
Supplementary Material for “On the consistent estimation

of optimal Receiver Operating Characteristic (ROC) curve”

This supplementary material collects the practical issues of using the three methods discussed

in the main file, the plot of results by the five methods when applied to a real data example in the

main file, some additional corollaries of main results, discussions on the special case of weighted

method using 0/1 loss, some additional properties of optimal ROC curve and all the proofs of the

theorems and corollaries in the main text.

A Practical issues

In this section, we discuss the practical implications of the theoretical results presented in the main

file. We also touch on some practical implementation issues of these three methods, and some

comments on their relative pros and cons in terms of computation and ease of implementation.

First, the cutoff method is probably the easiest to implement among the three methods, as it

only requires running a classification algorithm that outputs a discriminant function. Moreover, it

also tends to be the most efficient method in terms of computation as the cutoff step does not incur

significant additional computations. This could partly explain why it is so widely used in practice

[see, e.g., Fawcett, 2006]. However, as our theory suggested, one should exercise special caution

when using the cutoff method, as when a simple model is used, it is not easy to check whether

the model is correctly specified or not. Even when the model space is large (e.g., nonparametric

method), the requirement on the loss function is quite stringent (c.f. Theorem 5). For example, in

1



view of Theorem 5 and Proposition 2, we would not recommend using the cutoff method on the

discriminant functions produced by the support vector machine (SVM)

The weighted method is also relatively easy to implement as long as it is possible to modify

existing software to accommodate unequal class weights. Computationally, since it requires repeated

applications of existing classification methods over a set of class weights, it is often less efficient than

the cutoff method. On the statistical side, our theory suggests that similar to the cutoff method, the

weighted method targets the optimal ROC curve over H only when the model is correctly specified,

although the requirement on the surrogate loss may be less stringent. This happens when one

considers a nonparametric classifier with a classification-calibrated loss function. For applications

where a simple model has to be used, however, we would not recommend the use of the weighted

method as it does not target the optimal ROC curve over the model space.

The constrained method seems to be the most difficult to implement as it is challenging to

leverage existing classification software, especially when nonconvex surrogate loss is used. We also

note that the use of nonconvex surrogate loss function is essential whenever the constrained method

is useful, because if convex surrogate loss is used to replace the 0/1 loss, the constrained method

would be equivalent to the weighted method, which could be suboptimal when the model is mis-

specified. As such, when a simple model needs to be used in practice (e.g., for the purpose of better

model interpretability), we recommend the constrained method with a nonconvex surrogate loss

that approximates the 0/1 loss. This recommendation will also be corroborated numerically in later

sections that using the psi loss ψ(x) = min(1,max(0, 1− x)) [Shen et al., 2003] in linear classifiers

indeed leads to better ROC curve estimation compared with those using a convex surrogate loss or

procedures based on weighted or cutoff methods.

B Plot of real data example in Section 4

In this section, we include the plot of estimated ROC curves by five different methods on the bank

marketing dataset in Figure S1.
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Figure S1: Estimated ROC curves of five different methods on the bank marketing dataset. Here
“Constrained linear Psi” , “Weighted linear SVM”, “Cutoff linear SVM”, “Weighted kernel SVM”
and “Cutoff kernel SVM” denote constrained ψ-learning with linear discriminant functions, weighted
SVM with linear discriminant functions, cutoff method applied to SVM with linear discriminant
functions, weighted SVM with RBF kernel, and cutoff method applied to SVM with RBF kernel.

C Additional theorems and corollaries in the main file

In this section, we include some additional corollaries and theorems of the main file. All the proofs

of these results are placed in Section G.

Our first corollary shows that under the condition (3), our proposed definition of optimal ROC

curve coincides with the existing definition (4).

Corollary S1. Assume that (3) holds. Then

{(FPR(hλ),TPR(hλ)) | λ ∈ [0,∞]} = γ(Ha)

= {(FPR(Sign(η(x)− c)),TPR(Sign(η(x)− c))) | 0 ≤ c ≤ 1} . (S1)

Our next results show that, although Theorem 3 in the main file seems to suggest that the
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weighted method may not recover all these linear pieces on the optimal ROC curve, it can be

trivially modified to recover the entire optimal ROC curve by considering the pareto frontier of the

convex hull of the ROC curve generated by weighted method.

Corollary S2. If F is correctly specified under a surrogate loss V (·) for the weighted method, then

we have that

PF(conv(γW,V (·)(F))) = γ(Ha) , (S2)

where conv(γW,V (·)(F)) denotes the closed convex hull of γW,V (·)(F).

Our next two theorems give some examples on showing that optimal ROC curve may not be

obtained by weighted method (Theorem S2) and cutoff method (Theorem S2) when model misspec-

ification is present.

Theorem S1. Denote H = {Sign(f) | f ∈ F}. In general, it is possible that

γ(H) \ γ?W,V (·)(F) 6= ∅ and γ(H) \ PF(conv(γW,V (·)(F))) 6= ∅ . (S3)

Theorem S2. The population ROC curve of the cutoff method over certain model class F may be

dominated by the optimal ROC curve over H = {Sign(f − δ) | f ∈ F , δ ∈ R}, in the sense that

there exists a situation where for some (u, v) ∈ γT,V (·)(F , w), there exists (u′, v′) ∈ γ(H) such that

(u′, v′) � (u, v).

D Weighted method using 0/1 loss

In this section, we further discuss the special case of weighted method where 0/1 loss is used. We

will first analyze the population analogue of this approach under the 0/1 loss, which is

minimize
h∈H

E
{

((1− w)I(Y = 1) + wI(Y = −1))I(h(X) 6= Y )
}
, (S4)
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where w ∈ [0, 1] is the class weight for negative instances, and H is a set of classifiers. Note that

when w = 1/2, this reduces to the minimization of misclassification error rate. We call the ROC

curves generated from solutions to (S4) by varying w ∈ [0, 1] the population ROC curve of the

weighted method, which is defined to be

γW (H) = {(FPR(h?w,H),TPR(h?w,H)) | w ∈ [0, 1]} , (S5)

where h?w,H is a solution to (S4) and may not be unique. When H = Ha, we simply use h?w to denote

h?w,Ha
.

Our next result derives the population ROC curve of the weighted method whenH = Ha includes

all measurable classifiers. Unlike the constrained method, it is shown that the population ROC

curve of the weighted method may miss some linear pieces on the optimal ROC curve, where those

linear pieces correspond to point masses of η(X) (c.f. Proposition S1 of supplementary material).

However, this would not affect the consistency of weighted method, as one can easily consider a

linear extension to achieve consistency (see Figure S2 for an example).

Theorem S3. Suppose that H = Ha. Then, any solution h?w to the weighted problem (S4) must

satisfy

{x : h?w(x) = 1} = {x : η(x) > w} ∪ Nw (S6)

for some Nw ⊆ {x : η(x) = w}. Moreover, we have that

γW (Ha) =
{

(α, s(α)) : P(η(X) = c(α)) = 0, α ∈ (0, 1− P(η(X) = 0)/p−)
}
∪{

(α, s(α)) : P(η(X) = c(α)) > 0, α = FPR(h?w) ∈ (0, 1− P(η(X) = 0)/p−)
}
∪{

(α, s(α)) : s(α) is non-differentiable at α, α ∈ (0, 1− P(η(X) = 0)/p−)
}
∪

{(0, s0)} ∪ {(s1, 1)} ∪ S0 ∪ S1 (S7)
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for some s0 ∈ [0,P(η(X) = 1)/p+] and s1 ∈ [1− P(η(X) = 0)/p−, 1], where S0 and S1 satisfies

S0 =


∅, if c(0) = 1 ,

{(0, s(0))}, otherwise ,

(S8)

and

S1 =


∅, if limα→(1−P(η(X)=0)/p−)− c(α) = 0 ,

{(1− P(η(X) = 0)/p−, 1)}, otherwise .

(S9)

Theorem S3 connects the population ROC curve of the weighted method to the optimal ROC

curve when H = Ha. Clearly, from (S7), we can see that the population ROC curve of the weighted

method is a subset of the optimal ROC curve (except for {(0, s0)} ∪ {(s1, 1)}). Moreover, we also

establish in Proposition S1 of the supplementary material that the set of (α, s(α)) with P(η(X) =

c(α)) > 0 and α > 0 corresponds to linear pieces on γ(Ha). Combining this with (S7) in Theorem

S3, it follows that the interior of these linear pieces can not be recovered by the weighted method.

In fact, only one point in each linear piece can be recovered by the weighted method (i.e., the second

set in (S7)). Therefore, roughly speaking, the set of points on the optimal ROC curve that can be

recovered by the weighted method is the union of non-differentiable part and nonlinear part (up to

some isolated points).

The following result derives the pareto frontier of γW (Ha), defined as γ?W (Ha) = PF(cl(γW (Ha))),

and relates it to the optimal ROC curve.

Corollary S3. Denote by Il = (α−l , α
+
l ) all the disjoint intervals over which s(α) is linear, and

I =
⋃
l Il. Then

γ?W (Ha) = ∪l{(αl, s(αl))} ∪ {(α, s(α)) | α ∈ [0, 1− P(η(X) = 0)/p−] \ I} ⊆ γ(Ha) , (S10)

for some αl ∈ [α−l , α
+
l ]; l = 1, 2, . . ..

