
Published in Transactions on Machine Learning Research (04/2025)

A Model architecture

Our model architecture for the GFlowNet is summarized in Table 6. All other learning-based methods use
a similar architecture to the PF pipeline for their policy and Q function (or derived advantage function
as in PPO and policy gradient). The first main component of the model consists in obtaining the vertex
embeddings of a graph. We aggregate the resulting vectors by summing over the vertices and call the
resulting vector, the graph embedding. For a subgraph H of G, we sum over the vertices included in the
subgraph. As input to the flow pipeline, we concatenate the graph embedding G with the embedding of the
subgraph H corresponding to the current matching (i.e. selection of exchanges). To compute the output
flows (resp., probabilities) PF for a particular trajectory, we need to normalize the flows (resp., probabilities).
This normalization step is not done for the Q-function as values can be arbitrary. Given a subgraph H of
G, we consider all available exchanges c that can be added to H and perform a LogSoftmax operation over
them. We sum the resulting probabilities over a trajectory to obtain the joint probability (logarithmic scale).

Embedding Pipeline
Count Layer type

1 {Vertex: Embedding(4, 32),
Edge: Embedding(1, 32)}

2 NNConv(32, 32, Identity) → reLU
→ GRU(32, 32, 2)

Initial flow (Z) Pipeline
Count Layer type

1 Linear(32, 32) → reLU
2 Linear(32, 1)

Forward Flow (PF) Pipeline
Count Layer type

1 Linear(32, 32) → reLU
2 Linear(32, 32) → reLU
3 Linear(32, 32) → reLU
4 Linear(32, 1) → reLU

Table 6: Architecture of the flow networks for KEPs

B Wasserstein distance

In this section, we define the mathematical program that allows us to estimate the Wasserstein distance
W2 using the distribution µ2 of optimal exchange plans (solutions optimal for OptMIP) and the distribu-
tion µ1 of sampled exchange plans using one of the following methods: GFlowNet, RandUniform and
RandGreedy.

Suppose that we have enumerated optimal solutions. We create a linear program using the state embeddings
of each solution of µ1 and µ2. This linear program (LP) is described in equations (12)-(15). The variables
µ1(x) and µ2(y) are created for every state embedding x and y part of the support of µ1 and µ2, respectively.
Note that µ1 and µ2 are merely the probability distributions given through enumeration of optimal solutions
for OptMIP and the sampling mechanisms respectively; they do not reflect the true distributions and are
merely proxies for them. The coe!cients ↑x ↓ y↑2 are computed before generating this LP from the state
embeddings of the enumerated (i.e. the y vectors) and sampled exchange plans (i.e. the x vectors). Here, x

21

Published in Transactions on Machine Learning Research (04/2025)

and y are also used as index sets to distributions µ1, µ2 and µ.

min
µ

∑

(x,y)
↑x ↓ y↑2µ(x, y) (12)

s.t.
∑

x

µ(x, y) = µ2(y) ↔y (13)

∑

y

µ(x, y) = µ1(x) ↔x (14)

∑

x,y

µ(x, y) = 1 (15)

Since above we have a linear program, we can easily use column generation for the enumeration of solutions.
In other words, we can solve the linear program (12)-(15) with a subset of solutions and iteratively add
columns (solutions) as needed, i.e., as long as there are variables with negative reduced cost.

C Additional experiments

RQ6: How evident is the quality of learned (near-) optimal distributions through neural networks for

KEPs?

We test the ability of the training phase to recover the shape of the distribution of optimal distributions
with the use of the Wasserstein distance between the two distributions.

In this experiment, we measure the distance between the distribution of optimal solutions to KEPs and
the distribution output by a GFlowNet. We use the Wasserstein metric Wp (Kantorovich, 1960). This
metric is also known as the “earth mover’s distance". It computes a joint probability distribution µ whose
marginals are the two probability distributions µ1, µ2 measured by the metric. The joint probability that it
computes minimizes the integral

∫
↑x ↓ y↑pµ(x, y) for p ↗ 1. This forms the optimal transport plan from

one distribution to the other. If the two distributions are equal (i.e. µ1 = µ2 = q), we have Wp(q, q) = 0.

Figure 5: W2 distance between the distribution of optimal solutions given by OptMIP (target) and each
method. The circles represent outliers

Since the number of optimal solutions and the number of trajectories are large for instances with ωN = 100,
we must resort to an approximation of the true Wasserstein metric. We enumerate optimal solutions with

22

Published in Transactions on Machine Learning Research (04/2025)

column generation (we stop when no improvement is observed) and we evaluate the probability that this
trajectory is outputted by the GFlowNet. We can also sample many trajectories using our GFlowNet and find
their corresponding probabilities. Under the target distribution, these trajectories should get 0 probability if
they are not optimal. Using all the sampled and enumerated solutions, we can form a mathematical program
that we optimize to compute the Wasserstein distance (see appendix B).

We can see in Figure 5 that the method which returns the smallest W2 distance on average is GFlowNet. It
is worth noting that given the current reward function, we do not expect to get a W2 that is equal to 0, even
if the GFlowNet perfectly learns the distribution proportional to R. One could, for example, use a reward
R(G) = e

ω|P (G)| with ε > 0 being larger than 1 (see also Figure 2). This would imply that the peaks of
the resulting distribution more closely resemble the optimal distribution of the target (optimal) distribution
found through OptMIP.

23

