustainable Self-
evolution Adversarial Training (SSEAT) algorithm under CDS, con-
taining Continual Adversarial Defense (CAD), Adversarial Data
Reply (ADR), and Consistency Regularization Strategy (CRS) three
components. As shown in Fig. 2, based on the continue learning
paradigm, the CAD employs a min-max adversarial training opti-
mization process to continually learn from new attack samples, as
described in Sec. 3.2. To alleviate the catastrophic forgetting issue
and boost the model robustness of the diverse attacks, in Sec. 3.3, we
introduce a DR module to adaptively select important samples from
the previous learning stage for data replay during training. Mean-
while, inspired by the knowledge distillation strategy, in Sec. 3.4,
we also design a CRS module to shorten the distance between the
current model and the model trained in the previous stage, thereby
maintaining the model’s recognition performance on clean samples
over time.

3.2 Continual Adversarial Defense
In a classification task, a datasetD consists of𝑛 pairs (𝑥𝑖 , 𝑦𝑖 ), where
𝑥𝑖 represents input samples and 𝑦𝑖 denotes corresponding class
labels ranging from integers 1 to 𝐾 . The classification model 𝑓𝜃
is intended to map the input space X to the output space Δ𝐾−1,
generating probability outputs through a softmax layer. To deal
with the boom-growing attack strategies, the concept of adversarial
robustness extends beyond evaluating the model’s performance
solely on P. It involves assessing the model’s ability to handle
perturbed samples within a certain distance metric range around P.
Specifically, our goal is to achieve lp − robustness, where we aim to
train a classifier 𝑓𝜃 to accurately classify samples (𝑥 + 𝛿,𝑦) under
any 𝛿 perturbation such that ∥𝛿 ∥𝑝 ≤ 𝜖 . Here, (𝑥,𝑦) follows the
distribution P, and 𝑝 ≥ 1 with a small 𝜖 > 0.

The core concept of adversarial training is to incorporate gener-
ated adversarial examples into the training set, allowing the model
to learn from these adversarial examples during training, thereby
acquiring more robust features and enhancing the model’s defense
capability. Adversarial training can be formalized as a min-max
optimization problem: the goal is to find model parameters 𝜃 that
enable the correct classification of adversarial examples,

𝑚𝑖𝑛𝜃E(𝑥,𝑦)∼D

[
𝑚𝑎𝑥
∥𝛿 ∥𝑝≤𝜖

L𝑎𝑑𝑣 (𝜃, 𝑥 + 𝛿,𝑦)
]

(1)

where L𝑎𝑑𝑣 represents the loss function, and we use the standard
cross-entropy loss to design the loss function L𝑎𝑑𝑣 .

In our practical CDS, the adversarial training model will con-
tinue to encounter adversarial examples generated in various ways.
Thus, we design a novel Continuous Adversarial Defense (CAD)
pipeline, at each stage of CAD, the model is exposed to a batch
of new attack samples for training to adapt continuously to new
environments and data distributions. In the initial stage, the model
is trained on original clean data, and the trained model is denoted
as 𝑓𝜃0 . Additionally, we generate multiple sets of adversarial ex-
amples targeting the same original sample using different attack
methods, and each adversarial example set corresponds to a specific
attack method. During the CAD, the model trains on adversarial

examples generated by specific attack methods in each learning
stage. After each stage, the model is updated and denoted as 𝑓𝜃𝑡 ,
where 𝑡 represents the stage number. The training process of the
model is described as follows,
Initial Stage: The model 𝑓𝜃0 is trained on the original clean sample
set D0

𝑖𝑛𝑖𝑡
= {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where 𝑥𝑖 is the input sample and 𝑦𝑖 is the

corresponding label.
CAD Training Stage: In the 𝑡𝑡ℎ stage, the model 𝑓𝜃𝑡−1 receives a

set of adversarial samples D𝑡
𝑎𝑑𝑣

=

{(
𝑥𝑡
𝑖
, 𝑦𝑡
𝑖

)}𝑛
𝑖=1

generated by the
𝑡𝑡ℎ attack method for training, resulting in the updated model 𝑓𝜃𝑡 .