The above corollary shows that the pareto frontier of the population ROC curve for the weighted
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method is only a subset of the optimal ROC curve. In particular, parts of the linear pieces on the

optimal ROC curve may not be recovered by the weighted method.

Although the above result seems to suggest that the weighted method could not recover the

linear pieces on the optimal ROC curve, it can be trivially modified to recover the entire optimal

ROC curve. In particular, we consider pareto frontier of the convex hull of the ROC curve generated

by the weighted method. Formally, this is defined as PF(conv(γW (Ha))), where conv(γW (Ha)) is

the closed convex hull of γW (Ha). The following corollary shows that PF(conv(γW (Ha))) is exactly

the optimal ROC curve. Also see Figure S2 for an illustration of this in a simple example.

Corollary S4. We have that

PF(conv(γW (Ha))) = γ(Ha) . (S11)

To summarize, just like the constrained method, the weighted method can also recover the

optimal ROC curve when the model space includes all measurable classifiers, which seems to suggest

that there is no real advantage of taking the constrained approach when the goal is to estimate the

optimal ROC curve. However, somewhat surprisingly, when the model space H is not the set of all

measurable classifiers, the population ROC curve of the weighted method γW (H) is only a subset

of the optimal ROC curve γ(H). More importantly, there exist situations where the pareto frontier

of its closed convex hull, defined as γ?W (H) = PF(cl(γW (H))), is a proper subset of γ(H). This is

established in the following theorem.

Theorem S4. In general, we have that

γW (H) \ {(FPR(h?w,H),TPR(h?w,H)) : w = 0 or w = 1} ⊆ γ(H) , (S12)

and γ?W (H) ⊆ γ(H) if S(H) = {(FPR(h),TPR(h)) | h ∈ H} is closed. Moreover, it is possible that

γ(H) \ γ?W (H) 6= ∅ and γ(H) \ PF(conv(γW (H))) 6= ∅ . (S13)

This above theorem suggests that, unlike the constrained method, the population ROC curve of
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the weighted method could be a proper subset of the optimal ROC curve over general model space

H. Again, this reveals that the weighted method may miss some FPR-TPR pairs on the optimal

ROC curve over a general model space. An example is given in Figure S3, where the weighted

method does not recover the optimal ROC curve over a particular model space.

Combining the above theorem with Proposition 1, we have the following general relation

γ?W (H) ⊆ γ(H) = γ?C(H) (S14)

for a general model space H as long as S(H) is closed, and it is possible that γ?W (H) 6= γ(H).

Therefore, the weighted method may be affected by model mis-specification while the constrained

method always targets the optimal ROC curve. When the model space contains all measurable

classifiers, both methods can recover the optimal ROC curve.

In sum, the weighted method may not be an appropriate approach when the model is clearly

mis-specified. When the model is correctly specified, however, the weighted approach may be the

preferred choice as it is in general computationally easier to deal with compared with the constrained

method.

E Additional properties of optimal ROC curve

We first derive some additional properties of the optimal ROC curve under Ha in this section. First,

we establish an one-to-one correspondence between the point masses of η(X) and the linear pieces

on the optimal ROC curve.

Proposition S1. If P(η(X) = c(α̃)) > 0 for some α̃ with c(α̃) < 1, then the optimal ROC curve

s(α) as defined in (2) is locally linear over the interval

I(α̃) :=

[
E(1− η(X))I(η(X) > c(α̃))

p−
,
E(1− η(X))I(η(X) ≥ c(α̃))

p−

)
,

and c(α) = c(α̃) for any α ∈ I(α̃). Conversely, if s(α) is locally linear in a neighborhood of α̃,
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denoted as δα̃, then P(η(X) = c(α̃)) > 0, and c(α) = c(α̃) for any α ∈ δα̃.

The above proposition shows that the point masses of η(X) correspond to linear pieces on the

optimal ROC curve. This is also connected to the likelihood ratio assumption in (3) imposed by

Scott [2007], which is basically equivalent to saying that η(X) does not have any point mass. In other

words, the conventional definition of optimal ROC curve without the likelihood ratio assumption

may miss some linear pieces on the optimal ROC curve.

Next, we study the differentiability of the optimal ROC curve s(α) over its domain [0, 1− P(η(X) = 0)/p−],

which turns out to be useful for analysis of consistency. In Theorem 1, we have already shown that

s(α) is concave over its domain [0, 1− P(η(X) = 0)/p−]. Hence, the left and right derivative of

s(α) must exist over the interior of its domain. The following proposition establishes necessary and

sufficient conditions under which s(α) is differentiable.

Proposition S2. s(α) is left-differentiable at α = 1 − P(η(X) = 0)/p−; for any 0 < α < 1 −

P(η(X) = 0)/p−, s(α) is differentiable at α if and only if c(α) is continuous at α; and s(α) is

right-differentiable at α = 0 if and only if c(0) < 1.

Note that for any α ∈ (0, 1 − P(η(X) = 0)/p−), the differentiability of s(α) is related to the

continuity of c(α). Conditions under which c(α) is continuous is provided in part (iii) of Lemma

S3. To the best of our knowledge, these properties about the optimal ROC curve have not been

formally established in the literature. We include proofs of Proposition S1 and S2 in Section G.

F Supporting Lemmas

In this section, we present some supporting results to be used later in the proofs.

Lemma S1. Assume that A ⊆ R2 is a bounded and closed set. For any (u, v) ∈ A \ PF(A), there

must exist a (u′, v′) ∈ PF(A) such that (u′, v′) � (u, v). Moreover, for any compact set B satisfying

PF(A) ⊆ B ⊆ A, we have that PF(B) = PF(A).
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Proof of Lemma S1. We prove the first claim by contradiction. Suppose that there exists

(ũ, ṽ) ∈ A \ PF(A) such that nothing in PF(A) dominates (ũ, ṽ). Denote by B(u, v) = {(u′, v′) |

(u′, v′) � (u, v)}∪{(u, v)}. Then we must have B(ũ, ṽ)∩PF(A) = ∅. Since A is closed and bounded,

we have that B(ũ, ṽ)∩A is compact. Denote by (u?, v?) ∈ B(ũ, ṽ)∩A the point in B(ũ, ṽ)∩A that

maximizes v − u, that is,

v? − u? ≥ v − u for any (u, v) ∈ B(ũ, ṽ) ∩ A .

Since (ũ, ṽ) ∈ A \ PF(A), it can be dominated by another point (u′, v′) in A. By definition of

B(ũ, ṽ), we have that (u′, v′) ∈ B(ũ, ṽ), and thus (u′, v′) ∈ B(ũ, ṽ) ∩ A. Now, we have that

v?−u? ≥ v′−u′ > ṽ− ũ, which implies that (u?, v?) 6= (ũ, ṽ). Next, we show that (u?, v?) ∈ PF(A).

If not, then there exists (u′′, v′′) ∈ A that dominates (u?, v?), and hence also dominates (ũ, ṽ). This

implies that (u′′, v′′) ∈ B(ũ, ṽ) ∩ A and v′ − u′ > v? − u?, which contradicts with the definition of

(u?, v?). This completes the proof of the first claim.

For the second claim, for any x ∈ PF(A), we have that there is no point in A that can dominates

x. Since PF(A) ⊆ B ⊆ A, we have that x ∈ B and there is no point in B that can dominates

x. Hence, x ∈ PF(B). Therefore, PF(A) ⊆ PF(B). Conversely, for any x ∈ PF(B), suppose

that x /∈ PF(A). Then by using the first claim, we could find x′ ∈ PF(A) that dominates x. But

PF(A) ⊆ B and thus x′ ∈ B and dominates x, which contradicts with the fact that x ∈ PF(B).

Hence, we must have x ∈ PF(A), and therefore PF(B) ⊆ PF(A). This completes the proof.

Lemma S2. For α ∈ [0, 1], denote by

γ(α) = {(FPR(h?α,H),TPR(h?α,H)) : h?α,H is a solution to (5) at α} (S15)

the set of FPR-TPR pairs generated by all possible solutions to (5) at α.

(i) If γ(α) is a nonempty non-singleton, then v = v′ for any (u, v), (u′, v′) ∈ γ(α);

(ii) if S(H) is a closed set, then γ(α?) is a singleton and γ(α?) ⊆ γ(α), where α? = inf{u : (u, v) ∈
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γ(α)}.

Proof of Lemma S2. We first prove claim (i). Denote by h and h′ any two solutions to (5) at α.

By optimality of h and h′, it follows that TPR(h′) = TPR(h), which proves (i).

Next, we prove (ii). Let v? = TPR(h), where h is any solution to (5) at α. By (i), we know that

v? is a constant regardless of the choice of h. This, together with the fact that S(H) is a closed

set, implies that (α?, v?) ∈ cl(γ(α)) ⊆ S(H) by definition of α?. Therefore, there exists h? ∈ H

such that (FPR(h?),TPR(h?)) = (α?, v?). Moreover, h? must be a solution to (5) at α?, because

TPR(h) ≤ v? for any h that is feasible for (5) at α. This implies that (α?, v?) ∈ γ(α?).

