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1 OVERVIEW
In this supplementary material, more model implementation de-
tails, experimental results and analysis of experimental results are
provided, which are organized as follows:

• Section 2 elucidates which specific layers within the TANet
model are chosen to represent aesthetic features.

• Section 3 provides additional instances that illustrate the
aesthetic assumption bias in AesUST, which assumes that
every image from WikiArt embodies aesthetic quality that
aligns with human perception.

• Section 4 delineates the intricate structure of the newly
proposed aesthetic discriminator D𝑎𝑒𝑠 .

• Section 5 presents a more comprehensive explanation re-
garding the implementation of the deception rate, along
with an in-depth analysis of its implications and effective-
ness.

• Section 6 provides an in-depth explanation of how the three
user studies in the main paper are conducted.

• Section 7 presents an additional straightforward experiment
to further validate the efficacy of the proposed aesthetic at-
tention mechanism within USAesA and the novel Universal
Aesthetic Codebook.

• Section 8 visualizes how the UAC retrieves universal aes-
thetic features to enhance global aesthetic attributes of
style-specific aesthetic features.

• Section 9 provides more experimental results to further il-
lustrate the versatility and robustness of our method across
various content and styles.

2 IMPLEMENTATION DETAILS OF AESTHETIC
ASSESSMENT MODULE

In Section 3 of the main paper, we provide an overview of our use
of TANet [2] as the aesthetic assessment module within AesStyler.
This section offers a more comprehensive explanation regarding
the implementation details of this module.

TANet [2] is pre-trained on the extensive TAD66k [2] dataset,
which is annotatedwith human-assessed aesthetic scores. This foun-
dational training assures that TANet adeptly encapsulates aesthetic
characteristics in alignment with human aesthetic predilections. To
verify this, we present aesthetic score results predicted by TANet
on some sample images from the TAD66k dataset in Fig. 1, demon-
strating the proficiency of TANet in accurately forecasting these
aesthetic scores.

In the training phase of AesStyler, we principally utilize the Aes-
thetic Perceiving Network (APNet) within TANet to extract aesthetic
features. The architecture of APNet is primarily built upon Mo-
bileNetV2 [5], comprising 17 InvertedResidual blocks. These blocks
are each composed of three convolution layers and an equal number
of batch-normalization layers, employing ReLU as the activation
function.

To be specific, following the idea of dividing the model into
blocks, we extract feature maps from Inverted Residual-57, Inverted

True Score: 0.458
Predicted Score: 0.427

True Score: 0.369
Predicted Score: 0.372

True Score: 0.429
Predicted Score: 0.464

Figure 1: Images from TAD66k dataset with true scores and
TANet predicted scores.

Residual-93, Inverted Residual-120, Inverted Residual-147, and In-
verted Residual-156 layers within TANet, designating them as aes-
thetic features. These feature maps are then utilized in the USAesA
module to guide the style transfer process. The dimensions of these
feature maps, represented as [channels, width, height], are [32, 28,
28], [64, 14, 14], [96, 14, 14], [160, 7, 7], and [320, 7, 7] respectively.

3 AESTHETIC ASSUMPTION BIAS
In Section 1 of the main paper, we explore the problem of Aes-
thetic Assumption Bias, a notable issue in previous aesthetic-aware
style transfer methods, e.g. AesUST. This section is dedicated to
presenting a more detailed analysis of this particular problem. To
elucidate this problem in greater detail, we initially present the
aesthetic score distribution of the WikiArt dataset [3] in Fig. 2, with
the aesthetic scores evaluated by TANet [2].
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Figure 2: Aesthetic score distribution of WikiArt dataset.

From Fig. 2, it can be seen that the aesthetic score distribution of
the WikiArt dataset resembles a Gaussian distribution, a reasonable
observation given the extensive collection of images in the WikiArt
dataset. Given this distribution, it appears illogical for AesUST [7]
to assume that all images from the WikiArt dataset are highly
aesthetic, because apparently some images have inferior aesthetics.
This inherent bias in the aesthetic assumption ultimately results in
the skewed extraction of aesthetic features, causing some of these
so-called aesthetic features extracted by AesUST to focus on aspects
unrelated to aesthetics.