3.3 Adversarial Data Reply
During the CAD, as more and more attack examples are incor-
porated into training, the model increasingly struggles to avoid
catastrophic forgetting, hindering its ability to maintain sustain-
able defense capabilities in long-term application scenarios. Thus,
we introduce a novel Adversarial Data Reply (ADR) strategy to
realize an effective rehearsal sample selection scheme, enhance
adversarial example diversity, and obtain high-quality replay data.
High-quality sample data should accurately reflect their class at-
tributes and demonstrate clear distinctions from other classes in
the feature space. We consider samples located at the distribution
center to be the most representative, while those at the classifica-
tion boundary are the most distinctive. Therefore, based on these
two characteristics, we select diverse and representative replay data
within the feature space.

However, accurately computing the relative position of samples
in the feature space requires significant computational resources
and time. Therefore, we utilize our classification model to infer the
uncertainty of samples, thereby indirectly revealing their relative
positions in the feature space. In practical implementation, we per-
form various data augmentations to obtain augmented samples.
Subsequently, we calculate the variance of the model’s output re-
sults for these samples subjected to different data augmentations
to assess their uncertainty. We think that when the model’s predic-
tions for a sample are more certain, the sample may be closer to the
core of the class distribution; conversely, when uncertainty in pre-
dictions increases, the sample may be closer to the class boundary.

First, we define the learning samples for each round as,

D𝑡 =


D0
𝑖𝑛𝑖𝑡

, 𝑡 = 0

D𝑡
𝑎𝑑𝑣

, 𝑡 > 0
(2)

where D𝑡 represents the sample set of the 𝑡𝑡ℎ learning stage in
CAD.

We assume that the prior distribution of samples 𝑝 (𝑥 |𝑥) is a
uniformmixture of various data augmentations, where 𝑥 represents
the augmented samples generated via color jitter, shear, or cutout.
We utilize the Monte Carlo method to approximate the uncertainty
of the sample distribution 𝑝 (𝑦 = 𝑐 |𝑥). Then, wemeasure the relative
distribution of samples based on the uncertainty of model outputs.
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The derivation process is as follows,

𝑝 (𝑦 = 𝑐 |𝑥) =
∫
D̃
𝑝 (𝑦 = 𝑐 |𝑥𝑡 ) 𝑝 (𝑥𝑡 |𝑥) 𝑑𝑥𝑡

≈ 1
𝑍

𝑍∑︁
𝑡=1

𝑝 (𝑦 = 𝑐 |𝑥𝑡 ) (3)

where 𝑍 signifies the number of augmentation methods utilized.
The distribution �̃� represents the data distribution defined by 𝑥 .
𝑝 (𝑦 = 𝑐 |𝑥𝑡 ) denotes the probability of the augmented sample 𝑥𝑡
having the label 𝑐 .

Specifically, the augmented sample 𝑥 is generated by a random
function 𝑔𝑘 (·),

𝑥 = 𝑔𝑘 (𝑥, 𝛼𝑘 ) , 𝑘 = 1, ...𝐾 (4)
where 𝛼𝑘 represents a hyper-parameter signifying the stochastic
component of the 𝑘𝑡ℎ perturbation.

The prior distribution 𝑝 (𝑦 = 𝑥 |𝑥) is formulated as,

𝑥 ∼
𝐾∑︁
𝑘=1

𝜔𝑘 ∗ 𝑔𝑘 (𝑥, 𝛼𝑘 ) (5)

where the random variable 𝜔𝑘 is selected from a categorical binary
distribution. We assess the sample’s uncertainty in relation to the
perturbation by,

𝑄𝑐 =

𝑇∑︁
𝑡=1

W argmax
𝑐′

𝑝
(
𝑦 = 𝑐′ |𝑥𝑡

)
(6)

𝑟 (𝑥) = 1 − 1
𝐴
𝑚𝑎𝑥
𝑐
𝑄𝑐 (7)

where 𝑟 (𝑥) represents the uncertainty of sample 𝑥 , 𝑄𝑐 indicates
the number of times augmented samples are predicted as the true
class, W represents the one-hot encoded class vector, where only
the element corresponding to the true class is true. Lower values
of 𝑟 (𝑥) indicate that the sample resides closer to the distribution
center.

