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A TRAINING DETAILS

In this section, we provide details on the training of our models.

In all experiments we use a batch size of 512 and in all experiments using Adam or OrthoAdam as the
optimiser, we use a peak learning rate of 10−3. This excludes the experiments in Section 5.3 which
use SGD as the optimiser, which use a peak learning rate of 0.2. In all experiments we use a cosine
learning rate schedule with linear warmup for {1000, 2000, 6000, 10000} steps for models with
{60M, 130M, 350M, 1.4B} parameters respectively. Note that we use a reduced number of steps
for the 1.4B model due to computational constraints. For the main experimental results in Tables 2
and 3, we train the models with {60M, 130M, 350M, 1.4B} parameters for {160k, 320k, 960k,
600k} steps respectively. For the ablation study in Section 5.3, we train GPT2 models with 130M
parameters for 40k steps with 2000 warmup steps. We use a maximum sequence length of 256
tokens, which we find is sufficient to observe the anomalies of first token attention dominance and
large outlier activations found in popular pretrained models such as GPT2 (Radford et al., 2019) and
Llama (Touvron et al., 2023a;b; Dubey et al., 2024). The result of our training setup is that models
trained for the main experimental results with {60M, 130M, 350M, 1.4B} parameters are trained on
{21B, 42B, 126B, 79B} tokens respectively. The ablation experiments are trained on 5B tokens. We
train models on 8 NVIDIA 32GB V100 GPUs using the Pytorch deep-learning framework (Paszke
et al., 2019) and the HuggingFace Transformers library (Wolf et al., 2020).

14



Preprint

B LONGER SEQUENCE TRAINING

Model Size Setup Full Coarse ∆ (Coarse) Moderate ∆ (Moderate) Fine ∆ (Fine)
60M-256 Vanilla 31.88 43.53 11.65 34.87 2.99 32.15 0.27
60M-512 Vanilla 32.66 48.55 15.89 37.24 4.58 33.07 0.41
60M-1024 Vanilla 33.52 57.68 24.16 38.22 4.70 33.80 0.28
60M-256 S1+OA 31.93 32.46 0.53 32.32 0.39 32.00 0.07
60M-512 S1+OA 31.83 32.30 0.06 32.18 0.35 31.89 0.47
60M-1024 S1+OA 32.25 32.85 0.60 32.73 0.48 32.32 0.07
130M-256 Vanilla 22.89 46.49 23.60 28.31 5.42 23.07 0.18
130M-512 Vanilla 22.80 42.34 19.54 28.14 5.34 22.98 0.18
130M-1024 Vanilla 22.93 38.78 15.85 29.04 6.11 23.16 0.23
130M-256 S1+OA 22.78 23.21 0.43 23.10 0.32 22.83 0.05
130M-512 S1+OA 22.73 23.16 0.43 23.04 0.31 22.79 0.06
130M-1024 S1+OA 23.87 23.28 0.41 23.19 0.32 22.94 0.07

Table 6: Performance results for various model sizes and setups under longer sequence length.

In Table 6 we provide results when trained with sequence length of 512 and 1024, and compare
with sequence length 256. As can be seen, our model is very robust when we increase the sequence
length, showing no noticeable performance drop in perplexity be it under the general setting, or
when quantized. In all cases, especially under quantization schemes, our method outperforms the
vanilla one when trained with longer sequences.

C LARGER LLMS

We show that the first token attention and the outliers happen also in large modern LLMs such
as Llama-3.1-8B. Furthermore, these issues happen regardless if the training is done in unsu-
pervised manner (next-token prediction) or supervised manner (intruction tuning). We down-
loaded Llama-3.1-8B (https://huggingface.co/meta-llama/Llama-3.1-8B) and Llama3.1-8B-Instruct
(https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).

In Table 8, we show that in these large models, the first token attention increases (at over 95%
compared to the results shown in the main paper. Furthermore, we also checked the cumulative sum
of attention to the first token and found it out to be at 73.49%. In other words, 73.49% of the entire
attention in Llama-3.1-8B is in the first token. This can be interpreted that the larger the network,
the more specialized the heads are, and most of the heads will simply do nothing. Attending on the
first token is the mechanism the Transformer has developed to learn to do nothing. We also check
the kurtosis of Llama-3.1-8B, showing that the method has a very high kurtosis for both the first
token and on average.

