
Unsupervised Representation Learning from
Pre-trained Diffusion Probabilistic Models

Appendix

A Algorithm

Algorithm 1 shows the training procedure of PDAE. Algorithm 2 3 show the DDPM and DDIM
sampling procedure of PDAE, respectively.

Algorithm 1: Training
Prepare: dataset distribution pdata(x0), pre-trained DPM (ϵθ,Σθ).
Initialize: encoder Eφ, gradient-estimator Gψ .
Run:
repeat

x0 ∼ pdata(x0)
t ∼ Uniform(1, 2, · · · , T)
ϵ ∼ N (0, I)
xt =

√
ᾱtx0 +

√
1− ᾱtϵ

Update φ and ψ by taking gradient descent step on
∇φ,ψ λt

∥∥ϵ− ϵθ(xt, t) +
√
αt

√
1−ᾱt

βt
·Σθ(xt, t) ·Gψ(xt,Eφ(x0), t)

∥∥2
until converged;

Usually we set Σθ = σ2
t I =

1−ᾱt−1

1−ᾱt
βtI to untrained time-dependent constants.

Algorithm 2: DDPM Sampling(Autoencoding)
Prepare: pre-trained DPM ϵθ, trained encoder Eφ, trained gradient estimator Gψ ,
Input: sample x
Run:
z = Eφ(x)
xT ∼ N (0, I)
for t = T to 1 do

ϵ ∼ N (0, I) if t ≥ 2, else ϵ = 0

xt−1 = 1√
αt

[
xt − βt√

1−ᾱt
ϵθ(xt, t)

]
+ σ2

tGψ(xt, z, t) + σtϵ

return x0

Algorithm 3: DDIM Sampling(Autoencoding)
Prepare: pre-trained DPM ϵθ, trained encoder Eφ, trained gradient estimator Gψ ,
Input: sample x, sampling sequence {ti}Si=1 where t1 = 0 and tS = T
Run:
z = Eφ(x)
xT ∼ N (0, I) or use inferred xT
for i = S to 2 do

ϵ̂θ(xti , ti) = ϵθ(xti , ti)−
√
1− ᾱti ·Gψ(xti , z, ti)

xti−1 =
√
ᾱti−1

(
xt−

√
1−ᾱti

ϵ̂θ(xti
,ti)√

ᾱti

)
+

√
1− ᾱti−1 · ϵ̂θ(xti , ti)

return x0

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

B Implementation Details

B.1 Network Architecture

Table 1 shows the network architecture of pre-trained DPMs we use. Gψ is completely determined by
pre-trained DPMs. For Eφ, we use stacked GroupNorm-SiLU-Conv layers to convert input images
into 256× 4× 4 feature maps and a linear layer to map it into z. A self-attention block is employed
at 16× 16 resolution.

Table 1: Network architecture of pre-trained DPMs based on ADM [1] in guided-diffusion. We use
pre-trained DPMs provided by Diff-AE [2] in official Diff-AE implementation.

Parameter CelebA 64 CelebA-HQ 128 FFHQ 128 Horse 128 Bedroom 128
Base channels 64 128 128 128 128
Channel multipliers [1,2,4,8] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4]
Attention resolutions [16]
Attention heads num 4 1 1 1 1
Dropout 0.1
Images trained 72M 52M 130M 130M 120M
β scheduler Linear
Training T 1000
Diffusion loss MSE with noise prediction ϵ

Table 2: Network architecture of latent DPMs.
Parameter CelebA 64 FFHQ 128 Horse 128 Bedroom 128
MLP layers (N) 10 10 20 20
MLP hidden size 2048
Batch size 512
Optimizer Adam (no weight decay)
Learning rate 1e-4
EMA rate 0.9999/batch
β scheduler Constant 0.008
Training T 1000
Diffusion loss L1 loss with noise prediction ϵ

For fair comparison, we follow Diff-AE [2] to use deep MLPs as the denoising network of latent
DPMs. Table 2 shows the network architecture. Specifically, we calculate z = Eφ(x0) for all x0

from dataset and normalize them to zero mean and unit variance. Then we learn the latent DPMs
pω(zt−1|zt) by optimizing:

L(ω) = Ez,t,ϵ

[
∥ϵ− ϵω(zt, t)∥

]
, (1)

where ϵ ∼ N (0, I) and zt =
√
ᾱtz +

√
1− ᾱtϵ. The sampled z will be denormalized for use.