We allocatememory for a replay buffer of size𝐾 for each learning
iteration.We sort all samplesD𝑡 based on the computed uncertainty
𝑟 (𝑥), and sample the examples with an interval of |D𝑡 | /𝐾 . We have
diversified the replay samples by sampling perturbed samples of
varying intensities, ranging from robust to fragile ones, which can
broaden the scope of memories, encompassing a wide range of
scenarios.

3.4 Consistency Regularization Strategy
In practical application models, in addition to achieving sustainable
defense against attack examples, it is crucial to maintain high recog-
nition accuracy on original clean samples. To prevent the model’s
learned data distribution from straying too far from the space of
clean sample data, we leverage the knowledge distillation method
and propose a novel Consistency Regularization Strategy (CRS),
to ensure that the same sample fed into both previous model 𝑓𝜃𝑡−1
and current training model 𝑓𝜃𝑡 , after undergoing independent data
augmentations, still yields similar predictions.

For a given training sample (𝑥,𝑦) ∼ D and augmentation𝐴 ∼ A,
the training loss is given by,

𝑚𝑎𝑥
∥𝛿 ∥∞≤𝜖

L𝐶𝐸 (𝑓𝜃𝑡 (𝐴 (𝑥) + 𝛿) , 𝑦) (8)

where A represents the baseline augmentation set. 𝑓𝜃𝑡 represents
the model parameters during the 𝑡𝑡ℎ rounds of CAD.

Considering data points ((𝑥,𝑦) drawn from distribution D, and
augmentations 𝐴1 and 𝐴2 sampled from set A , we denote the ad-
versarial noise of𝐴𝑖 (𝑥) as 𝛿𝑖 . It is obtained by 𝛿𝑖 := 𝑎𝑟𝑔𝑚𝑎𝑥 ∥𝛿 ∥𝑝≤𝜖
L (𝐴𝑖 (𝑥) , 𝑦, 𝛿 ;𝜃𝑡 ). Our objective is to regularize the temperature-
scaled distribution ˆ𝑓𝜃𝑡 (𝑥 ;𝜏) of adversarial examples across augmen-
tations for consistency. Here, 𝜏 is the temperature hyperparameter.
Specifically, we use temperature scaling to adjust the classifier:
ˆ𝑓𝜃𝑡 (𝑥 ;𝜏) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑧𝜃𝑡 (𝑥 )
𝜏

)
, where 𝑧𝜃𝑡 (𝑥) is the logit value of

𝑓𝜃𝑡 (𝑥) before the softmax operation. Therefore, we obtain the reg-
ularization loss as follows:

𝐽𝑆

(
ˆ𝑓𝜃𝑡−1 (𝐴1 (𝑥) + 𝛿1, 𝜏) ∥ ˆ𝑓𝜃𝑡 (𝐴2 (𝑥) + 𝛿2, 𝜏)

)
(9)

where 𝐽𝑆 (· ∥ ·) denotes the Jensen-Shannon divergence. Since aug-
mentations are randomly sampled at each training step, minimizing
the proposed objective ensures that adversarial examples remain
consistently predicted regardless of augmentation selection. Addi-
tionally, in adversarial training, due to the relatively low confidence
of predictions (i.e., maximum softmax value), using a smaller tem-
perature helps ensure a sharper distribution to address this issue.