Finally, we show that these results remain very similar if the model is finetuned in instruction data.
We observe that the first token attention and first token kurtosis is virtually the same in Instruct
model as in the original one, while the average kurtosis actually increases in the Instruct model.
Thus, we conclude that our findings stand for modern large LLMs, regardless if they are finetuned
in instruction data or not.

Method %1st attention Sum first token 1st kurtosis Average kurtosis
Llama-3.1-8B 95.45 73.49 1227 55
Llama-3.1-8B-Instruct 95.53 70.13 1228 69

Table 7: Comparison of attention and kurtosis metrics for LLama-3.1-8B and Llama-3.1-8B-Instruct.

D INSTRUCTION TUNING

To complement the previous experiment, we run a new experiment, doing instruction finetuning
(supervised learning) in Alpaca dataset. We compare the results of a model trained with canonical
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Method Pfull Pcoarse ∆coarse Pmod ∆mod Pfine ∆fine 1statt(%) 1statt(sum) 1stkurtosis Akurtosis

GPT-2-130M 18.33 31.03 12.07 21.09 2.76 18.49 0.16 65.57 41.49 564.75 69.31
GPT-2-130M + S1 + OA 18.29 18.31 0.02 18.31 0.02 18.29 0.0 2.4 0.8 2.97 2.96

Table 8: Results on instruction tuning using GPT-2-130M as baseline and comparing with our approach. Pfull

represents perplexity without any quantization. Pcoarse, Pmod and Pfine represent perplexity under coarse,
moderate and fine quantization. Similarly, ∆coarse, ∆mod and ∆fine represent the increase in perplexity under
these three quantization schemes compared to the not quantized method. 1statt(%) represent the percentage of
tokens that attend to the first one, 1statt(sum) represent the cumulative sum of the attention in the first token,
1stkurtosis represent the first token kurtosis, while Akurtosis represents the average kurtosis in the network. As
we can observe, our method reaches best results under every setting, while reducing the attention on the first
token and kurtosis.

softmax and Adam, compared to our method with softmax-1 and OrthoAdam. We present the results
in GPT-2-130m models.

We show that while both models reach roughly the same perplexity, only our model keeps the same
perplexity under all three quantization schemes. On the other hand, the vanilla model drops for
12.07 points in coarse quantization, 2.76 in moderate quantization, and 0.16 in fine quantization.

To evaluate that this is a direct effect of the first token attention and outliers, we also present the
results in the percentage of maximum attention in the first token, the cumulative attention score
of the first token, the 1st token kurtosis, and the average kurtosis. We show that in the vanilla
model, the maximum attention is in 65.57% of cases in the first token, and the cumulative attention
on the first token is 41.49%. In contrast, our method has maximum attention on the first token is
2.4% and the first token contributes to only 0.8% of the attention. Furthermore, while the vanilla
model has kurtosis of 564.75 for the first token, and 69.31 for the average token, our method has
2.97 kurtosis for the first token, and 2.96 kurtosis for average token, very similar to the kurtosis of
normal distribution (3).

In this way, we empirically show that our findings of the main paper stand also for instruction
tuning training. Models trained with instruction tuning drop in accuracy under quantization schemes
because of their outliers, while our method remains stable and as we showed, has the same kurtosis
as normal distribution and not high attention in the first token.
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E OPTIMISER BASIS
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Figure 4: Left: MLP output feature weight euclidean norm for each layer in our GPT2-130M model training
with canonical softmax and Adam. Right: Sum of gradient second moments for the corresponding MLP output
feature weight when training with canonical softmax and Adam. Training with softmax and Adam leads to
small outlier gradient second moment moving averages with lead to disproportionately large gradient steps for
the feature dimensions containing these small outliers. This in turn leads to large outliers in the model weights.
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Figure 5: Left: MLP output feature weight euclidean norm for each layer in our GPT2-130M model training
with softmax-1 and OrthoAdam. Right: Sum of gradient second moments for the corresponding MLP output
feature weight when training with softmax-1 and OrthoAdam. Training with softmax-1 and OrthoAdam leads
to gradient second moment moving averages to be considerably more uniform than training with softmax and
Adam. This prevents large gradient steps from being taken removing outlier weights in the model.
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Our observation of outlier activations in the hidden states of language models leads us to the con-
clusion that some aspect of the training process is ”basis-dependent”. ”Basis-independent” func-
tions are those which are equivariant under orthogonal transformations. A function f(x) is basis-
independent if f(Qx) = Qf(x) for any orthogonal matrix Q. We remove biases from our linear
layers and introduce a single-scale version of RMSNorm to remove ”basis-dependent” effects from
the model itself. It is straightforward to show that linear layers with biases (i.e., affine transfor-
mations) and multi-scale RMSNorm (as is standard) are not basis-independent (i.e., they are basis-
dependent). SGD and SGD with momentum are basis-independent: We can show that the standard
SGD update rule is basis-independent.

