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SUPPLEMENTARY MATERIALS
In this supplementary material, we provide more experimental
results and insightful discussions in terms of three aspects,

• We conduct more experiments on CIFAR-100 dataset with
adversarial training competitors for robustness and accuracy
on clean samples;

• We demonstrate the impact of different amounts of training
attack data at each training stage in continuous defense
setting;

• we show visualization results of clean sample representations
of our SSEAT model versus the baseline model.

Unless otherwise specified, the numbering of figures and tables
is within the scope of the supplementary material. The notations
are consistent with the main paper.

1 EXPREIMENT ON CIFAR-100 DATASET
Datasets. To better verify the effectiveness of our SSEAT method,
we evaluate it on the CIFAR-100 dataset [6]. It contains 50,000
images for training and 10,000 images for testing, covering 100
different categories of objects. Our method uses only 100 images
per category for training and all 10,000 images for testing, consistent
with the CIFAR-10 setting. At each stage, training and test data
are converted into attacks according to the corresponding attack
algorithm. The converted training data part is used for SSEAT
training, and the test part is only used for the final black-box test.
In our experiments, we conduct two different attack orders for the
CDS task: (1) Order-I: MIN, PGD, FGSM, SIM, BIM; (2) Order-II:
FGSM, BIM, PGD, RFGSM, NIM, SIM, DIM.
Implementation Details. The model uses resnet18 [3] as the clas-
sification network structure. We implement Torchattacks [4] to
generate 100 adversarial images per category for each adversar-
ial attack strategy, resulting in a total of 10,000 images. On the
CIFAR-100 dataset, before training, each image is resized to 32×32
pixels, and data augmentation is conducted, including horizontal
flipping and random cropping. For the training hyperparameters
of experiments, We use a batch size of 64. We train clean samples
for 40 epochs and adversarial samples for 20 epochs. We train the
model using the SGD optimizer with momentum 0.9 and weight
decay 5 × 10−4. In addition, we set the memory buffer size to 1000.
Competitors. We compare our SSEAT method with several ad-
versarial training works, such as the PGD-AT [9], TRADES[12],
MART[10], AWP [11], RNA [2], LBGAT [1], FSR [5] and ST [7].
Results Analyses.
On CIFAR-100 dataset, our SSEAT model can maintain the
best defense performance against the attacks and compet-
itive classification accuracy for clean samples. To verify the
adaptive defense capabilities of deep models in the face of con-
stantly generating diverse new adversarial samples, we conduct
extensive experiments on the CIFAR-100 dataset using various

Table 1: Comparing results of our SSEAT method with other
adversarial training competitors under CDS task Order-I
on the CIFAR-100 dataset, including classification accuracy
against attacks and standard accuracy on clean samples.

Method MIM PGD FGSM SIM BIM Clean

PGD-AT[9] 51.13 55.93 50.53 46.21 50.76 64.11
TRADES[12] 46.30 49.02 45.78 47.27 49.28 48.33
MART [10] 49.59 49.44 49.30 48.47 48.97 50.49
AWP [11] 47.07 48.96 42.12 45.97 40.36 59.38
RNA [2] 48.86 47.64 45.11 51.01 48.57 59.19

LBGAT [1] 53.62 52.50 48.94 54.18 55.89 64.56
FSR [5] 53.56 54.32 51.36 52.31 53.26 60.22
ST [7] 51.90 51.47 51.44 52.91 52.43 58.15

Baseline (CAD) 50.83 54.87 48.26 48.19 51.36 47.25
SSEAT (Ours) 54.14 58.34 51.80 54.44 56.71 63.37

Table 2: Comparing results of our SSEAT method with other
adversarial training competitors under rearranged CDS task
Order-I on the CIFAR-100 dataset, including classification
accuracy against attacks and standard accuracy on clean sam-
ples.

Method FGSM PGD SIM BIM MIM Clean

PGD-AT[9] 50.53 55.93 46.21 50.76 51.13 64.11
TRADES[12] 45.78 49.02 47.27 49.28 46.30 48.33
MART [10] 49.30 49.44 48.47 48.97 49.59 50.49
AWP [11] 42.12 48.96 45.97 40.36 47.07 59.38
RNA [2] 45.11 47.64 51.01 48.57 48.86 59.19

LBGAT [1] 48.94 52.50 54.18 55.89 53.62 64.56
FSR [5] 51.36 54.32 52.31 53.26 53.56 60.22
ST [7] 51.44 51.47 52.91 52.43 51.90 58.15

Baseline (CAD) 50.67 57.74 52.89 56.53 52.36 48.75
SSEAT (Ours) 54.21 60.09 56.35 58.98 56.97 63.85

attack sequences in the CDS task, comparing with several com-
petitors and baselines. In the main text, to face various complex
attacks, we have designed a novel Continuous Adversarial Defense
(CAD) pipeline. In the initial phase, the model is trained using clean
original data. In each subsequent phase, the model is exposed to
a batch of new attack samples for training, enabling continuous
adaptation to the evolving environment and data distribution. All
attack results are reported under black box conditions. We report
the model’s robustness to multiple attack sequences and classifica-
tion accuracy on raw data compared to several competitors , and
our SSEAT method can beat all adversarial methods trained on all
adversarial examples. As shown in Tab. 1 and Tab. 3, this proves
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Table 3: Comparing results of our SSEAT method with other adversarial training competitors under CDS task Order-II on the
CIFAR-100 dataset, including classification accuracy against attacks and standard accuracy on clean samples.