By ensuring consistency between the predictions of the pre-
vious model and the current training model under different data
augmentation schemes, we can ensure that the previous model
retains the knowledge learned from the previous training. This
CRS approach not only helps improve the model’s robustness to
adversarial samples but also maintains accuracy on clean samples.

The overarching training objective, denoted as 𝐿𝑡𝑜𝑡𝑎𝑙 , integrates
adversarial training objectiveswith consistency regularization losses.
Initially, we deliberate on averaging the inner maximization objec-
tive 𝐿𝑎𝑑𝑣 across two distinct augmentations, 𝐴1 and 𝐴2, sampled
from the augmentation set 𝐴. This choice stems from the equiva-
lence of minimizing over the augmentation set 𝐴 to averaging over
𝐴1 and 𝐴2.

1
2
(L𝑎𝑑𝑣 (𝐴1 (𝑥) , 𝑦;𝜃𝑡−1) + L𝑎𝑑𝑣 (𝐴2 (𝑥) , 𝑦;𝜃𝑡 )) (10)

Subsequently, we integrate our regularizer into the averaged
objective mentioned above, introducing a hyperparameter denoted
as 𝜆. Therefore, the final training objective 𝐿𝑡𝑜𝑡𝑎𝑙 can be expressed
as follows:

L𝑡𝑜𝑡𝑎𝑙 :=
1
2
(L𝑎𝑑𝑣 (𝐴1 (𝑥) , 𝑦;𝜃𝑡−1) + L𝑎𝑑𝑣 (𝐴2 (𝑥) , 𝑦;𝜃𝑡 ))

+𝜆 · 𝐽𝑆
(

ˆ𝑓𝜃𝑡−1 (𝐴1 (𝑥) + 𝛿1, 𝜏) ∥ ˆ𝑓𝜃𝑡 (𝐴2 (𝑥) + 𝛿2, 𝜏)
)

(11)

Our regularization method stands apart from the selection of the
adversarial training objective, rendering it universally applicable
to diverse established adversarial training approaches. To illustrate,
if we were to adopt the conventional adversarial training loss, the
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resulting overall objective would be formulated as:

L𝑡𝑜𝑡𝑎𝑙 :=
1
2

(
𝑚𝑎𝑥

∥𝛿1 ∥𝑝≤𝜖
L𝐶𝐸 (𝑓𝜃𝑡−1 (𝐴1 (𝑥) + 𝛿1) , 𝑦)+

𝑚𝑎𝑥
∥𝛿2 ∥𝑝≤𝜖

L𝐶𝐸 (𝑓𝜃𝑡 (𝐴2 (𝑥) + 𝛿2) , 𝑦)
)

+𝜆 · 𝐽𝑆
(

ˆ𝑓𝜃𝑡−1 (𝐴1 (𝑥) + 𝛿1, 𝜏) ∥ ˆ𝑓𝜃𝑡 (𝐴2 (𝑥) + 𝛿2, 𝜏)
)

(12)

Algorithm 1 Sustainable Self-evolution Adversarial Training.
Require:

Input: Clean sample set D0
𝑖𝑛𝑖𝑡

, Adversarial sample sets D𝑡
𝑎𝑑𝑣

for each learning stage 𝑡 , target model 𝑓𝜃 , Augmentation set
𝐴, Temperature hyperparameter 𝜏 , regularization coefficient 𝜆,
training epoch 𝑇 .
Output: Defense model 𝑓𝜃𝑇
Initialization: Train the initial model 𝑓𝜃0 by datasetD0