Given the standard SGD update rule θt+1 = θt−η∇L(θt) transforms the parameters to → θ̂t = Qθt
where θt is an orthogonal matrix:

θ̂t+1 = θ̂t − η∇L̂(θ̂t) (E.1)

By chain rule:

∇L̂(θ̂t) = ∇L(θt) ·
∂θt

∂θ̂t
= ∇L(θt) ·QT = Q∇L(θt),

θ̂t+1 = θ̂t − ηQ∇L(θt) = Q(θt − η∇L(θt)) = Qθt+1.

(E.2)

SGD with momentum follows similarly.

However, Adam and RMSProp are not basis-independent because of tracking the second-order mo-
ments. Let vt be the second-order moment of the gradients at step t, then

vt+1 = β2vt + (1− β2)(∇L(θt)⊙∇L(θt)) (E.3)

v̂t+1 = β2v̂t + (1− β2)(∇L̂(θ̂t)⊙∇L̂(θ̂t))

= β2v̂t + (1− β2)(Q∇L(θt)⊙Q∇L(θt))

̸= Qvt+1

(E.4)

The above shows that SGD and SGD with momentum provide a basis-independent update rule which
is proportional to the gradient, on the other hand, Adam and RMSProp are not basis-independent and
provide updates that depend on the element-wise root of the second-order moment of the gradient.
We believe that basis-dependent functions (whether in the model or the optimizer) are the cause of
the outlier activations we observe in the hidden states of language models. The second-order moment
tracking in Adam and RMSProp allows disproportionately large gradient updates in certain weights
of the model especially in the early steps of training where the moment moving averages are not well-
calibrated (a result of adaptive per parameter learning rate scaling). Therefore we expect features
for which the second-order moment is small to have disproportionately large weights in the model.
Disproportionately large weights in particular dimensions of the model cause the outlier activations
we observe. Using OrthoAdam, the moving average moments of the gradients are computed in a
unique random orthogonal basis for each parameter, which prevents small values of the second-order
moment from causing disproportionately large updates in the model parameters (outlier gradients
large or small in the model basis are transformed to be likely of similar magnitude in the orthogonal
basis).

The outlier weights in the model are generally contained in the output linear layer of each MLP
block. To verify our intuition above, we have computed the norm of the output weights in output
linear layer of each MLP block in a GPT2-130M model trained with/without softmax-1 and Or-
thoAdam. We additionally plot the sum of the second-order moments of the gradients of the output
weights in each MLP block. We observe that in all cases of large outlier weights in the model, the
sum of the second-order moments of the gradients of the output weights in the corresponding MLP
block are small outliers. This is consistent with our intuition that the small outlier second-order
moments of the gradients are causing the large outlier weights in the model. We show these plots
in Figure 6 and Figure 5 respectively.
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F TRANSFORMING THE OUTPUT INTO ORTHOGONAL BASIS

Figure 6: Transforming the output into orthogonal basis

We investigated transforming the output of each layer (i.e., the added activations to the hidden states
for said layer) into the orthogonal basis used by that output layer in OrthoAdam. We use our GPT2-
350M model trained with Softmax-1 and OrthoAdam. Given layer i has output Xi ∈ RL×D and the
orthogonal basis for the output layer in OrthoAdam is Qi ∈ OD, where L is the sequence length,
D is the hidden dimension and OD is the set of D ×D orthogonal matrices. We plot the activation
kurtosis of Xi, XiQi, XiQ

T
i and XiVi where Vi is the right singular vectors of Xi. Using Vi as

a transformed basis gives a baseline for how large one could increase the kurtosis of the activations
by transforming them into an orthogonal basis. Additionally we give the activation kurtosis for our
GPT2-350M vanilla model.
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G KURTOSIS GROWS WITH THE NUMBER OF DIMENSIONS IN
TRANSFORMERS

In this section, we use some observations from the hidden states of transformer models to illustrate
how the kurtosis of the hidden states grows with the number of dimensions in the hidden states.
This is something we observe empirically in the hidden states of transformer models and is a key
motivation for our work. Table 2 shows the kurtosis of the hidden states of transformer models
trained without softmax-1 or OrthoAdam grows as the model size increases, as does the maximum
activation value in the hidden states.