Next, we prove that γ(α?) must be a singleton. Suppose γ(α?) is a nonempty non-singleton,

then there must exist a solution h′ to (5) at α? such that TPR(h′) = TPR(h?) = v? and FPR(h′) <

FPR(h?) = α?. Therefore, h′ must also be a solution to (5) at α. This contradicts the definition of

α?. Hence, we have that γ(α?) is a singleton.

Finally, by using the fact that TPR(h?) = v? = TPR(h), where h is any solution to (5) at α, we

obtain that γ(α?) ⊆ γ(α). This completes the proof.

Lemma S3. Let η(X) = P(Y = 1 | X) and g(c) = E(1 − η(X))I(η(X) > c) and c(α) = inf{c ∈

[0, 1], g(c) ≤ αp−}. Then,

(i) c(α) < 1 if α > 0 and c(α) > 0 if α < 1− P(η(X)=0)
p−

;

(ii) g(c(α)) ≤ αp− and E(1− η(X))I(η(X) ≥ c(α)) ≥ αp− for all α ∈ [0, 1];

(iii) c(α) is a non-increasing and right-continuous function over [0, 1), and it is discontinuous at

α ∈ (0, 1−P(η(X)=0)
p−

] if and only if g(c(α)) = αp− and there exists c ∈ (c(α), 1) such that P(c(α) <

η(X) < c) = 0.

Proof of Lemma S3. We start by checking claim (i). First note limc→1− g(c) = E(1 −

η(X))I(η(X) = 1) = 0 = g(1). For α > 0, by property of limit, there must exist δ > 0 such

that for any 1 − δ < c < 1, g(c) < αp−, which means c(α) < 1 when α > 0. Next, since
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g(0) = E(1− η(X))I(η(X) > 0) = p− − P(η(X) = 0), we have that g(0) > αp− if α < 1− P(η(X)=0)
p−

,

which means c(α) > 0 when α < 1− P(η(X)=0)
p−

. This completes proof of claim (i).

Next, we prove claim (ii). We first verify claim (ii) holds for α = 0 and α = 1. When α = 0,

it’s easy to see E(1 − η(X))I(η(X) ≥ c(α)) ≥ 0. Moreover, by using definition of c(0) and right-

continuity of g(c) we have that g(c(0)) ≤ 0. Note g(c) ≥ 0 for any c ≥ 0, we obtain g(c(0)) = 0.

When α = 1, we must have c(α) = 0. Hence g(0) = E(1− η(X))I(η(X) > 0) ≤ E(1− η(X)) = p−

and E(1− η(X))I(η(X) ≥ 0) = E(1− η(X)) = p−. This verifies the proof of claim (ii) at α = 0 and

α = 1.

Then, we show claim (ii) holds for α ∈ (0, 1). It is easy to show that g(c) is right-continuous.

By definition of c(α), we have that

g(c) ≤ αp− for any c ≥ c(α) ,

g(c) > αp− for any c < c(α) .

Letting c → c(α) with c > c(α) in the first equation and using the right continuity of g(c), we

obtain that αp− ≥ limc→c(α)+ g(c) = g(c(α)). Moreover, letting c → c(α) with c < c(α) in the

second equation, we obtain that αp− ≤ limc→c(α)− g(c) = E(1− η(X))I(η(X) ≥ c(α)). This proves

(ii).

Next, we prove (iii). We first show c(α) is a non-increasing and right-continuous function over

[0, 1). Nonincreasingness of c(α) follows easily from the definition of c(α) (we have c(α) ≤ c(α̃)

for any α̃ < α since g(c(α̃)) ≤ α̃p− < αp−). Next, we prove that c(α) is right-continuous by

contradiction. To this end, suppose that c(α̃) → c̄ < c(α) as α̃ → α with α̃ > α. By (ii), we have

that g(c(α̃)) ≤ α̃p−. Let α̃ → α, we obtain that c(α̃) → c̄, and thus g(c̄) = E(1 − η(X))I(η(X) >

c̄) ≤ αp−. On the other hand, since c̄ < c(α), by definition of c(α) we must have g(c̄) > αp−. This

is a contradiction, and c(α) must be right-continuous over [0, 1).

Finally, we prove the second claim in (iii). For one direction, we suppose that c(α) is discontin-

uous at α, and we shall prove that there must exist c > c(α) such that P(c(α) < η(X) < c) = 0.
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To this end, since c(α) is right-continuous, we must have that c(α) is not left continuous. By

monotomicity of c(α), this means there exists c̄, such that c(α̃) → c̄ as α̃ → α with α̃ < α and

c(α) < c̄ ≤ c(α̃). By using (ii), we have that g(c(α)) ≤ αp−. Moreover, since c(α) ≤ c̄ < c(α̃), we

must have g(c(α)) > α̃p−, which implies that g(c(α)) ≥ αp−. Together, we must have g(c(α)) = αp−.

Next, again using (ii), we have E(1−η(X))I(η(X) ≥ c(α̃)) ≥ α̃p−. Letting α̃→ α, this implies that

E(1 − η(X))I(η(X) ≥ c̄) ≥ limα̃→α E(1 − η(X))I(η(X) ≥ c(α̃)) ≥ limα̃→α α̃p
− = αp−. Combining

this with the fact that g(c(α)) = αp−, we obtain that

E((1− η(X))I(c(α) < η(X) < c̄)) = g(c(α))− E(1− η(X))I(η(X) ≥ c̄) ≤ αp− − αp− = 0 ,

which implies that E((1 − η(X))I(c(α) < η(X) < c̄)) = 0. This further implies that P(c(α) <

η(X) < c̄) = 0.

Conversely, we show that if g(c(α)) = αp− and P(c(α) < η(X) < c) = 0 for some c > c(α),

then c(α) is not left-continuous. To this end, suppose that c(α̃) → c(α) as α̃ → α with α̃ < α

and c(α̃) ≥ c(α). Then, there must exist α̃ such that c(α̃) < c. By (ii), we have g(c(α̃)) ≤ α̃p−.

Using this with P(c(α) < η(X) < c) = 0, we obtain that g(c(α)) ≤ α̃p−, which contradicts with

g(c(α)) = αp− > α̃p−. This proves the discontinuity of c(α).

Lemma S4. Denote αw = FPR(h?w) for any w ∈ (0, 1) such that FPR(h?w) ∈ (0, ᾱ). Then αw ≤ w

and s(αw) = TPR(h?w).

Proof of Lemma S4. We first show that αw ≤ w. By using (S6), we get

αwp
− = E(1− η(X))(I(η(X) > w) + I(X ∈ Nw)) ≥ E(1− η(X))I(η(X) > w) , (S16)

which implies that c(αw) ≤ w by definition of c(αw). Next, we consider two cases: (i) c(αw) < w;

(ii) c(αw) = w.
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For the first case that c(αw) < w, since {x : η(x) > w}∪Nw ⊆ {x : η(x) > c(αw)}, we have that

αwp
− = E(1− η(X))(I(η(X) > w) + I(X ∈ Nw)) ≤ E(1− η(X))I(η(X) > c(αw)) ≤ αwp

− ,

where the last inequality uses part (ii) of Lemma S3. This implies that

E(1− η(X))(I(η(X) > w) + I(X ∈ Nw)) = E(1− η(X))I(η(X) > c(αw)) = αwp
− . (S17)

Since c(αw) < w, we have that {x : η(x) > c(αw)} \ {x : hw(x) = 1} ⊆ {x : c(αw) < η(x) ≤ w}.

Note E(1 − η(X))I({x : η(x) > c(αw)} \ {x : hw(x) = 1}) = 0 by using (S17). This further

implies P(X ∈ {x : η(x) > c(αw)} \ {x : hw(x) = 1}) = 0 since w < 1. Therefore we must have

{x : hw(x) = 1} = {x : η(x) > w} ∪ Nw = {x : η(x) > c(αw)} up to a PX null set. Moreover, by

using (7) in Theorem 2, we have

P(X ∈ Nαw) =
E(1− η(X))(αw − I(η(X) > c(αw)))

1− c(αw)
= 0 .

Therefore, we get

TPR(h?w) =
Eη(X)I(h?w = 1)

p+
=
Eη(X)I(η(X) > c(αw))

p+
=
Eη(X)I(X ∈ R?

αw
)

p+
= s(αw) .

For the second case when c(αw) = w ∈ (0, 1), using (S16), we obtain that

P(X ∈ Nw) =
E(1− η(X))(αw − I(η(X) > w))

1− w
.

Again by using (7) in Theorem 2, we have that

P(X ∈ Nαw) =
E(1− η(X))(αw − I(η(X) > c(αw)))

1− c(αw)
= P(X ∈ Nw) ,
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which further implies that

TPR(h?w) =
Eη(X)(I(η(X) > w) + I(X ∈ Nw))

p+

=
Eη(X)(I(η(X) > c(αw)) + I(X ∈ Nαw))

p+
= s(αw) .

Therefore we show s(αw) = TPR(h?w). This completes the proof of Lemma S4.

Lemma S5. Let S(Ha) = {(FPR(h),TPR(h)) : h ∈ Ha} and I be the union of all open intervals

over which s(α) is linear. Then for any S ⊆ S(Ha) such that {(α, s(α)) | α ∈ [0, 1 − P(η(X) =

0)/p−] \ I} ⊆ cl(S), we have

PF(conv(S)) = γ(Ha) . (S18)

Proof of Lemma S5. Let ᾱ = 1− P(η(X) = 0)/p−. Denote

s̄(α) =


s(α), if α ∈ [0, ᾱ],

1, if α ∈ (ᾱ, 1],

−∞, otherwise.