𝑖𝑛𝑖𝑡
, Select

replay samples 𝐷𝑟1 according to Eq. (7)
1: for 𝑡 in 1, · · · , 𝑇 do
2: in 𝐷𝑡

𝑎𝑑𝑣
, apply adversarial training, according to Eq. (10), to

train the model
3: in 𝐷𝑟𝑡 , apply adversarial training and consistency regular-

ization strategy, according to Eq. (12), to train the model 𝑓𝜃𝑡
4: Combine replay samples with adversarial samples of the

current stage : 𝐷𝑡 =
{
(𝑥,𝑦) |, (𝑥,𝑦) ∈ 𝐷𝑟𝑡 ∪ D𝑡

𝑎𝑑𝑣

}
, and select

replay samples 𝐷𝑟𝑡+1 according to Eq. (7)
5: end for
6: return 𝑓𝜃𝑇

4 EXPERIMENTAL
4.1 Experimental Settings
Datasets.We evaluate our SSEAT model over the CIFAR-10 dataset
[29],which is commonly used for adversarial attack and defense
research. It contains 50,000 images for training and 10,000 images
for testing, covering 10 different categories of objects.Our method
only uses 1000 images for training and all 1000 images for testing.
In each stage, the training and test data are converted into attack
according to the corresponding attack algorithm. The converted
training part of the data is used for SSEAT training, and the test
part is only used for the final black box test. To better verify the
efficacy of our SSEAT method, we also conduct more experiments
over different datasets in the supplementary materials.
Attack Algorithms. Under the CDS task, we use various attack
algorithms, i.e., FGSM [19], BIM [30], PGD [40], RFGSM [53], MIM
[13], NIM [36], SIM [36], DIM [60], VNIM [55], and VMIM [55],
to generate adversarial samples under 𝑙∞ for training our SSEAT
model and further evaluate the robustness against the attacks. The
perturbation amplitude of all attacks is set to 𝜖 = 8/255 and the
attack step size to 𝛼 = 2/255. In our experiments, we conduct four
different attack orders for the CDS task: (1) Order-I: FGSM, PGD,
SIM, DIM, VNIM; (2) Order-II: BIM, RFGSM, MIM, NIM, VMIM; (3)
Order-III: MIM, PGD, FGSM, SIM, BIM; (4) Order-IV: FGSM, BIM,
PGD, RFGSM, NIM, SIM, DIM. We designed experiments involving

Table 1: Comparing results of our SSEAT method with other
adversarial training competitors under CDS task Order-I, in-
cluding classification accuracy against attacks and standard
accuracy on clean samples.

Method FGSM PGD SIM DIM VNIM Clean
PGD-AT[40] 71.61 78.04 60.56 70.38 69.46 83.01
TRADES[63] 58.57 69.32 63.75 71.03 62.17 62.41
MART [56] 67.33 70.78 68.09 53.24 69.21 71.55
AWP [59] 49.99 68.75 59.93 70.74 44.88 79.67
RNA [12] 57.25 63.54 72.02 64.93 70.15 77.65

LBGAT [10] 65.35 73.19 75.54 68.38 72.37 83.22
Baseline (CAD) 68.21 72.49 73.12 71.18 73.35 60.52
SSEAT (Ours) 74.86 78.35 76.79 74.10 77.92 81.92

multiple attacks within a single stage. The sequence of attacks
includes FGSM, BIM, PGD, RFGSM, NIM, SIM, partitioned based
on encountering one, two, or three adversarial attacks per stage for
training.
Implementation Details.We summarize the training procedure
of our SSEAT framework in Alg. 1. The model uses resnet18 [20] as
the classification network structure. We implement Torchattacks
[25] to generate 100 adversarial images per category for each ad-
versarial attack strategy, for a total of 1000 images. On the CIFAR10
dataset, before training, each image is resized to 32×32 pixels, and
underwent data augmentation, which included horizontal flipping
and random cropping. For the training hyperparameters of experi-
ments, we use a batch size of 8, the epoch for training clean samples
is set to 40, and the epoch for training adversarial samples is set to
20. We train the model using the SGD optimizer with momentum
0.9 and weight decay 5 × 10−4. In addition, we set the memory
buffer size to 1000.
Competitors. We compare our SSEAT method with several ad-
versarial training works, such as the PGD-AT [40], TRADES[63],
MART[56], AWP [59], RNA [12], and LBGAT [10].
Evaluation Metrics. To comprehensively assess the model’s per-
formance in both robustness and classification within the CDS task,
we employ two indicators: (1) The model’s classification accuracy
across all kinds of adversarial examples after completing all adver-
sarial training stages, which is more practical and differs from the
‘classification accuracy against each attack after every adaptation
step’ [54]; (2) The model’s classification accuracy on the original
clean data after completing all adversarial training stages.