To visually underscore the issue of aesthetic assumption bias,
we also display some sample images from the WikiArt dataset that
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Figure 3: Images fromWikiArt dataset with high aesthetics and low aesthetics.

have high aesthetic scores alongside images with low aesthetic
scores in Fig. 3, where the aesthetic scores are obtained by TANet.

From Fig. 3, the first row showcases images from the WikiArt
dataset with high aesthetic scores. These images are noticeably well-
balanced in structure and harmonious in color, contributing to their
aesthetic appeal. The second and third rows, however, exhibit overly
simplistic content and styles, primarily characterized by pure colors

and minimal patterns, clearly lacking in aesthetic appeal, which
is in accordance with their lower aesthetic scores. In contrast, the
images in the last two rows are marked by overly complicated and
cluttered patterns, and their colors are also excessively disordered,
which diminishes their aesthetic appeal to humans and results in
lower aesthetic scores.
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Table 1: Architecture of aesthetic discriminator.

Part Layer In Channel Out Channel Kernel Size Stride Padding Negative Slope

Disc

Conv 3 32 4 2 1 -
InstanceNorm 32 32 - - - -
LeakyReLU - - - - - 0.2

Conv 32 64 4 2 1 -
InstanceNorm 64 64 - - - -
LeakyReLU - - - - - 0.2

Conv 64 128 4 2 1 -
InstanceNorm 128 128 - - - -
LeakyReLU - - - - - 0.2

Conv 128 256 4 2 1 -
InstanceNorm 256 256 - - - -
LeakyReLU - - - - - 0.2

Conv 256 512 4 2 1 -
InstanceNorm 512 512 - - - -
LeakyReLU - - - - - 0.2

Conv 512 1024 4 2 1 -
InstanceNorm 1024 1024 - - - -
LeakyReLU - - - - - 0.2

Classifier Conv 1024 1 4 1 0 -

4 ARCHITECTURE OF AESTHETIC
DISCRIMINATOR

In Section 3 of the main paper, we provide a concise introduction
to the newly proposed aesthetic discriminator D𝑎𝑒𝑠 . This section
provides a more detailed explanation regarding the specific struc-
ture of the aesthetic discriminator D𝑎𝑒𝑠 . The detailed architecture
of our newly proposed aesthetic discriminator D𝑎𝑒𝑠 is shown in
Table 1. The aesthetic discriminator plays the min-max game of dis-
criminating between real artworks in WikiArt dataset [3] and style
transfer results along with the generator to avoid the appearance
of strange textures. We adapt the architecture from [1].

5 DETAILS OF DECEPTION RATE
In Section 4 of the main paper, we introduce the use of the de-
ception rate to evaluate the quality of style transfer results. This
section presents a more comprehensive explanation regarding the
implementation of the deception rate, along with an in-depth anal-
ysis of its implications and effectiveness. Following [4], we train
a VGG-16 network [6] using the WikiArt dataset [3] to classify
artworks based on the annotated artist labels. We carefully curated
the WikiArt dataset by selecting only those artist categories who
created more than 30 artworks, thereby distilling the dataset down
to 664 artist categories. We employ the Adam optimizer with an
initial learning rate of 0.0001, and each batch comprises 64 images.
We achieve a final accuracy of 0.4985 on the validation set of the
WikiArt dataset.

In assessing style transfer results, the deception rate is calculated
as the proportion of generated images that the network identifies
as artworks of the artist who created the style image. Put simply,
successful style transfer results deceive the model into classifying
them as genuine works of the original artist, indicating that a higher
deception rate corresponds to a greater resemblance of the style

transfer results to the actual artworks. This metric is calculated
using a set of 18 style images, each representative of a different artist,
and these style images are combined with 300 content images. This
combination yields a total of 5,400 different style transfer results for
thorough evaluation. Furthermore, we showcase sample instances
of these successful deceptions, as produced by our AesStyler, to
further demonstrate this concept in Fig. 4.

6 IMPLEMENTATION DETAILS OF USER
STUDIES

In Section 4 of themain paper, we conduct three user studies focused
on style transfer quality comparison, aesthetic comparison, and
ablation studies. This section offers a more detailed explanation of
the implementation aspects of these three user studies.