We first prove that s̄(α) is concave over [0, 1]. To this end, we define

d1(α) =


s(α), if α ∈ [0, ᾱ]

s(ᾱ) + s′−(ᾱ)(α− ᾱ), if α ∈ (ᾱ, 1]

−∞, otherwise

and d2(α) =


1, if α ∈ [0, 1]

−∞, otherwise

where s′−(ᾱ) is defined in (S89). Since d1(α) linearly extends s(α) over [ᾱ, 1] with slope s′−(ᾱ),

we have d1(α) is concave by the fact that s(α) is concave over [0, ᾱ]. Also note s(ᾱ) = 1 and

s′−(ᾱ) ≥ 0, we have that d1(α) ≥ d2(α) when α ∈ (ᾱ, 1]. Using the facts that d2(α) is concave and

s̄(α) = min(d1(α), d2(α)) we have that s̄(α) is also concave, because the minimum of two concave

functions is still concave.
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Next, for any S ⊆ S(Ha) such that {(α, s(α)) | α ∈ [0, ᾱ] \ I} ⊆ cl(S), we shall show that

conv(S) ⊆ hyp(s̄), where hyp(s̄) = {(α, µ) : µ ≤ s̄(α)} is the hypograph of s̄(α). Toward this end,

we first show that S ⊆ hyp(s̄). For any (u, v) ∈ S, if u ∈ [0, ᾱ], by using definition of optimal ROC

curve s(α), we have that v ≤ s(u) = s̄(u), implying that (u, v) ∈ hyp(s̄). If u ∈ (ᾱ, 1], we still have

that v ≤ s(u) = s̄(u) since s̄(u) = 1. Again we have (u, v) ∈ hyp(s̄) in this case. This finishes the

proof of S ⊆ hyp(s̄).

Next, since s̄(α) is a continuous function, we have that hyp(s̄) is a closed set. Therefore, we

have cl(S) ⊆ cl(hyp(s̄)) = hyp(s̄). Moreover, since s̄(α) is concave, we have that hyp(s̄) is convex,

which further implies conv(cl(S)) ⊆ hyp(s̄). Again by using the closedness of hyp(s̄), we obtain

that conv(S) ⊆ conv(cl(S)) ⊆ hyp(s̄). This completes the proof of conv(S) ⊆ hyp(s̄).

Now we are ready to prove our main results. We first show that conv(cl(S)) ⊆ conv(S) for any

set S. By definition of convex hull, we have that S ⊆ conv(S), which implies that cl(S) ⊆ conv(S).

Since conv(S) is convex, we obatin that conv(cl(S)) ⊆ conv(S).

Next, since {(α, s(α)) | α ∈ [0, ᾱ] \ I} ⊆ cl(S), we have that γ(Ha) ⊆ conv(cl(S)) by using the

definition of convex hull. Also note that γ(Ha) = PF(hyp(s̄)). Hence, we have that

PF(hyp(s̄)) = γ(Ha) ⊆ conv(cl(S)) ⊆ conv(S) ⊆ hyp(s̄) . (S19)

By using Lemma S1, we obtain that PF(conv(S)) = PF(hyp(s̄)) = γ(Ha). This completes the proof

of Lemma S5.

Lemma S6. For x ∈ Rp and w ∈ [0, 1], denote

Γw(x) = arg min
a∈R

(1− w)η(x)V (a) + w(1− η(x))V (−a)

and F?w = {f | f(x) ∈ Γw(x) for any x ∈ Rp}. Assume Γw(x) is nonempty for x ∈ Rp and w ∈ [0, 1].
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Then for any solution f to the following problem,

minimize
f∈Fa

E{((1− w)I(Y = 1) + wI(Y = −1))V (Y f(X))} (S20)

there must exists f ′ ∈ F?w, such that P(f(X) 6= f ′(X)) = 0.

Proof of Lemma S6. We show this proposition by contradiction. Suppose there exists a solution

f to (S20) such that for any f ′ ∈ F?w, P(f(X) 6= f ′(X)) > 0. Denote B = {x ∈ Rp : f(x) /∈ Γw(x)},

by definition of Γw(x), we have that P(X ∈ B) > 0. Note

E{((1− w)I(Y = 1) + wI(Y = −1))V (Y f(X))}

= E {(1− w)η(X)V (f(X)) + w(1− η(X))V (−f(X))}

= E {(1− w)η(X)V (f(X)) + w(1− η(X))V (−f(X))} I(X ∈ B)︸ ︷︷ ︸
Part I

+ E {(1− w)η(X)V (f(X)) + w(1− η(X))V (−f(X))} I(X /∈ B)︸ ︷︷ ︸
Part II

For part I, note P(X ∈ B) > 0 and for any x ∈ B,

{(1− w)η(x)V (f(x)) + w(1− η(x))V (−f(x))} > min
a∈R

(1− w)η(x)V (a) + w(1− η(x))V (−a)

we have that for any f ′ ∈ F?w,

Part I > E{min
a∈R

(1− w)η(x)V (a) + w(1− η(x))V (−a)}I(X ∈ B)

= E {(1− w)η(X)V (f ′(X)) + w(1− η(X))V (−f ′(X))} I(X ∈ B)

For part II, it’s easy to see for any f ′ ∈ F?w,

E {(1− w)η(X)V (f(X)) + w(1− η(X))V (−f(X))} I(X /∈ B)

= E {(1− w)η(X)V (f ′(X)) + w(1− η(X))V (−f ′(X))} I(X /∈ B)
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Hence we obtain that

E {(1− w)η(X)V (f(X)) + w(1− η(X))V (−f(X))}

> E {(1− w)η(X)V (f ′(X)) + w(1− η(X))V (−f ′(X))}

for any f ′ ∈ F?w, which contradiction the fact that f is a solution to (S20). This completes the

proof.

Lemma S7. Let V (·) be a differentiable, strictly decreasing, proper and strictly convex loss. Then

V (·) is classification-calibrated.

Proof of Lemma S7. Denote G(η, a) = ηV (a) + (1− η)V (−a). Since V (·) is proper and strictly

convex, we have that the minimizer a?(η) of G(η, ·) is unique for any fixed η ∈ [0, 1]. Recall

HV (η) = infa∈RG(η, α) and H−V (η) = infα:α(η−1/2)≤0G(η, α). In order to prove HV (η) < H−V (η) for

any η 6= 1/2, it suffices to show a?(η)(η − 1/2) > 0 for any η 6= 1/2.

Note a?(η) is also the solution to (S56) at w = 1/2. By the proof of Theorem 5, we have a?(η) is a

strictly increasing function, meaning that (a?(η)−a?(1/2))(η−1/2) > 0 for any η 6= 1/2. Moreover,

since G(1/2, a) = (V (a) + V (−a))/2 is strictly convex and symmetric around 0, we obtain that

a?(1/2) = 0, which further implies a?(η)(η − 1/2) > 0 for any η 6= 1/2. This completes the proof of

Lemma S7.

G Proofs

Proof of Theorem 1. We first prove that s(α), as defined in (2), is continuous, strictly increasing,

and concave. For continuity, we start by showing s(α) is continuous on
(

0, 1− P(η(X)=0)
p−

]
. Let R?

α be

the solution to (S41) at α. From the proof of Theorem 2, we know that R?
α = {x : η(x) > c(α)}∪Nα

and the constraint is tight at the solution when α ∈
(

0, 1− P(η(X)=0)
p−

)
, which implies that

E(1− η(X))(I(X ∈ R?
α)− α) = 0, or E(1− η(X))I(X ∈ R?

α) = αp− . (S21)
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Moreover, it follows from (S42) and (S43) that when α = 1−P(η(X)=0)
p−

, we have c(α) = 0 and P(Nα) =

0, which further implies R?
α = {x : η(x) > c(α)} and (S21) also holds when α = 1− P(η(X)=0)

p−
. Using

(S21), we have that for any α ∈
(

0, 1− P(η(X)=0)
p−

]

s(α) = TPR(h?α) =
E(η(X)I(X ∈ R?

α))

p+
=
P(X ∈ R?

α)− αp−

p+
. (S22)

Hence, it suffices to show continuity of P(X ∈ R?
α) as a function of α. Using (S21), note that

(α2 − α1)p− = E(1− η(X))(I(X ∈ R?
α2

)− I(X ∈ R?
α1

))

= E(1− η(X))I(X ∈ R?
α2
\R?

α1
)− E(1− η(X))I(X ∈ R?

α1
\R?

α2
)

≥ (1− c(α1))P(X ∈ R?
α2
\R?

α1
)− (1− c(α1))P(X ∈ R?

α1
\R?

α2
)

= (1− c(α1))(P(X ∈ R?
α2

)− P(X ∈ R?
α1

)) (S23)

for any α1, α2 ∈
(

0, 1− P(η(X)=0)
p−

]
with α1 < α2. This, together with the fact that c(α) < 1 when

α ∈ (0, 1] (c.f. (i) of Lemma S3), implies that P(X ∈ R?
α) is continuous in α. This completes the

proof of continuity over
(

0, 1− P(η(X)=0)
p−

]
.