4.2 Experimental Results
Wehave conducted extensive experiments over the CIFAR-10 dataset
with various attack orders in the CDS task, compared to several
competitors and baseline. All attack results are reported under the
black-box condition.
For the CDS task, our SSEAT model can achieve the best
robustness against ongoing generated new adversarial exam-
ples. To better evaluate our SSEAT model under the CDS task, we
generate 10 kinds of attacks and organize them as three different
sets of adversarial sample sequences. We report model robustness
over various attack orders compared to several competitors. As
shown in Tab. 1, Tab. 2, and Tab. 3, our SSEAT method can beat
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Table 2: Comparing results of our SSEAT method with other
adversarial training competitors under CDS task Order-II, in-
cluding classification accuracy against attacks and standard
accuracy on clean samples.

Method BIM RFGSM MIM NIM VMIM Clean
PGD-AT[40] 71.63 69.04 72.87 63.90 67.55 83.01
TRADES[63] 70.26 68.84 62.49 59.37 67.92 62.41
MART [56] 68.78 53.68 70.84 69.47 63.25 71.55
AWP [59] 43.78 55.24 63.20 54.89 67.84 79.67
RNA [12] 67.51 70.55 68.52 69.56 58.26 77.65

LBGAT [10] 76.19 69.24 74.77 73.79 71.46 83.22
Baseline (CAD) 72.87 73.40 72.85 71.46 72.71 64.43
SSEAT (Ours) 76.77 77.01 77.48 76.62 75.51 82.79

Table 3: Comparing results of our SSEAT method with other
adversarial training competitors under CDS task Order-III,
including classification accuracy against attacks and stan-
dard accuracy on clean samples.

Method MIM PGD FGSM SIM BIM Clean
PGD-AT[40] 72.87 78.04 71.63 60.56 71.61 83.01
TRADES[63] 62.49 69.32 58.57 63.75 70.26 62.41
MART [56] 70.84 70.78 67.33 68.09 68.78 71.55
AWP [59] 63.20 68.75 67.33 59.93 43.78 79.67
RNA [12] 68.52 63.54 57.25 72.02 67.51 77.65

LBGAT [10] 74.77 73.19 65.35 75.54 76.19 83.22
Baseline (CAD) 71.73 73.67 70.38 69.52 72.67 63.39
SSEAT (Ours) 75.73 76.77 73.69 76.43 77.12 82.83

all adversarial training competitors for all adversarial examples,
which demonstrate the efficacy of SSEAR framework to tackle the
continuous new attacks under black-box condition.
For the CDS task, our SSEAT model can maintain competi-
tive classification accuracy over the clean data. For real-life
applications, in addition to continuously improving the defense
performance against new attack methods, the model also needs
to have good recognition effects on clean samples. Thus, we re-
port the classification accuracy over original data in Tab. 1, Tab. 2,
and Tab. 3. The results show our SSEAT method not only achieves
strong robustness under complex changes, but also has good perfor-
mance on the original task. Achieving a balanced trade-off between
robustness and accuracy greatly enhances the practicality of the
adversarial training strategy in real scenarios.

4.3 Ablation Study
To verify the role of each module in our SSEAT, we conducted exten-
sive ablation studies on the following variants: (1) ‘Baseline (CAD)’:
conduct the experiments over the continue learning pipeline; (2)
‘+KD’: based on ‘Baseline’, add the knowledge distillation to shorten
the distance between the defense currentmodel and the cleanmodel;
(3) ‘+CRS’: based on ‘Baseline", add the CRS module for adversarial
training under all stages; (4) ‘+Random DR’: based on the "base-
line", after each stage of training, a certain number of samples are

Table 4: Results obtained from several variants of our SSEAT
model.