To make this mathematically rigorous, we shall consider a simple example, in which we shall ap-
proximate the hidden states of a transformer model at a single token position as a D-dimensional
vector comprising of the sum of a scaled one-hot vector and a standard normal vector.

Consider a D-dimensional vector x which is the sum of two D-dimensional vectors αei and z,
where ei is the ith unit vector in the standard basis, x ∈ RD, α ∈ R and z ∼ N (0, ID). Therefore
the elements of x are given by:

xj = αδij + zj for j = 1, 2, . . . , D

where δij is the Kronecker delta function. The mean is given by:

µ = E [xj ] = E [αδij + zj ] = αE [δij ] + E [zj ]

=
α

D
+ 0 =

α

D
as E [zj ] = 0 by definition of the standard normal distribution

µ =
α

D
(G.1)

The variance is given by:

σ2 = Var [xj ] = Var [αδij + zj ]

= α2Var [δij ] + Var [zj ] as αδij and zj are independent in our model

= α2Var [δij ] + 1 as Var [zj ] = 1 by definition of the standard normal distribution

Var [δij ] = E
[
δ2ij
]
− (E [δij ])

2
=

1

D

(
1− 1

D

)

Therefore:

σ2 =
α2

D

(
1− 1

D

)
+ 1 (G.2)

The kurtosis of the elements of x is given by:

Kurt[xj ] = E

[(
xj − µ

σ

)4
]
=

E
[
(xj − µ)

4
]

σ4

When j ̸= i:

E
[
(xj − µ)

4
]
= E

[(
zj −

α

D

)4]

= E
[
z4j − 4z3j

α

D
+ 6z2j

( α

D

)2
− 4zj

( α

D

)3
+
( α

D

)4]

= E
[
z4j
]
− 4E

[
z3j
] α
D

+ 6E
[
z2j
] ( α

D

)2
− 4E [zj ]

( α

D

)3
+
( α

D

)4

As E
[
z3j
]
= 0 and E

[
z4j
]
= 3:

= 3 + 6
( α

D

)2
+
( α

D

)4
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When j = i:

E
[
(xj − µ)

4
]
= E

[(
α+ zj −

α

D

)4]

= E

[(
α

(
1− 1

D

)
+ zj

)4
]

= E

[(
α

(
1− 1

D

))4

+ 4

(
α

(
1− 1

D

))3

zj

+ 6

(
α

(
1− 1

D

))2

z2j + 4

(
α

(
1− 1

D

))
z3j + z4j

]

=

(
α

(
1− 1

D

))4

+ 6

(
α

(
1− 1

D

))2

+ 3

Therefore, the overall fourth moment of the elements of x is given by:

E
[
(xj − µ)

4
]
=

1

D

((
α

(
1− 1

D

))4

+ 6

(
α

(
1− 1

D

))2

+ 3

)

+
D − 1

D

(
3 + 6

( α

D

)2
+
( α

D

)4)

And the kurtosis of the elements of x is given by:

Kurt [xj ] =

1
D

((
α
(
1− 1

D

))4
+ 6

(
α
(
1− 1

D

))2
+ 3
)
+ D−1

D

(
3 + 6

(
α
D

)2
+
(
α
D

)4)

(
α2

D

(
1− 1

D

)
+ 1
)2

Kurt [xj ] =
3 + α4

D + 6α2

D − 4α4

D2 − 6α2

D2 + 6α4

D3 − 3α4

D4

1 + 2α2

D − 2α2

D2 + α4

D2 − 2α4

D3 + α4

D4

(G.3)

At this point, we can see that Kurtosis is a function of α and D, however if we consider the limit
as D → ∞, we can see that Kurt[xj ] → 3, i.e., the kurtosis of a Gaussian distribution. However,
this neglects the importance of the scaling factor α which we know empirically is larger than the
dimensionality of the hidden states. The table below summarises the maximum activation values
(analogous to α) and the dimension of the hidden states for the models we trained. Given this

Model #Parameters Model Size (D) Max Activation (α)

GPT2

60M 512 1856
130M 768 7018
350M 1024 40196
1.4B 2048 56798

Llama 130M 768 4623

Table 9: Model sizes and maximum activation values for the models used in our experiments.