Next, we show s(α) is right-continuous at α = 0. We first use Theorem 2 to show that there

exists solutions R?
α to (5) such that we have R?

α is monotone in α, that is, R?
α1
⊆ R?

α2
for any

α1 < α2. To this end, by the proof of Theorem 2, we know that we can choose

R?
0 = {x : η(x) = 1} and R?

α = {η(x) > c(α)} ∪ Nα (S24)

where Nα ⊆ {x : η(x) = c(α)} with P(Nα) = E(1−η(X))(α−I(η(X)>c(α)))
1−c(α)

when α ∈
(

0, 1− P(η(X)=0)
p−

)
.

Clearly, we can always choose R?
α so that R?

0 ⊆ R?
α, because R?

α∪R?
0 would have the same constraint

with no smaller objective function for problem (5). Moreover, by definition of c(α), it is easy to see

that it is nonincreasing. Then, for any 0 < α1 < α2 < 1 − P(η(X)=0)
p−

, we have that R?
α1
⊆ R?

α2
if

c(α1) > c(α2), and we can choose R?
α2

so that R?
α1
⊆ R?

α2
if c(α1) = c(α2), where the latter claim is
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because P(X ∈ Nα2) ≥ P(X ∈ Nα1) when c(α1) = c(α2). Therefore, we can define R̄ = limα→0R
?
α,

which satisfies R?
0 ⊆ R̄. Letting α→ 0 on both sides of the constraint of (5), we obtain that

0 ≤ E(1− η(X))I(X ∈ R̄) = lim
α→0

E(1− η(X))I(X ∈ R?
α) ≤ lim

α→0
αp− = 0 , (S25)

which implies that E(1− η(X))I(X ∈ R̄) = 0. Therefore, R̄ ⊆ {x : η(x) = 1} = R?
0. Combining, we

get R̄ = R?
0. Hence,

lim
α→0

s(α) =
limα→0 Eη(X)I(X ∈ R?

α)

p+
=
Eη(X)I(X ∈ R?

0)

p+
= s(0) . (S26)

This completes the proof of continuity at α = 0. In sum, we have that s(α) is a continuous function

when α ∈
[
0, 1− P(η(X)=0)

p−

]
.

Next, we show that s(α) is concave. Similar to (S23), we also have that

(α2 − α1)p− = E(1− η(X))(I(X ∈ R?
α2

)− I(X ∈ R?
α1

))

= E(1− η(X))I(X ∈ R?
α2
\R?

α1
)− E(1− η(X))I(X ∈ R?

α1
\R?

α2
)

≤ (1− c(α2))P(X ∈ R?
α2
\R?

α1
)− (1− c(α2))P(X ∈ R?

α1
\R?

α2
)

= (1− c(α2))(P(X ∈ R?
α2

)− P(X ∈ R?
α1

)) (S27)

for any α1, α2 ∈
(

0, 1− P(η(X)=0)
p−

]
with α1 < α2. Combining this with (S23), we have that

(α2 − α1)p−

1− c(α2)
≤ P(X ∈ R?

α2
)− P(X ∈ R?

α1
) ≤ (α2 − α1)p−

1− c(α1)
, (S28)

which in turn implies that

p−c(α2)

p+(1− c(α2))
(α2 − α1) ≤ s(α2)− s(α1) ≤ p−c(α1)

p+(1− c(α1))
(α2 − α1) . (S29)

for any α1, α2 ∈
(

0, 1− P(η(X)=0)
p−

]
with α1 < α2. Using this, we obtain for any 0 < α1 < α2 ≤
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1− P(η(X)=0)
p−

, that

2s(ᾱ)− s(α1)− s(α2) = s(ᾱ)− s(α1)− (s(α2)− s(ᾱ))

≥ p−c?ᾱ
p+(1− c?ᾱ)

(ᾱ− α1)− p−c?ᾱ
p+(1− c?ᾱ)

(α2 − ᾱ)

=
p−c?ᾱ

p+(1− c?ᾱ)

α2 − α1

2
− p−c?ᾱ
p+(1− c?ᾱ)

α2 − α1

2
= 0 ,

where ᾱ = (α1 + α2)/2. This proves the concavity of s(α).

We next prove that s(α) is strictly increasing. By definition, we have that s(α) must be non-

decreasing. Moreover, from (S29), we can see that s(α) is a strictly increasing function of α over

the interval (0, 1 − P(η(X) = 0)/p−). Therefore, s(α) must be a strictly increasing function over

[0, 1− P(η(X) = 0)/p−].

Finally, we prove (1). We first prove that

γ(Ha) ⊆ {(α, s(α)) | α ∈ [0, 1]} , (S30)

for s(α) as defined in Theorem 2. Using (8) of Theorem 2, it suffices to show that, for any classifier h

satisfying (FPR(h),TPR(h)) ∈ γ(Ha), h must be the solution to (5) with α = FPR(h) and H = Ha.

First, h is feasible. Moreover, if h is not a solution to (5), then there must exist h′ ∈ Ha, such that

TPR(h′) > TPR(h) and FPR(h′) ≤ FPR(h), which means that h′ dominates h. This contradicts

with the fact that h is on the pareto frontier (c.f. Definition 1). Therefore, h must be a solution of

(5) with α = FPR(h) and H = Ha.

Now let γ̃ = {(α, s(α)) | α ∈ [0, 1]}. Since s(α) is continuous, we have that γ̃ is a closed set.

By using Lemma S1, we know that γ(Ha) = PF (γ̃), which is is the the pareto frontier of γ̃.

Next we derive the pareto frontier of γ̃. First, it is easy to see that any point on {α, s(α) | α ∈

(1 − P(η(X) = 0)/p−, 1]} can be dominated by (1 − P(η(X) = 0)/p−, 1). Moreover, no pairs in

{(α, s(α)) | α ∈ [0, 1−P(η(X) = 0)/p−)} could dominate each other since s(α) is strictly increasing.

Consequently, we have that the pareto frontier of γ̃ is s(α) defined in (2).
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Proof of Corollary S1. We start by showing that

γ(Ha) = {(FPR(Sign(η(x)− c(α))),TPR(Sign(η(x)− c(α)))) | 0 ≤ α ≤ 1} (S31)

= {(FPR(Sign(η(x)− c)),TPR(Sign(η(x)− c))) | 0 ≤ c ≤ 1} , (S32)

under (3). We first show that α = FPR(Sign(η(x) − c(α))). Since η(x) = p+f+(x)/(p+f+(x) +

p−f−(x)), for any c ∈ [0, 1] we have that

P(η(X) = c | Y = 1) = P(η(X) = c | Y = −1) = 0, (S33)

which implies

P(η(X) = c) = p+P(η(X) = c | Y = 1) + p−P(η(X) = c | Y = −1) = 0 . (S34)

By using (i) and (ii) in Lemma S3, we have that

E(1− η(X))I(η(X) > c(α)) = E(1− η(X))I(η(X) ≥ c(α)) = αp− , (S35)

for all α ∈ [0, 1], which can be rewritten as

α =
1

p−
E(1− η(X))I(η(X) > c(α)) = P(η(X) > c(α) | Y = −1) = FPR(Sign(η(x)− c(α))) (S36)

Next, we show s(α) = TPR(Sign(η(x)− c(α))), When α ∈ (0, 1], s(α) can be represented by

s(α) =
P(η(X) > c(α))− c(α)Eη(X)I(η(X) > c(α))− αp−

p+(1− c(α))

=
P(η(X) > c(α))− c(α)Eη(X)I(η(X) > c(α))− E(1− η(X))I(η(X) > c(α))

p+(1− c(α))

=
(1− c(α))Eη(X)I(η(X) > c(α))

p+(1− c(α))
=

1

p+
Eη(X)I(η(X) > c(α))

= P(η(X) > c(α) | Y = 1) = TPR(Sign(η(x)− c(α))) ,
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where we use the fact that c(α) < 1 when α > 0 (c.f. (i) in Lemma S3). When α = 0, by using

(S35) and the fact that P(η(X) = 1) = 0, we obtain that

Eη(X)I(η(X) > c(0)) = P(η(X) > c(0)) = P(c(0) < η(X) < 1) = 0 . (S37)

This combined with (2) implies

s(0) = 0 =
1

p+
Eη(X)I(η(X) > c(0)) = P(η(X) > c(0) | Y = 1) = TPR(Sign(η(x)− c(0))) .

Therefore for all 0 ≤ α ≤ 1, we have that

s(α) =
1

p+
Eη(X)I(η(X) > c(α)) = TPR(Sign(η(x)− c(α))) . (S38)

This finishes the proof of (S31).

Next, we check (S32). For any α ∈ [0, 1], using definition of c(α), we have that c(α) ∈ [0, 1],

which implies

{(FPR(Sign(η(x)− c(α))),TPR(Sign(η(x)− c(α)))) | 0 ≤ α ≤ 1}

⊆ {(FPR(Sign(η(x)− c)),TPR(Sign(η(x)− c))) | 0 ≤ c ≤ 1} .

Moreover, for any c ∈ [0, 1], let α = FPR(Sign(η(x)− c)) ∈ [0, 1], by using (S36) we have that

α = FPR(Sign(η(x)− c(α))) =
1

p−
E(1− η(X))I(η(X) > c(α)) =

1

p−
E(1− η(X))I(η(X) > c) .