Method FGSM BIM PGD RFGSM NIM Clean
Baseline (CAD) 65.71 72.58 71.80 72.84 71.16 63.30

+KD 67.49 69.13 70.15 69.60 67.54 79.22
+CRS 70.78 73.97 73.89 73.20 71.96 80.22

+ Random DR 72.02 75.16 75.36 75.14 73.73 81.35
+ADR 72.58 75.81 75.60 75.23 74.31 81.97

+ADR+CRS (Simple) 73.90 75.93 75.38 77.03 75.65 82.84
+ADR+CRS (Ours) 74.47 76.53 76.97 77.66 76.13 82.92

Figure 3: Robustness accuracy of SSEAT model per training
stage on CIFAR-10 for each attackmethod and clean samples.

randomly selected and placed into the memory buffer for data re-
ply; (5) ‘+ADR’: based on the "baseline", add ADR for selecting key
rehearsal data into the memory buffer; (6) ’+ADR+CRS (Simple)’:
based on the ‘baseline", ADR and CRS are added directly for model
training, and CRS is used for all data during the training process;
(7)’+ADR+CRS (Ours)’: based on the ‘baseline", add ADR and CRS
for model learning with different training strategies (During the
training process, the memory part is separated from the current
data, and CRS is only used in the memory part). This is the overall
framework of our SSEAT model.
The efficacy of each component in the SSEAT method. As
shown in Tab. 4, by comparing the results of different variants, we
notice the following observations, (1) ‘Baseline (CAD)’ based on
the basic continue learning pipeline, can only realize learning from
continuous attacks, however, the performance on clean samples is
too poor to meet the actual application scenarios; (2) Comparing
the results between ‘+Baseline (CAD)’ and ‘+KD’, we can notice
the classification accuracy over the clean samples can be obviously
improved; (3) Comparing the results between ‘+KD’ and ‘+CRS’,
obviously, CRS is more suitable for the scenario of continuous adver-
sarial samples. CRS can better handle the trade-off between model
robustness and accuracy; (4) Comparing ‘Baseline’ and ‘+Random
DR’, the results prove the effectiveness of the knowledge replay
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Table 5: Comparing results of our SSEATmethodwith other adversarial training competitors under CDS task Order-IV, including
classification accuracy against attacks and standard accuracy on clean samples.

Method FGSM BIM PGD RFGSM NIM SIM DIM Clean
PGD-AT[40] 71.61 71.63 78.04 69.04 63.90 60.56 70.38 83.01
TRADES[63] 58.57 70.26 69.32 68.84 59.37 63.75 71.03 62.41
MART [56] 67.33 68.78 70.78 53.68 69.47 68.09 67.25 71.55
AWP [59] 49.99 43.78 68.75 55.24 54.89 59.93 53.24 79.67
RNA [12] 57.25 67.51 63.54 70.55 69.56 72.02 64.93 77.65

LBGAT [10] 65.35 76.19 73.19 69.24 73.79 75.54 68.38 83.22
Baseline (CAD) 63.84 72.28 73.15 72.39 70.81 72.29 71.65 60.78
SSEAT (Ours) 72.78 76.46 76.27 76.10 74.67 75.87 75.30 81.74

Table 6: Comparing results of our SSEAT method with other
adversarial training competitors under CDS task distributed
Order-I, including classification accuracy against attacks and
standard accuracy on clean samples.