empirical information, we make the conservative assumption that α = D. Under this assumption
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which is supported by our empirical observations, Equation (G.3) simplifies to:

Kurt [xj ] =
3 + D4

D + 6D2

D − 4D4

D2 − 6D2

D2 + 6D4

D3 − 3D4

D4

1 + 2D2

D − 2D2

D2 + D4

D2 − 2D4

D3 + D4

D4

=
3 +D3 + 6D − 4D2 − 6 + 6D − 3

1 + 2D − 2 +D2 − 2D + 1

=
D3 − 4D2 + 12D − 6

D2

Kurt [xj ] = D − 4 +
12

D
− 6

D2
= O(D) (G.4)

Using our conservative assumption that α
D = 1, we can see that the kurtosis of the hidden states

grows linearly with the dimensionality of the hidden states when D is in the region of 103 − 105 as
is the case for transformer models.

This simple example serves as a mathematical illustration of the empirical observations we make
in the hidden states of transformer models. We have shown that the kurtosis of the hidden states is
expected to grow linearly with the dimensionality of the hidden states, and so the issue of outlier
activations is expected to grow as the hidden states of transformer models grow in size.
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H ORTHOGONAL TRANSFORMATIONS AND REDUCTION IN ℓ∞–NORM AND
KURTOSIS

From our simple model in Appendix G we have a simplified model of Transformer hidden states,
x ∈ RD, where the first element is α and the rest are standard normal random variables.

x = αei + z where zj ∼ N (0, 1)

From this model, we can compute the expected ℓ2–norm:

E
[
∥x∥22

]
=

D∑

j=1

x2
j = α2 +

D∑

j=1

z2j = α2 +DVar [zj ] = α2 +D (H.1)

Using the triangle inequality, we can compute a range for the ℓ∞–norm:

E [∥x∥∞] = E
[
max

1≤j≤D

(
|α+ zi| ,max

j ̸=i
|zj |
)]

Given α ≫ 1, we can drop the terms for j ̸= i and compute the expected ℓ∞–norm using the ith

element:

E [∥x∥∞] = E [|α+ zi|]
|α+ zi| ≤ |α|+ |zi|

Using folded normal distribution properties, E [|zi|] =
√

2
π ≪ α, therefore:

E [∥x∥∞] ≈ α

Given that α ≫ 1, we can safely assume that ∥x∥2∞ ≈ α2. Therefore:

E
[
∥x∥∞
∥x∥2

]
≈ α√

D + α2

Note from Table 9 that the maximum activation value, α, is generally much larger than the model
size, D.

E
[
∥x∥∞
∥x∥2

]
≈ 1 (H.2)

We find this empirically to be the case in the middle layers of the Transformer models we study (see
plots in Appendix I.3).

The ∞-norm of x can be thought of as a proxy for the extent of outliers in a vector. If ∥x∥2

∥x∥∞
≈ 1,

then a vector has at least one large outlier and consequently a high kurtosis.

We will now show that applying an orthogonal transformation to a vector can reduce the ℓ∞-norm
constrained to a fixed ℓ2-norm. Using the same definition of x as above, let Q ∈ RD×D be an
orthogonal matrix and let y = Qx.

∥y∥22 = yTy = xTQTQx = xTx = ∥x∥22
E[∥y∥22] = E[∥x∥22] = α2 +D (H.3)

This standard proof shows that applying an orthogonal transformation to a vector does not change
the ℓ2–norm of the vector. It can however lead to a dramatic reduction in the ℓ∞–norm of the vector.
We will now show that for a vector, y ∈ RD, constrained to have a fixed ℓ2–norm,

√
α2 +D, the

ℓ∞–norm of a vector can be reduced significantly by applying an orthogonal transformation such
that yj = α√

D
+ z′,∀j ∈ [1, D], where z′ ∼ N (0, 1).

y = Qx = Q (αei + z) = αQei +Qz
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Select Q such that Qei =
(

1√
D
, 1√

D
, . . . , 1√

D

)
, given Q is orthogonal, Qz = z′ ∼ N (0, ID).