B.2 Experimental Details

During the training of PDAE, we set batch size as 128 for all datasets. We always set learning rate as
1e− 4 and use 512-d z. We use EMA on all model parameters with a decay factor of 0.9999.

For attribute manipulation, we train a linear classifier to separate the normalized semantic latent codes
of the images with different attribute labels. During manipulation, we first normalize z = Eφ(x0) to
zero mean and unit variance, then move it towards the normal vector of separating hyperplane (i.e.
the weight of linear classifier) with different scales, finally denormalize it for sampling.

For few-shot conditional generation, we follow [3] to train PU classifier by oversampling positively
labeled samples to balance the batch samples. During conditional generation of class y, for a sampled
z, we reject it when pη(y|z) < 0.5 and accept it with the probability of pη(y|z) when pη(y|z) ≥ 0.5.

2

https://github.com/openai/guided-diffusion
https://github.com/phizaz/diffae

C Additional Samples

C.1 Learned Mean Shift Fills Posterior Mean Gap

Figure 1 2 3 show the predicted x̂0 by denoising xt =
√
ᾱtx0 +

√
1− ᾱtϵ for only one step using

different models. Figure 4 shows the calculated average posterior mean gap for ∥µ̃t(xt,x0) −
µθ(xt, t)∥2 and ∥µ̃t(xt,x0) − (µθ(xt, t) + Σθ(xt, t) · Gψ(xt,Eφ(x0), t))∥2. As we can see,
PDAE can predict the mean shift that indeed fills the posterior mean gap.

C.2 Autoencoding Reconstruction

Figure 5 6 7 show some autoencoding reconstruction examples using different models. As we can see,
the deterministic method can almost reconstruct the input images even with only 100 steps and both
stochastic methods can generate samples with similar contents to the input except some minor details,
such as sheet pattern and wrinkle for LSUN-Bedroom; horse eye, spot and mane for LSUN-Horse.

C.3 Interpolation of Semantic Latent Codes and Trajectories

Figure 8 9 10 show some examples of two kinds of interpolation methods using different models.
Due to complex scenes for images of LSUN-Bedroom and LSUN-Horse, we manually select some
spatially-similar image pairs for interpolation. As we can see, both methods generate similar samples
that smoothly transition from one endpoint to the other.

C.4 Attribute Manipulation

Figure 11 shows some attribute manipulation examples. As we can see, PDAE succeeds in manip-
ulating images by moving their semantic latent codes along the direction of desired attribute with
different scales. Like Diff-AE, PDAE can change attribute-relevant features while keeping other
irrelevant details almost stationary if using the inferred xT of input image.

C.5 Few-shot Conditional Generation

We present some samples for 4 PU scenarios of few-shot conditional generation in Figure 12. As we
can see, PDAE can generate samples belonging to specified class for different few-shot scenarios,
which shows that our semantic latent codes are easy to classify even with a very small number of
labeled samples.

C.6 Visualization of Mean Shift

We visualize some examples of Gψ(xt,Eφ(x0), t) in Figure 13. As we can see, the gradient
estimator learns a mean shift direction towards x0 for each xt.

D Limitations and Potential Negative Societal Impacts

Although better training efficiency, PDAE has a slower inference speed than Diff-AE due to an extra
gradient estimator, which also needs more memory and storage space.

Slow generation speed is a common problem for DPM-based works. Although many studies have
been able to achieve decent performance with few reverse steps, they still lag behind VAEs and
GANs, which only need a single network pass. Furthermore, almost perfect PDAE reconstruction
needs hundreds of extra forward steps to infer the stochastic latent code.

Moreover, we have found that the weighting scheme of diffusion loss is indispensable to PDAE, but
we haven’t explored its mechanism, which may help to further improve the efficiency and performance
of PDAE. We leave empirical and theoretical investigations of this aspect as future work.

Potential negative impacts of our work mainly involve deepfakes, which leverage powerful generative
techniques from machine learning and artificial intelligence to create synthetic media, which may be
used for hoaxes, fraud, bullying or revenge. Although some synthetic samples are hard to distinguish,
researchers have developed algorithms similar to the ones used to build the deepfake to detect

3

them with high accuracy. Some other techniques such as blockchain and digitally signing can help
platforms to verify the source of the media.

References

[1] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34, 2021.

[2] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn.
Diffusion autoencoders: Toward a meaningful and decodable representation. arXiv preprint
arXiv:2111.15640, 2021.