Method SIM DIM PGD VNIM FGSM Clean
PGD-AT[40] 60.56 70.38 78.04 69.46 71.61 83.01
TRADES[63] 63.75 71.03 69.32 62.17 58.57 62.41
MART [56] 68.09 53.24 70.78 69.21 67.33 71.55
AWP [59] 59.93 70.74 68.75 44.88 49.99 79.67
RNA [12] 72.02 64.93 63.54 70.15 57.25 77.65

LBGAT [10] 75.54 68.38 73.19 72.37 65.35 83.22
Baseline (CAD) 71.18 69.69 72.55 72.65 69.59 65.10
SSEAT (Ours) 75.72 72.72 76.74 74.04 73.98 82.46

Table 7: The results of our SSEAT with multiple attacks in
one training stage. ‘Number’, the first column in the table,
represents the number of attack algorithms used in adver-
sarial training in each stage.

attack FGSM BIM PGD RFGSM NIM SIM clean
Number =1 72.78 76.06 76.27 76.10 74.67 74.37 81.74
Number=2 73.62 76.11 76.76 76.42 74.54 74.74 82.75
Number=3 73.72 76.66 76.88 76.48 74.65 74.44 83.47

strategy in the scenario of complex and diverse adversarial exam-
ples. Keeping some past data in memory can alleviate the model’s
loss of defensive performance against past adversarial examples; (5)
Comparing the ‘+Random DR’ and ‘+ADR’, such results illustrate
that our sampling strategy is effective, and can select represen-
tative and diverse samples at each training stage; (6) Comparing
the ‘+CRS’, ‘+ADR’, and ‘+ADR+CRS (Simple)’, the results demon-
strate the ADR and CRS modules can complement each other on
both classification accuracy and defense robustness; (7) Comparing
‘+ADR+CRS (Simple)’ and ‘+ADR+CRS (Ours)’, the results show
our SSEAT model can achieve the best performance. The reason is
that the model of the previous stage has knowledge of the data in
memory, but does not have knowledge of the data in the current
stage. If you move the model’s output closer to it on the current
data, it is likely to have a counterproductive effect and mislead
the update of the current model; if you move the model’s output
closer to it on the memory data, it will guide the model to retain

the knowledge of past samples. (8) As shown in Fig. 3, as training is
completed, our SSEAT model can achieve a gradual improvement
in defense performance and maintain classification accuracy.
Our SSEAT model can be adapted to more challenging CDS
tasks. (1) Considering the complexity of real-world application
scenarios, we extended the attack sequence to be longer. As shown
in Tab. 5, thanks to the proposed data replay module and knowl-
edge distillation strategy for alleviating the problem of catastrophic
forgetting, our SSEAT model still shows the best defense and clas-
sification ability. (2) Additionally, we intentionally disrupted the
original attack sequence to further validate the effectiveness of our
method. As shown in Tab. 6, we show the results under re-ordering
the attack sequence for Order-I in the CDS task, the defense perfor-
mance still does not fluctuate excessively, which fully demonstrates
that the SSEAT method can defend against a variety of adversarial
samples. (3) Furthermore, to be more realistic, we designed a differ-
ent setting in which the types of attack examples in each stage are
not unique. As shown in Tab. 7, in the three stages of training with
different numbers of types of attack samples, the model trained by
our method maintains excellent accuracy on adversarial samples
and clean samples. The results fully prove the versatility of our
method and will not be affected by too many constraints. Overall,
the biggest difference from other competitors is that our method
model has the ability to evolve independently and can continue to
learn and defend against more adversarial attacks. Our approach is
able to adapt to complex and diverse attack samples and achieve
broad and general model robustness.

5 CONCLUSION
To realize the adaptive defense ability of deep models with adver-
sarial training when facing the continuously generated diverse
new adversarial samples, we proposed a novel and task-driven
Sustainable Self-evolution Adversarial Training (SSEAT) method.
Inspired by the continue learning, the SSEAT framework can con-
tinuously learn new kinds of adversarial examples in each training
stage, and realize the consolidation of old knowledge through the
data rehearsal strategy of high-quality data selection. At the same
time, a knowledge distillation strategy is used to further maintain
model classification accuracy on clean samples. We have verified
the SSEAT model efficacy over multiple continue defense setting
orders, and the ablation experiments show the effectiveness of the
components in the SSEAT method.
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