E [∥y∥∞] ≈ α√
D

+
√
2 lnD, using extreme value theory (Cramér, 1946)

=
α+

√
2D lnD√
D

The expected ratio of ℓ∞–norm to ℓ2–norm is:

E

[
∥y∥2∞
∥y∥22

]
=

E
[
∥y∥2∞

]

E
[
∥y∥22

] =

(
α+

√
2D lnD

)2

D (α2 +D)

Using the same conservative assumption as in Appendix G that α = D, Table 9 shows empirically
α > D:

E

[
∥y∥2∞
∥y∥22

]
=

D2 + 2D lnD + 2D
√
2D lnD

D3 +D2
=

D + 2
√
2D lnD + 2 lnD

D2 + 1

As D grows, the last term of the numerator and the 1 in the denominator become negligible:

E

[
∥y∥2∞
∥y∥22

]
≈ 1

D
+

D + 2
√
2 lnD

D
3
2

= O

(
1

D

)

Therefore, under an orthogonal transformation, the ℓ∞–norm to ℓ2–norm ratio can be reduced sig-
nificantly. It is trivial to show that Kurt[yj ] = 3 and we see many of our experiments which use
OrthoAdam and softmax-1 exhibit this behaviour (see plots in Appendix I.2).

x = αei + z, E

[
∥x∥2∞
∥x∥22

]
≈ 1 → y = Qx, E

[
∥y∥2∞
∥y∥22

]
≈ 1

D

Kurt [xj ] = D − 4 +
12

D
− 6

D2
= O(D) → Kurt [yj ] = 3

The exact form of Q can be computed numerically or constructed using appropriately normalised
Hadamard matrices (Sylvester, 1867).
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I LAYER PROGRESSION OF FIRST TOKEN ATTENTION DOMINANCE,
KURTOSIS, ℓ∞-NORM TO ℓ2-NORM RATIO AND MAXIMUM ABSOLUTE
ACTIVATION

For brevity, we give metrics for the first token attention dominance, hidden state kurtosis and ab-
solute maximum activation averaged over all layers in Table 2 which gives the results of the main
experiments in our work.

However, the layer-wise progression of these metrics is also of interest and can provide insights into
the behaviour of the model. Additionally, we provide the same metrics for popular pretrained GPT2
and Llama models to show the similarity to our models trained without softmax-1 and OrthoAdam.

Finally, to establish a relationship between activation kurtosis and the ℓ∞-norm to ℓ2-norm ratio, we
calculate the Pearson’s correlation coefficients between per-layer kurtosis and per-layer ℓ∞-norm to
ℓ2-norm ratio for all models in our main experimental results from Table 2.

All metrics are computed on the same validation set of the C4 dataset (Raffel et al., 2020) as in the
main paper (Section 5).

I.1 FIRST TOKEN ATTENTION DOMINANCE

We begin by examining the progression of first token attention dominance across layers. We calcu-
late the percentage of (head, query) pairs where the query token attends most to the first (key) token.
Given different models have a different number of layers, we normalise the layer index to the range
[0, 1] for each model.

We find a general trend across our trained models which use the canonical softmax function where
the first token attention dominance begins low in the initial layers where models do initial processing
of all input tokens. The dominance rises to a peak in the middle layers where heads specialise to
specific sub-tasks and so the first token is attended to as a default “no-op” (Bondarenko et al.,
2023; Clark et al., 2019). Finally, the dominance decreases in the final layers where the model
“detokenises” the features back into token space.

I.1.1 GPT2-60M
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Figure 7: Layer-wise progression of first token attention dominance for GPT2-60M. The x-axis is normalised
to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.1.2 GPT2-130M
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Figure 8: Layer-wise progression of first token attention dominance for GPT2-130M. The x-axis is normalised
to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.

I.1.3 GPT2-350M AND GPT2-1.4B
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Figure 9: Layer-wise progression of first token attention dominance for GPT2-350M and GPT2-1.4B. The x-
axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.1.4 LLAMA-130M
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Figure 10: Layer-wise progression of first token attention dominance for Llama-130M. The x-axis is normalised
to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.

I.1.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 11: Layer-wise progression of first token attention dominance for popular pretrained GPT2 and Llama
models. The x-axis is normalised to the range [0, 1].

I.2 ACTIVATION KURTOSIS

Next, we examine the progression of activation kurtosis across layers. As observable in Table 2, the
kurtosis of the first hidden state is significantly higher than the other hidden states and so we plot
the kurtosis of the first hidden state only for brevity.