Also note P(η(X) = c(α)) = 0, we obtain that P(c < η(X) ≤ c(α)) = 0. This together with (S38)

implies

TPR(Sign(η(x)−c(α))) =
1

p+
Eη(X)I(η(X) > c(α)) =

1

p+
Eη(X)I(η(X) > c) = TPR(Sign(η(x)−c))
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Therefore we have that

{(FPR(Sign(η(x)− c)),TPR(Sign(η(x)− c))) | 0 ≤ c ≤ 1}

⊆ {(FPR(Sign(η(x)− c(α))),TPR(Sign(η(x)− c(α)))) | 0 ≤ α ≤ 1} .

This completes the proof of (S32).

Next, we derive the ROC curve defined in (4). Let α = FPR(hλ) for any λ ∈ [0,∞]. We first

show that the range of α is [0, 1]. Again by using the fact that η(x) = p+f+(x)/(p+f+(x)+p−f−(x)),

we obtain that

α = P (f+(X)/f−(X) > λ | Y = −1) = P
(
η(X) >

p+λ

p+λ+ p−
| Y = −1

)
. (S39)

Using this, we obtain that

α ≤ lim
λ→0+

P
(
η(X) >

p+λ

p+λ+ p−
| Y = −1

)
= P(η(X) > 0 | Y = −1) = 1 ,

and

α ≥ lim
λ→∞

P
(
η(X) >

p+λ

p+λ+ p−
| Y = −1

)
= P(η(X) = 1 | Y = −1) = 0 .

Also note when λ = 0 and λ =∞, we have that α = 1 and α = 0 respectively. Since by assumption

P(η(X) = c) = 0 for any c ∈ [0, 1], we have that P(η(X) > c | Y = −1) is a continuous function for

c ∈ (0, 1). Therefore the range of α must be [0, 1].

Now we are ready to compute TPR(hλ). Note that (S39) can reduce to

E(1− η(X))

(
I
(
η(X) >

p+λ

p+λ+ p−

)
− α

)
= E(1− η(X))

(
I
(
η(X) ≥ p+λ

p+λ+ p−

)
− α

)
= 0 .

By using (ii) in Lemma S3, we have that c(α) ≤ p+λ
p+λ+p−

< 1,

E(1− η(X)) (I (η(X) > c(α))− α) = 0 and P
(
c(α) < η(X) ≤ p+λ

p+λ+ p−

)
= 0 . (S40)
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This implies

TPR(hλ) = P(f+(X) > λf−(X) | Y = 1) = P
(
η(X) >

p+λ

p+λ+ p−
| Y = 1

)
=

1

p+
Eη(X)I

(
η(X) >

p+λ

p+λ+ p−

)
=

1

p+
Eη(X)I(η(X) > c(α)) .

When α ∈ (0, 1), this is exactly s(α). When α = 1, we have c(α) = 0. Therefore,

TPR(hλ) =
1

p+
Eη(X)I(η(X) > 0) = 1 = s (1) .

When α = 0, by using (S40) and the fact that c(α) < 1, we have that P(c(α) < η(X) < 1) = 0.

This implies that

TPR(hλ) =
1

p+
Eη(X)I(η(X) = 1) = 0 = s(0) .

Therefore, we have that

{(FPR(hλ),TPR(hλ)) | λ ∈ [0,∞]} = γ(Ha) .

Combining this with (S32), we complete the proof of Corollary S1.

Proof of Theorem 2. For any measurable classifier h, define Rh = {x : h(x) = 1}. By iterated

expectation, we have

TPR(h) = P(h(X) = 1 | Y = 1) =
E(η(X)I(X ∈ Rh))

p+

FPR(h) = P(h(X) = 1 | Y = −1) =
E((1− η(X))I(X ∈ Rh))

p−
.

Note that E(1 − η(X)) = 1 − E(P(Y = 1 | X)) = 1 − p+ = p−. This implies that FPR(h) ≤ α is
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equivalent to E(1− η(X))(I(X ∈ Rh)− α) ≤ 0. Hence, we can rewrite (5) as

maximize h∈H E {η(X)I(X ∈ Rh)}

subject to E(1− η(X))(I(X ∈ Rh)− α) ≤ 0 .
(S41)

Note that both the objective and constraint of the above problem depend on h through Rh. Hence,

we can view Rh as the decision variable.

Next, we consider two cases: (i) α = 0; (ii) α ∈ (0, 1]. When α = 0, for any feasible R for (S41),

we have that

E(1− η(X))I(X ∈ R) ≤ 0

Since (1− η(X))I(X ∈ R) is nonnegative, we have that R ⊆ {x : η(x) = 1} up to PX measure zero

set. Hence, the objective function at R is

Eη(X)I(X ∈ R) = P(X ∈ R) ≤ P(η(X) = 1)

which implies that the optimal solution must be R?
α = {x : η(x) = 1} up to a PX-null set. Moreover,

at the solution R?
α, we have that

TPR? = P(X ∈ R?
α | Y = 1) =

E(η(X)I(η(X) = 1))

p+
=
P(η(X) = 1)

p+
,

FPR? = P(X ∈ R?
α | Y = −1) =

E((1− η(X))I(η(X) = 1))

p−
= 0 .

This completes the proof of the first case.

Next, we consider the case α ∈ (0, 1]. Define g(c) = E(1 − η(X))I(η(X) > c) for c ∈ [0, 1]. It

is easy to show that g(c) is a right-continuous and non-increasing function on [0, 1]. Let c(α) =

inf{c ∈ [0, p?] : g(c) ≤ αp−}, which is well-defined because g(p?) = 0 < αp−. Moreover, it is easy to

verify that g(c(α)) ≤ αp− and g(c) > αp− for any c < c(α). By Lemma S3, we also have c(α) < 1
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when α ∈ (0, 1]. Moreover, since

g(0) = E(1− η(X))I(η(X) ≥ 0)− P(η(X) = 0) = p− − P(η(X) = 0) ,

we have that g(0) ≤ αp− if and only if α ≥ 1− P(η(X)=0)
p−

. By the right-continuity and monotonicity

of g(c), we have that

c(α) = 0 if and only if α ≥ 1− P(η(X) = 0)

p−
. (S42)

Next, we show that any solution to (5), up to a PX-null set, must be in the following form

R?
α = {x : η(x) > c(α)} ∪ Nα

with Nα ⊆ {x : η(x) = c(α)} and its probability satisfying

E(1− η(X))(I(η(X) > c(α))− α) + (1− c(α))P(X ∈ Nα) ≤ 0 if α ∈
(

1− P(η(X)=0)
p−

, 1
]
,

E(1− η(X))(I(η(X) > c(α))− α) + (1− c(α))P(X ∈ Nα) = 0 if α ∈
(

0, 1− P(η(X)=0)
p−

]
.

(S43)

Toward this end, we first verify the existence of Nα. The existence of Nα for the first case in

(S43) can be ensured by setting Nα = ∅. For the second case, the existence is ensured by noting

that the left hand side equals g(c(α))−αp− ≤ 0 when Nα = ∅, and it equals E(1− η(X))(I(η(X) ≥

c(α)) − α) = E(1 − η(X))I(η(X) ≥ c(α)) − αp− ≥ 0 when Nα = {x : η(x) = c(α)} (c.f. (ii) of

Lemma S3), and the fact that X is a continuous random variable.

We next consider the scenario α ∈
(

0, 1− P(η(X)=0)
p−

]
. In this case, R?

α satisfies the constraint,

because

E(1− η(X))(I(X ∈ R?
α)− α) = E(1− η(X))(I(η(X) > c(α))− α) + (1− c(α))P(X ∈ Nα) = 0 .
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Moreover, for any solution R of (S41), since R satisfies the constraint of (S41), we have that

E(1− η(X))(I(X ∈ R)− α) ≤ 0 = E(1− η(X))(I(X ∈ R?
α)− α)

Combining this with the fact that η(x) ≥ c(α) when x ∈ R?
α \R and η(x) ≤ c(α) when x ∈ R \R?

α,

we obtain that

E(1− c(α))I(X ∈ R \R?
α) ≤ E(1− η(X))I(X ∈ R \R?

α)

≤ E(1− η(X))I(X ∈ R?
α \R) ≤ E(1− c(α))I(X ∈ R?

α \R) .

Using the fact that c(α) < 1, we obtain that

EI(X ∈ R \R?
α) ≤ EI(X ∈ R?

α \R) . (S44)

Consequently, the optimality of R?
α follows from

E {η(X)I(X ∈ R?
α)} − E {η(X)I(X ∈ R)}

= E{η(X)(I(X ∈ R?
α \R)− I(X ∈ R \R?

α))}

≥ c(α)(EI(X ∈ R?
α \R)− EI(X ∈ R \R?

α)) ≥ 0

Since R is also a solution, we must have E {η(X)I(X ∈ R?
α)} = E {η(X)I(X ∈ R)}. As a result,

E{η(X)(I(X ∈ R?
α \R)− I(X ∈ R \R?

α))} = c(α)(EI(X ∈ R?
α \R)− EI(X ∈ R \R?

α)) = 0 .

Hence, we must have that up to a PX-null set, R?
α\R and R\R?

α are both subsets of {x : η(x) = c(α)}

and P(X ∈ R?
α \R) = P(X ∈ R \R?