[3] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-decoding
models for few-shot conditional generation. Advances in Neural Information Processing Systems,
34, 2021.

4

Figure 1: Predicted x̂0 by denoising xt for only one step using "CelebA-HQ128-52M-z512-25M".
The first row use pre-trained DPM and the second row use PDAE.

Figure 2: Predicted x̂0 by denoising xt for only one step using "Bedroom128-120M-z512-70M".
The first row use pre-trained DPM and the second row use PDAE.

5

Figure 3: Predicted x̂0 by denoising xt for only one step using "Horse128-130M-z512-64M". The
first row use pre-trained DPM and the second row use PDAE.

(a) CelebA-HQ (b) LSUN-Bedroom (c) LSUN-Horse

Figure 4: Average posterior mean gap (calculated on 1000 randomly selected images).

6

Input DDPMDDIM
(T=100, inferred 𝑥𝑥𝑇𝑇)

DDIM
(T=100, random 𝑥𝑥𝑇𝑇)

Figure 5: Autoencoding reconstruction examples generated by "CelebA-HQ128-52M-z512-25M"
with different sampling methods. Each row corresponds to an exmaple.

Input DDPMDDIM
(T=100, inferred 𝑥𝑥𝑇𝑇)

DDIM
(T=100, random 𝑥𝑥𝑇𝑇)

Figure 6: Autoencoding reconstruction examples generated by "Bedroom128-120M-z512-70M" with
different sampling methods. Each row corresponds to an exmaple.

Input DDPMDDIM
(T=100, inferred 𝑥𝑥𝑇𝑇)

DDIM
(T=100, random 𝑥𝑥𝑇𝑇)

Figure 7: Autoencoding reconstruction examples generated by "Horse128-130M-z512-64M" with
different sampling methods. Each row corresponds to an exmaple.

7

0.0 0.1 0.2 0.3 0.4 0.5 0.70.6 0.8 0.9 1.0𝜆𝜆x01 x02

Figure 8: Interpolation examples generated by "CelebA-HQ128-52M-z512-25M". For each example,
the first row use the guidance of Gψ

(
xt, Lerp(z

1, z2;λ), t
)

and the second row use the guidance of
Lerp

(
Gψ(xt, z

1, t),Gψ(xt, z
2, t);λ

)
.

0.0 0.1 0.2 0.3 0.4 0.5 0.70.6 0.8 0.9 1.0𝜆𝜆x01 x02

Figure 9: Interpolation examples generated by "Bedroom128-120M-z512-70M". For each example,
the first row use the guidance of Gψ

(
xt, Lerp(z

1, z2;λ), t
)

and the second row use the guidance of
Lerp

(
Gψ(xt, z

1, t),Gψ(xt, z
2, t);λ

)
.

8

0.0 0.1 0.2 0.3 0.4 0.5 0.70.6 0.8 0.9 1.0𝜆𝜆x01 x02

Figure 10: Interpolation examples generated by "Horse128-130M-z512-64M". For each example,
the first row use the guidance of Gψ

(
xt, Lerp(z

1, z2;λ), t
)

and the second row use the guidance of
Lerp

(
Gψ(xt, z

1, t),Gψ(xt, z
2, t);λ

)
.

Wearing_Lipstick Mustache

Pale_Skin

- +

- + - +

- +

High_Cheekbones

Figure 11: Attribute manipulation examples generated by "CelebA-HQ128-52M-z512-25M". For
each example, we manipulate the input image (middle) by moving its semantic latent code along the
direction of corresponding attribute found by trained linear classifiers with different scales.

9

(a) Male (b) Female

(c) Blond (d) Non-blond

Figure 12: Samples for 4 PU scenarios of few-shot conditional generation using "CelebA64-72M-
z512-38M".

10

Figure 13: Visualization of mean shift generated by "CelebA-HQ128-52M-z512-25M". For each
example, the first row shows xt and the second row shows Gψ(xt,Eφ(x0), t).

11

	Algorithm
	Implementation Details
	Network Architecture
	Experimental Details

	Additional Samples
	Learned Mean Shift Fills Posterior Mean Gap
	Autoencoding Reconstruction
	Interpolation of Semantic Latent Codes and Trajectories
	Attribute Manipulation
	Few-shot Conditional Generation
	Visualization of Mean Shift

	Limitations and Potential Negative Societal Impacts