We observe in the plots below that models trained without OrthoAdam exhibit a general trend of
increasing kurtosis as the hidden states progress through the layers. Demonstrating that multiple
layers of the model contribute to the emergence of large activation values. Models trained with
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OrthoAdam but not softmax-1 exhibit a similar trend, but with lower kurtosis values initially. Fi-
nally, models trained with both OrthoAdam and softmax-1 exhibit a consistent small kurtosis across
layers—around the value of 3 which is the kurtosis of a Gaussian distribution. Interestingly, GPT2-
60M and GPT2-130M show small rises in the final layers—the cause of this is left for future work.

We find that some models show a reduction in kurtosis in the final layers, we again attribute this to
the “detokenisation” of the features back into token space.

I.2.1 GPT2-60M
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Figure 12: Layer-wise progression of activation kurtosis of the first token position for GPT2-60M. The x-axis
is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.

I.2.2 GPT2-130M
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Figure 13: Layer-wise progression of activation kurtosis of the first token position for GPT2-130M. The x-axis
is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.2.3 GPT2-350M AND GPT2-1.4B
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Figure 14: Layer-wise progression of activation kurtosis of the first token position for GPT2-350M and GPT2-
1.4B. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or Or-
thoAdam.

I.2.4 LLAMA-130M
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Figure 15: Layer-wise progression of activation kurtosis of the first token position for Llama-130M. The x-axis
is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.2.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 16: Layer-wise progression of activation kurtosis of the first token position for popular pretrained GPT2
and Llama models. The x-axis is normalised to the range [0, 1].

I.3 ℓ∞-NORM TO ℓ2-NORM RATIO

The plots below show the progression of the ℓ∞-norm to ℓ2-norm ratio across layers. We observe
that models trained without OrthoAdam exhibit a general trend of increasing ratio as the hidden
states progress through the layers. Once again as this ratio is maximal in the first hidden state, we
plot the ratio of the first hidden state only for brevity (as done for kurtosis).

The trends are similar to the kurtosis plots and so the same commentary applies.

I.3.1 GPT2-60M
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Figure 17: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token posi-
tion for GPT2-60M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1
and/or OrthoAdam.
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I.3.2 GPT2-130M
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Figure 18: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for GPT2-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.3.3 GPT2-350M AND GPT2-1.4B
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Figure 19: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for GPT2-350M and GPT2-1.4B. The x-axis is normalised to the range [0, 1]. S1/OA denote models
trained with softmax-1 and/or OrthoAdam.
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I.3.4 LLAMA-130M
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Figure 20: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for Llama-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.3.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 21: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for popular pretrained GPT2 and Llama models. The x-axis is normalised to the range [0, 1].

To further clarify that in Transformer models the ℓ∞-norm to ℓ2-norm ratio is a proxy for activation
kurtosis, we calculate the Pearson’s correlation coefficients between the two metrics for all models
in our main experimental results from Table 2 and public GPT2 and Llama models. The results
are shown in Table 10. We find a strong positive correlation between the two metrics across all
models which reinforces our intuition that using orthogonal matrices to transform the gradients in the
optimiser is an effective way to mitigate the emergence of large activation values, as an orthogonal
transformation can reduce the ℓ∞-norm of a vector substantially for a given ℓ2-norm.
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Model #Parameters Softmax+1? OrthoAdam? Correlation of Kurtosis to Norm Ratio
First Token Other Tokens

GPT2 (Ours)

60M

0.961 0.932
✓ 0.932 0.934

✓ 0.986 0.972
✓ ✓ 0.968 0.970

130M

0.988 0.932
✓ 0.927 0.924

✓ 0.992 0.962
✓ ✓ 0.935 0.953

350M 0.990 0.929
✓ ✓ 0.998 0.997

1.4B 0.988 0.952
✓ ✓ 0.994 0.995

Llama2 (Ours) 130M

0.931 0.903
✓ 0.864 0.877

✓ 0.931 0.905
✓ ✓ 0.560 0.975

GPT2 (Public) 137M 0.985 0.944
GPT2-Medium (Public) 350M 0.969 0.846

GPT2-Large (Public) 812M 0.985 0.896
GPT2-XL (Public) 1.6B 0.956 0.939

Llama2-7B (Public) 6.7B 0.987 0.902
Llama3.1-8B (Public) 8B 0.928 0.915

Table 10: Correlation of the kurtosis and norm-ratio of the hidden states of our trained models and popular
pretrained models.

I.4 MAXIMUM ABSOLUTE ACTIVATION

Finally, we examine the progression of the maximum absolute activation across layers.