α). Thus, the solution R must be in the form of R = {x : η(x) >

c(α)} ∪ Ñα, where Ñα ⊆ {x : η(x) = c(α)} and P(X ∈ Ñα) = P(X ∈ Nα).

Next, we consider the scenario that α ∈
(

1− P(η(X)=0)
p−

, 1
]
. In this scenario, we have c(α) = 0.
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Moreover, note that R?
α satisfies the constraint

E(1− η(X))(I(X ∈ R?
α)− α) = E(1− η(X))(I(η(X) > 0)− α) + P(X ∈ Nα) ≤ 0 .

For any solution R, we have that

Eη(X)I(X ∈ R) ≥ Eη(X)I(X ∈ R?
α) = Eη(X)I(η(X) > 0) .

On the other hand,

Eη(X)I(X ∈ R) = Eη(X)I(X ∈ R ∩ {x : η(x) > 0}) ≤ Eη(X)I(η(X) > 0) .

Therefore, we must have

Eη(X)I(X ∈ R ∩ {x : η(x) > 0}) = Eη(X)I(η(X) > 0) ,

which implies that, up to a PX-null set, we must have {x : η(x) > 0} ⊆ R. Denote R = {x : η(x) >

0} ∪ Ñα, since R satisfies constraint E(1− η(X))(I(X ∈ R)− α) ≤ 0, which implies that

E(1− η(X))(I(η(X) > 0)− α) + P(Ñα) ≤ 0

which is the first condition in (S43). In sum, any solution R must be of the form R = {x : η(x) >

0} ∪ Nα, where Nα ⊆ {x : η(x) = 0} and

E(1− η(X))(I(η(X) > 0)− α) + P(X ∈ Nα) ≤ 0 .
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At the solution, when α ∈
(

1− P(η(X)=0)
p−

, 1
]
, we have that

TPR? = P(X ∈ R?
α | Y = 1) =

Eη(X)I(X ∈ R?
α)

p+
= 1

FPR? = P(X ∈ R?
α | Y = −1) =

E(1− η(X))I(X ∈ R?
α)

p−

=
E(1− η(X))I(η(X) > 0)

p−
+
P(X ∈ Nα)

p−

= 1− P(η(X) = 0)

p−
+
P(X ∈ Nα)

p−
∈
[
1− P(η(X) = 0)

p−
, α

]

When α ∈
(

0, 1− P(η(X)=0)
p−

]
, we have that

TPR? = P(X ∈ R?
α | Y = 1) =

Eη(X)I(X ∈ R?
α)

p+
=
Eη(X)I(η(X) > c(α)) + P(X ∈ Nα)

p+

=
P(η(X) > c(α))− αp− − c(α)Eη(X)I(η(X) > c(α))

p+(1− c(α))
,

FPR? = P(X ∈ R?
α | Y = −1) =

E(1− η(X))I(X ∈ R?
α)

p−
= α ,

where we have used the fact that

E(1− η(X))I(η(X) > c(α)) + (1− c(α))P(X ∈ Nα) = αp− .

This completes the proof of (8).

Proof of Corollary 1. The claim follows immediately from applying Theorem 1, equation (8) in

Theorem 2, and Lemma S1.

Proof of Proposition 1. Denote by

γ̃C(H) = {(FPR(h?α,H),TPR(h?α,H)) | α ∈ [0, 1], h?α,H is a solution to (5)}

the set of FPR-TPR pairs generated by all possible solutions to (5) and let γ̃?C(H) = PF(cl(γ̃C(H)))
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denote its pareto frontier. We first show that

γ(H) = γ̃?C(H) . (S45)

To this end, we first prove that γ(H) ⊆ γ̃C(H). Let h ∈ H be a classifier satisfying (FPR(h),TPR(h)) ∈

γ(H). We shall prove that h is a solution to (5) with α = FPR(h). First, h is feasible. Moreover,

if h is not a solution to (5), then there must exist h′ ∈ H, such that TPR(h′) > TPR(h) and

FPR(h′) ≤ α = FPR(h), which means that h′ dominates h. This contradicts with the fact that h is

on the pareto frontier (c.f. Definition 1). Therefore, h must be a solution of (5) with α = FPR(h).

This completes the proof of γ(H) ⊆ γ̃C(H). Next, note that γ(H) = PF(S(H)) ⊆ [0, 1] × [0, 1],

and γ(H) ⊆ cl(γ̃C(H)) ⊆ S(H), because S(H) is closed. Then applying Lemma S1, we have that

γ(H) = γ̃?C(H).

Next, we show that γ?C(H) = γ(H). For any given α ∈ [0, 1], we define

γ(α) = {(FPR(h?α,H),TPR(h?α,H)) : h?α,H is a solution to (5) at α}

to be the set of FPR-TPR pairs generated by all possible solutions to (5) at α.

We first show that if γ(α) is a nonempty non-singleton, then there must exist α? ∈ [0, 1] such

that γ(α?) = {(α?, v?)} is a singleton with γ(α?) ⊆ γ(α) and (α?, v?) � (u, v) for any (u, v) ∈ γ(α),

(u, v) 6= (α?, v?). To this end, let α? = inf{u : (u, v) ∈ γ(α)}, by using part (ii) of Lemma S2, we

have that γ(α?) is a singleton and γ(α?) ⊆ γ(α). Moreover, by (i) in Lemma S2, we have that v? = v

for any (u, v) ∈ γ(α), which implies (α?, v?) � (u, v) for any (u, v) ∈ γ(α) and (α?, v?) 6= (u, v),

because α? < u.

Now, we are ready to prove that γ?C(H) = γ(H). Let A = {α : γ(α) is empty or a singleton}

and B = {α : γ(α) is a nonempty non-singleton}. We first prove γ̃?C(H) ⊆
⋃
α∈A γ(α) by contra-

diction. Suppose there exists (u?, v?) ∈ γ̃?C(H) such that (u?, v?) /∈
⋃
α∈A γ(α). Note γ̃?C(H) ⊆

γ̃C(H) =
⋃
α∈A∪B γ(α), we must have (u?, v?) ∈

⋃
α∈B γ(α). That is, there exists α ∈ B, such
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that (u?, v?) ∈ γ(α). Moreover, by using fact that (u?, v?) ∈ γ̃?C(H), we must have u? = inf{u :

(u, v) ∈ γ(α)}, because it can not be strictly dominated by any points in γ(α). This combined

with (ii) in Lemma S2 implies γ(u?) is a singleton, which contradicts with the assumption that

(u?, v?) /∈
⋃
α∈A γ(α). This proves γ̃?C(H) ⊆

⋃
α∈A γ(α). Next, by definition of γC(H), we have that⋃

α∈A γ(α) ⊆ γC(H). Combining this with (S45) and the fact that γ̃?C(H) ⊆
⋃
α∈A γ(α), we obtain

that γ(H) ⊆
⋃
α∈A γ(α) ⊆ γC(H). Note that γC(H) ⊆ S(H), by applying Lemma S1, we have that

γ?C(H) = γ(H) ⊆ γC(H). This completes the proof.

Proof of Theorem 3. We first write

γW,V (·)(F) = γW0,V (·)(F) ∪ {(FPR(h?w,V (·)),TPR(h?w,V (·))) | w ∈ [0, 1] and P(η(X) = w) > 0} ,

where h?w,V (·) = Sign(f ?w,V (·)) and

γW0,V (·)(F) = {(FPR(h?w,V (·)),TPR(h?w,V (·))) | w ∈ [0, 1] and P(η(X) = w) = 0} ,

It suffices to show that

γW0,V (·)(F) = B1 ∪B2 ∪ S ′0 ∪ S ′1 , (S46)

where B1 and B2 are defined in (S63).

Since F is correctly specified under V (·), it follows from Definition 2 that h?w,V (·)(x) = Sign(f ?w,V (·)(x)) =

Sign(η(X)− w) for any w ∈ [0, 1] with P(η(X) = w) = 0, which implies that

γW0,V (·)(F) = {(FPR(h?w),TPR(h?w)) | w ∈ [0, 1] and P(η(X) = w) = 0} ,

where h?w is a solution to (S4) with H = Ha. Moreover, note that we can further decompose

γW0,V (·)(F) as

γW0,V (·)(F) = A1 ∪ C1 ∪ C2 , (S47)
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where A1 is defined in (S64) and

C1 = {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) = 0 or ᾱ,P(η(X) = w) = 0} ,

C2 = {(FPR(h?w),TPR(h?w)) | w = 0 or 1,P(η(X) = w) = 0} . (S48)

In view of (S65), we have A1 = B1 ∪ B2. Therefore, to prove (S46) it remains to show that

C1 ∪ C2 = S ′0 ∪ S ′1.

To this end, we first show that C1 = S0 ∪ S1, where S0 and S1 are defined in (S8) and (S9). By

using (S61), it suffices to show that

C1 = {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) = 0 or ᾱ} .

By definition of C1, we have

C1 ⊆ {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) = 0 or ᾱ}.