Method FGSM BIM PGD RFGSM NIM SIM DIM Clean

PGD-AT[9] 50.53 50.76 55.93 49.10 47.37 46.21 49.32 64.11
TRADES[12] 45.78 49.28 49.02 48.98 46.39 47.27 49.98 48.33
MART [10] 49.30 48.97 49.44 43.89 49.49 48.47 48.61 50.49
AWP [11] 42.12 40.36 48.96 44.56 44.17 45.97 43.34 59.38
RNA [2] 45.11 48.57 47.64 50.13 49.33 51.01 47.40 59.19

LBGAT [1] 48.94 55.89 52.50 49.28 52.03 54.18 49.68 64.56
FSR [5] 51.36 53.26 54.32 52.18 51.48 52.31 52.42 60.22
ST [7] 51.44 52.43 51.47 50.41 52.05 52.91 51.81 58.15

Baseline (CAD) 48.52 54.86 55.32 54.89 51.52 52.19 50.19 47.88
SSEAT (Ours) 53.03 58.09 58.40 58.62 55.43 55.80 54.45 63.01

Figure 1: Visualization of clean examples representations for CAD and SSEAT by using t-SNE[8]. We use 1000 test images from
CFAIR-10 dataset for visualization. Different colors represent different categories.

Table 4: The results of our SEAT with different numbers
of training data in one training stage in the CAD pipeline.
The first column “K” in the table represents the amount of
training data used in adversarial training at each stage.

𝐾 DIM RFGSM PGD SIM FGSM clean

100 70.45 74.78 75.35 73.88 72.53 81.50

500 87.18 88.38 88.04 87.51 86.27 79.65

1000 92.24 92.24 92.13 91.95 92.79 78.80

that the SSEAT framework can perform well in a black box under
the CDS conditions, which can effectively resist new attacks and
have good recognition effect on clean samples.
Our SSEAT model is capable of adapting to more demanding
CDS tasks. To further validate the effectiveness of our method, we
intentionally disrupte the original attack sequence. As shown in
Table 2, after rearranging the attack sequence for Order-I in the
CDS task, the defensive performance does not change significantly.

This clearly demonstrates that the SSEAT method is capable of
effectively defending against various adversarial samples.

2 ABLATION STUDY
To better understand the insight of our proposed model and verify
its effectiveness, we further conduct several ablation studies below
to evaluate different design choices.
The impact of the amount of training data in each training
stage.We design the number of data to be different in each training
stage on the CIFAR-10 dataset. As shown in Tab. 4, when the number
of attacks increases, the model robustness will be significantly
improved, and the accuracy of clean samples will decrease slightly,
which is in line with conventional facts. This fully demonstrates
that our method has broad and universal model robustness when
facing a large number of adversarial examples.
Visualization experiments of clean samples representations.
We additionally visualize the representations of clean examples with
CAD and SSEAT. As shown in Fig. 1, we can see that compared
with CAD, SSEAT exhibits more distinct distances between classes
in feature representations on clean samples, with closer intra-class
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distances, which enhances its discriminative ability.For example,
in SSEAT, the distribution of red points representing Class 0 is
more clustered, whereas in CAD, the distribution is more dispersed.
This observation indicates that SSEAT obtains more discriminative
representations of clean examples compared with CAD. These re-
sults indicate that our SSEAT can maintain high accuracy on clean
samples.

3 LIMITATION AND FUTUREWORK
In the real world, data is often subject to noise and disturbances,
necessitating models with strong robustness and adaptability. The
SSEAT framework we propose aims to achieve autonomous model
evolution and defense against various adversarial attacks, enabling
models to effectively adapt to complex and changing environments,
thereby enhancing their reliability and stability in practical ap-
plications. Additionally, SSEAT effectively mitigates the trade-off
between accuracy on clean samples and robustness when facing
multiple adversarial attacks. However, due to limited memory size,
it is inevitable that the model’s ability to recognize adversarial sam-
ples will gradually decline. A promising direction is to integrate
the SSEAT framework with dynamic networks. This integration
aims to preserve crucial parameters for recognizing clean samples
during dynamic network expansion, thereby maintaining model
accuracy on clean samples.We plan to explore this direction in the
future.
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