In each user study, the questionnaire comprises several ranking
tasks. For each question, participants are presented with figures
similar to those shown in Fig. 5 (note that the user study for aesthetic
comparison does not display content and style images in the first
row). The last two rows of each figure show six style transfer results
produced by six distinct UST methods, with their order randomized.
Participants are tasked with ranking the Top-3 images out of these
six results. Scores are assigned as follows: 3 points for the first
choice, 2 points for the second, 1 point for the third, and 0 for the
remaining. We then calculate the average scores across all questions
for each user study, thus deriving the final scores for the six different
UST methods. As a result, a method achieves the full score of 3 only
if the results of this particular method always rank the 1st in every
question.

7 FURTHER ANALYSIS OF USAESA AND UAC
In Section 3 of the main paper, we introduce the innovative Univer-
sal and Style-specific Aesthetic-Guided Attention (USAesA) module

3
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Figure 4: Examples of successful deceptions generated by our method.
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Figure 5: Example of user study questions.

and the Universal Aesthetic Codebook (UAC) module. In Section 4
of the main paper, we have conducted thorough ablation studies
to demonstrate their effectiveness. In this section, we will present
an additional straightforward experiment to further validate the
efficacy of these two modules.

In the Phase 1 Universal Aesthetic Enhancement of the US-
AesA module (main paper Fig. 4 left), we use the universal aesthetic
feature 𝐹𝑢 from UAC to enhance the global aesthetic attributes of
the style-specific aesthetic feature 𝐹𝑎 . This enhancement is tailored
according to the channel distribution.

To validate the efficacy of both the aesthetic attention mecha-
nism and the UAC, we applied the aesthetic enhancement (Phase
1 in USAesA) in the aesthetic assessment model TANet. Specifi-
cally, we randomly select 1,000 images from the WikiArt dataset
and evaluate their aesthetic scores utilizing TANet. Notably, at the
Inverted Residual-147 layer in TANet, we deploy the aesthetic atten-
tion mechanism. This mechanism leverages the universal aesthetic
feature 𝐹𝑢 from the UAC, enhancing the style-specific aesthetic
feature 𝐹𝑎 as defined in Equations 3, 4, 5, and 6 in the main paper.
The enhanced aesthetic features 𝐹𝑥𝑢𝑎 are subsequently processed
through TANet. The results are presented in Table 2.

Table 2: Aesthetic scores of enhanced and original aesthetic
features.

Enhanced Original
Aesthetic Score ↑ 0.4843 0.4415

From the results presented in Table 2, it is evident that the newly
proposed aesthetic enhancement mechanism (Phase 1) within the
USAesA module, in conjunction with the novel Universal Aesthetic

Codebook (UAC), successfully enhances the aesthetic attributes of
style images.

8 VISUALIZATION OF UNIVERSAL
AESTHETIC CODEBOOK

In Section 3 of the main paper, we propose a novel Universal Aes-
thetic Codebook (UAC) and describe its role in guiding the style
transfer process, particularly in terms of universal aesthetic at-
tributes. In this section, we will provide a visual illustration to
detail the function mechanism of the UAC in the style transfer
process.

In the practical implementation of the UAC, it stores feature
maps. However, for the purpose of visual illustration in this section,
we will display the corresponding images of these feature maps. We
exhibit several pairs of images in Fig. 6, where each pair consists
of a style image and its corresponding universal aesthetic image
retrieved from the UAC.

From the qualitative results presented in Fig. 6, it can be seen that
the UAC effectively retrieves images with a similar style and higher
(universal) aesthetics. Thus, we are able to employ the aesthetic
feature retrieved from UAC, along with style-specific aesthetic
features, to guide the model towards generating more universally
appealing results.

9 MORE EXPERIMENT RESULTS
In Section 4 of the main paper, we present qualitative comparisons
with existing state-of-the-art universal style transfer methods. In
this section, to further illustrate the versatility and robustness of our
method across various content and styles, we showcase stylization
results from pair-wise combinations of 8 content images and 6 style
images, as depicted in Fig. 7. These results demonstrate that our
AesStyler method can consistently achieve aesthetically pleasing
style transfer results across a diverse range of content-style pairings.
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Figure 6: Visualization of the Universal Aesthetic Codebook.
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