I.4.1 GPT2-60M
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Figure 22: Layer-wise progression of the maximum absolute activation in the hidden states of the first token po-
sition for GPT2-60M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1
and/or OrthoAdam.
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I.4.2 GPT2-130M
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Figure 23: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for GPT2-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.4.3 GPT2-350M AND GPT2-1.4B
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Figure 24: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for GPT2-350M and GPT2-1.4B. The x-axis is normalised to the range [0, 1]. S1/OA denote models
trained with softmax-1 and/or OrthoAdam.
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I.4.4 LLAMA-130M
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Figure 25: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for Llama-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.4.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 26: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for popular pretrained GPT2 and Llama models. The x-axis is normalised to the range [0, 1].
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J HIDDEN STATES OF PRETRAINED MODELS

In this section, we present the progression of hidden states of popular pretrained models. This shows
how models establish outlier activations and how they persist in the same feature dimensions across
layers. For each model we show the absolute activation values in the features containing the largest
activations. We show the mean across layers, the first layer, 1

4 and 3
4 of the layers.
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Figure 27: Example hidden state plots for a GPT2-Small model.
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Figure 28: Example hidden state plots for a GPT2-Medium model.
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Figure 29: Example hidden state plots for a GPT2-Large model.
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Figure 30: Example hidden state plots for a GPT2-XL model.
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Figure 31: Example hidden state plots for a Llama2-7B model.
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Figure 32: Example hidden state plots for a Llama3.1-8B model.
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Figure 33: Example hidden state plots for a DeepSeekv2-Lite model.
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K ATTENTION MAPS OF PRETRAINED MODELS

In this section, we present the attention maps of popular pretrained models. This shows how models
establish attention patterns and how they persist after initial layers. This shows that generally after
the first or second layer, first token attention dominance is highly established and persists across
layers.

We show the mean across layers, the first layer, 1
4 and 3

4 of the layers—averaging over all heads in
each case.
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Figure 34: Example attention maps for a GPT2-Small model.
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Figure 35: Example attention maps for a GPT2-Medium model.
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Figure 36: Example attention maps for a GPT2-Large model.
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Figure 37: Example attention maps for a GPT2-XL model.

47



Preprint

0 32 64 96
Key Position

0

32

64

96

Qu
er

y 
Po

sit
io

n

Input Sequence: 1
Overall Mean Attention Map

0 32 64 96
Key Position

Input Sequence: 2
Overall Mean Attention Map

0 32 64 96
Key Position

0

32

64

96

Qu
er

y 
Po

sit
io

n

Layer 0
0 32 64 96

Key Position
Layer 0

0 32 64 96
Key Position

0

32

64

96

Qu
er

y 
Po

sit
io

n

Layer 8
0 32 64 96

Key Position
Layer 8

0 32 64 96
Key Position

0

32

64

96

Qu
er

y 
Po

sit
io

n

Layer 24
0 32 64 96

Key Position
Layer 24

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Llama2-7B Attention Maps

Figure 38: Example attention maps for a Llama2-7B model.
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Figure 39: Example attention maps for a Llama3.1-8B model.
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Figure 40: Example attention maps for a DeepSeekv2-Lite model.
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L TRAINING CURVES

To demonstrate that our proposed methods, i.e., replacing the canonical softmax function with
softmax-1 and using our proposed optimiser, OrthoAdam, do not negatively impact the training
of large language models, we provide the training curves for our models here. One can observe that
the training curves for models using either or both of our proposed changes are stable and converge
to a similar loss value as the baseline models.
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Figure 41: Training curves for GPT2-60M models with different optimisers and softmax functions. The models
using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the baseline models. S1/OA
denotes the model using softmax-1 and/or OrthoAdam.

L.2 GPT2-130M
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Figure 42: Training curves for GPT2-130M models with different optimisers and softmax functions. The
models using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the baseline models.
S1/OA denotes the model using softmax-1 and/or OrthoAdam.
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L.3 GPT2-350M AND GPT2-1.4B
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Figure 43: Training curves for GPT2-350M and GPT2-1.4B models with different optimisers and softmax
functions. The models using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the
baseline models. S1/OA denotes the model using softmax-1 and/or OrthoAdam.

L.4 LLAMA-130M
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Figure 44: Training curves for Llama-130M models with different optimisers and softmax functions. The
models using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the baseline models.
S1/OA denotes the model using softmax-1 and/or OrthoAdam.
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