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The following contents are provided in the supplements:

• More experimental details (Sec. 4.2 in main paper).

• Details of ablation study (Sec. 4.6 in main paper).

• Details of network architecture of 𝑃2SAM.

• More visualization about our experiments. (Sec. 4.4 and
Sec. 4.5 in the main paper).

1 DETAILED EXPERIMENTAL SETUP
Throughout both stages of 𝑃2SAM training, the ℓseg loss function
was employed, which amalgamates binary cross entropy loss ( bce
loss), focal loss, and dice loss. During the LoRA fine-tuning of the
image encoder Enc𝐼 , the low rank was set at 4. Additionally, the
Adam optimizer was utilized to fine-tune both the mask decoder
Dec𝑀 and prompt encoder Enc𝑃 . The AdamW optimizer was also
deployed for the diversity-aware assembling module, with both
learning rates established at 10−3. The experiments’ initial and
subsequent stages were executed on a computer equipped with
an NVIDIA 4090 GPU. Notably, the first stage of training spanned
approximately 1 hour, whereas the second stage was condensed to
around 10 minutes, during which 100 training epochs were con-
ducted on the entire LIDC dataset.

2 MORE DETAILS ABOUT ABLATION STUDY
In our study, we confined the ablation experiments to the LIDC
dataset and limited the evaluation tasks to a subset of 500 samples
from the test set. We established a baseline with the SAMmodel that
underwent dataset-specific fine-tuning. This fine-tuning process
was completed during the initial stage of training, encompassing
only 50 epochs of adjustment. As observed from Table A1, while
the vanilla adapted SAM exhibits performance analogous to other
models with respect to 𝐷𝑚𝑎𝑥 metrics, it demonstrates significant
disparities in terms of GED and HM-IoU. This suggests that despite
the ablility of fine-tuned SAM to sustain a certain degree of seg-
mentation precision, the diversity of the samples it generates is
markedly deficient.

To rectify this shortcoming, we incorporated the probabilistic
prompt module into the fine-tuned SAM model. Experimental out-
comes illustrate that by sampling the probability distribution of
input prompts, we attain segmentation outcomes that display in-
creased diversity (i.e., enhanced performance on GED and HM-IoU
metrics), while simultaneously boosting the segmentation bench-
mark (𝐷𝑚𝑎𝑥 ).

Furthermore, we integrated the diversity assembly module into
the fine-tuned SAM model. From the experimental results, it is
evident that though there is no substantial enhancement in GED
in comparison to the baseline model, the surge in the 𝐷𝑚𝑎𝑥 index

Table A1: Ablation study of the key strategies of the proposed
P2SAM on LIDC-IDRI dataset.

Method GED(↓) 𝐷𝑚𝑎𝑥 (↑) HM-IoU (↑)
Vanilla Adapted SAM 0.381 0.705 0.359
SAM + Probabilistic Prompt 0.340 0.803 0.454
SAM + Diversity Assembling 0.376 0.853 0.402
P2SAM (Full Model) 0.208 0.919 0.627

is quite considerable. This substantiates the efficacy of the module
in amalgamating multiple segmentation outputs, and the resultant
samples can fit the labels more accurately, thereby enhancing the
overall performance of models.

3 NETWORK ARCHITECTURE
3.1 Prompted SAM
In the experiment, we adopted the Vit-b version of the SAM model
and accommodated Enc𝐼 by reducing the size of the output feature
map 𝐹𝐼 by 1

8 compared with the original. This change is expected
to reduce the required memory usage during the training process
and accelerate the inference speed of the model. In addition, we
adjusted the SAM model to multi output mode with 8 outputs, and
set the pixel mean and pixel std parameters to 0 and 1, respectively.

3.2 Prompt Generation Network (PGN)
The network mainly consists of two parts. (1) Encoder: This part
contains 4 convolutional blocks, each with 3 convolutional lay-
ers inside. These 4 convolutional blocks have channel numbers of
32, 64, 128 and 192, respectively, to gradually extract and deepen
features. (2) Axis Gaussian Generation Network: This network con-
sists of a 1x1 convolutional layer with 256 channels and an axial
Gaussian distribution generator. This design first increases the di-
mensionality of the feature map output by the Encoder through
a 1x1 convolutional layer to obtain 256 dimensional 𝜇 and 𝜎 , and
then these two parameters are fed into a Gaussian generator to
generate the distribution of 𝑇𝑃 .

3.3 Diversity-aware Assembling Module
In our experimental design, we set the number of mask weightsW
to 8 and initialize each weight to 1

8 . This setting aims to correspond
to 8 outputs of SAM model. In the first stage of the experiment,
these weight W will be trained to meet the model requirements.
In the second stage, we will freeze these weights. This is to enable
the prompt generation network to generate more diverse and rep-
resentative segmentation results, thereby effectively guiding the
modeling of 𝑇𝑃 .
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Figure A1: More visualization on the LIDC dataset, displaying only the first 4 samples.

4 MORE VISUALIZATION ABOUT
EXPERIMENTS

As demonstrated in Fig. A1 and Fig. A2, these illustrations provide
an extensive visualization of our research outcomes. These figures

meticulously depict various aspects of our data, aiding readers in
gaining a profound understanding of our research findings.
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Figure A2: More visualization on the BraTS2017 dataset, displaying only the first 4 samples.
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