Next, we show that

C1 ⊇ {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) = 0 or ᾱ} . (S49)

First, it is easy to check that TPR(h?w) = s(0) when FPR(h?w) = 0 for some w ∈ (0, 1), and

TPR(h?w) = s(ᾱ) when FPR(h?w) = ᾱ for some w ∈ (0, 1). Therefore, we only need to show that

for any w ∈ (0, 1) with FPR(h?w) = 0 (or ᾱ), there exists w′ ∈ (0, 1) with P(η(X) = w′) = 0

such that FPR(h?w′) = 0 (or ᾱ). If FPR(h?w) = 0 for some w ∈ (0, 1), by using (S4) we have

that 0 ≤ E(1 − η(X))I(w < η(X) < 1) ≤ E(1 − η(X))I(h?w(X) = 1) = 0, which implies that

P(w < η(X) < 1) = 0. Now we pick any w′ ∈ (w, 1), we have that P(η(X) = w′) = 0 and

0 ≤ FPR(h?w′) ≤ P(η(X) ≥ w′ | Y = −1) ≤ P(w < η(X) < 1)/p− + P(η(X) = 1 | Y = −1) =

P(w < η(X) < 1)/p− + E(1 − η(X))I(η(X) = 1)/p− = 0, which implies FPR(h?w′) = 0. Similarly,
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if FPR(h?w) = ᾱ for some w ∈ (0, 1), we have p− − P(η(X) = 0) = E(1 − η(X))I(h?w(X) = 1) ≤

E(1− η(X))I(0 < η(X) < 1) = p−−P(η(X) = 0) = p−ᾱ, which implies that P(0 < η(X) < w) = 0.

Again we pick any w′ ∈ (0, w), we have that P(η(X) = w′) = 0 and ᾱ = FPR(h?w) ≤ FPR(h?w′) ≤

P(η(X) > 0 | Y = −1) = ᾱ, which implies FPR(h?w′) = ᾱ. This proves (S49), and completes the

proof of C1 = S0 ∪ S1.

Since (FPR(h?w),TPR(h?w)) = (P(η(X) > 0 | Y = −1),P(η(X) > 0 | Y = 1)) = (1, 1) =

(1 − P(η(X) = 0)/p−, 1) at w = 0 if P(η(X) = 0) = 0, and (FPR(h?w),TPR(h?w)) = (P(η(X) > 1 |

Y = −1),P(η(X) > 1 | Y = 1)) = (0, 0) = (0, s(0)) at w = 1 if P(η(X) = 1) = 0, we have that

C2 = S ′′0 ∪ S ′′1 , where

S ′′0 =


{(0, s(0))}, if P(η(X) = 1) = 0 ,

∅, otherwise ,

(S50)

and

S ′′1 =


{(1− P(η(X) = 0)/p−, 1)}, if P(η(X) = 0) = 0 ,

∅, otherwise .

(S51)

Therefore, we have C1 ∪C2 = S0 ∪ S1 ∪ S ′′0 ∪ S ′′1 = S ′0 ∪ S ′1. This completes the proof of Theorem 3.

Next we show Corollary S2. To this end, we first present a similar result to Corollary S3, which

reveals that all nonlinear parts of the optimal ROC curve can be recovered by the weighted method,

when F is correctly specified under a surrogate loss V (·).

Corollary S5. Denote by Il = (α−l , α
+
l ) all the disjoint intervals over which s(α) is linear, and

I =
⋃
l Il. If F is correctly specified under a surrogate loss V (·) for the weighted method, then

γ?W,V (·)(F) ⊇ {(α, s(α)) | α ∈ [0, 1− P(η(X) = 0)/p−] \ I} , (S52)

where γ?W,V (·)(F) = PF(cl(γW,V (·)(F))) is the pareto frontier of γW,V (·)(F).
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Proof of Corollary S5. First using (S67) and the fact that S ′j ⊇ Sj; j = 0, 1, we obtain that

{(α, s(α)) | α ∈ [0, ᾱ] \ I} = cl(A1) ∪ S0 ∪ S1 ⊆ cl(A1) ∪ S ′0 ∪ S ′1 . (S53)

Next, by using Theorem 3 we have A1 ∪ S ′0 ∪ S ′1 ⊆ γW,V (·)(Ha), which implies

cl(A1) ∪ S ′0 ∪ S ′1 = cl(A1 ∪ S ′0 ∪ S ′1) ⊆ cl(γW,V (·)(Ha)) . (S54)

Combining (S53) and (S54), we have that {(α, s(α)) | α ∈ [0, ᾱ] \ I} ⊆ cl(γW,V (·)(Ha)). Using

this and the definition of optimal ROC curve γ(Ha), we obtain (S52). This completes the proof of

Corollary S5.

Proof of Corollary S2. Recall in the proof of Corollary S5, we show that {(α, s(α)) | α ∈

[0, ᾱ] \ I} ⊆ cl(γW,V (·)(Ha)). By combining this with Lemma S5, we obtain (S2). This completes

proof of Corollary S2.

Proof of Proposition 2. By Theorem S3, for any w ∈ [0, 1] with P(η(X) = w) = 0, the solution to

the weighted problem over Ha must be of the form {x : f ?w(x) > 0} = {x : h?w(x) = 1} = {x : η(x) >

w} up to a PX-null set. This implies that the set of all measurable functions Fa is correctly-specified

under the 0/1 loss according to Definition 2.

Next, we verify its correct specification for any classification-calibrated loss V (·). To proceed,

for any x ∈ Rp and w ∈ [0, 1], define

Γw(x) = arg min
a∈R

(1− w)η(x)V (a) + w(1− η(x))V (−a)

and F?w = {f | f(x) ∈ Γw(x) for any x ∈ Rp}. We consider three cases: w = 0, w = 1 and w ∈ (0, 1).

For the case that w = 0 and P(η(X) = 0) = 0, we have Γ0(x) = arg min a∈R η(x)V (a). Note when

η(x) > 0, this reduces into Γ0(x) = arg min a∈R V (a). By definition of classification-calibrated loss,

we obtain that HV (1) < H−V (1), where HV (·) and H−V (·) are defined in (15) and (16). This means

a?0 > 0 for any a?0 ∈ Γ0(x) when η(x) > 0, which further implies for any f ′ ∈ F?0 , f ′(x) > 0 when
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η(x) > 0. Combining this with Lemma S6 and P(η(X) = 0) = 0, we obtain that f ?w,V (·)(X) > 0

almost surely for any solution f ?w,V (·) to (10).

Similarly, for the case that w = 1 and P(η(X) = 1) = 0, we have that Γ1(x) = arg min a∈R(1 −

η(x))V (−a). By using the fact that HV (0) < H−V (0), we can see a?1 < 0 for any a?1 ∈ Γ1(x) when

η(x) < 1, which further implies for any f ′ ∈ F?0 , f ′(x) > 0 when η(x) < 0. Combining this with

Lemma S6 and P(η(X) = 1) = 0, we obtain that f ?w,V (·)(X) < 0 almost surely for any solution

f ?w,V (·) to (10).

Lastly, for the case that w ∈ (0, 1) and P(η(X) = w) = 0, note (1 − w)η(x) + w(1 − η(x)) > 0

for any x ∈ Rp, we have that

Γw(x) = arg min
a∈R

(1− w)η(x)V (a) + w(1− η(x))V (−a)

= arg min
a∈R

(1− w)η(x)

η(x) + w − 2wη(x)
V (a) +

w(1− η(x))

η(x) + w − 2wη(x)
V (−a)

By definition of classification-calibration, for any a(x) ∈ Γw(x) with η(x) 6= w, we must have

that a(x)(η(x) − w) > 0. This together with Lemma S6 and P(η(X) = w) = 0, implies that

f ?w,V (·)(X)(η(X)−w) > 0 almost surely for any solution f ?w,V (·) to (10). This completes the proof of

proposition 2.

Proof of Theorem S1. We shall present an example in which (S3) holds. In particular, we

consider the same quadratic discriminant analysis (QDA) setup and choose the same model space

F as in the proof of Theorem S2.

We first present an approach to approximating γW,V (·)(F) for the weighted method, where we

use logistic loss V (x) = log(1 + e−x) as the surrogate loss. Let (Xi, Yi), i = 1, 2 . . . , n be a random

sample generated from the QDA setting specified in proof of Theorem S2. For any pre-specified

weight w ∈ [0, 1], we first compute the optimal solution (β̂(w), β̂0(w)) of the following empirical risk

minimization problems:

minimize
β∈Rp,β0∈R

n∑
i=1

(
(1− w)I(Yi = 1) + wI(Yi = −1)

)
log(1 + e−Yi(X

>
i β+β0)) ,
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which is just a weighted logistic regression problem. Then, we consider classifier ĥw,V (·)(x) =

Sign(x>β̂(w) + β̂0(w)) by calculating the empirical false positive rate and empirical false negative

rate over an independent random sample (X̃i, Ỹi), i = 1, 2 . . . , N , which is generated from the same

distribution. Lastly, we plot those empirical FPRs and empirical TPRs to approximate γW,V (·)(F).

Throughout simulations, we set n = 2000 and N = 10000.

Next, to approximate FPR-TPR pairs generated by linear classifiers, we adopt the same scheme

introduced in the proof of Theorem S2 and denote by A the set of generated pairs. We plots all

these results in Figure S4, where the grey area is the Monte Carlo approximation of A and blue

cure is the ROC curve for weighted method under logistic loss. It is obvious from Figure S4 both

statements in (S3) are true in this setting. This completes the proof of Theorem S1.

Proof of Theorem 4. By definition of correct specification defined in Definition 4, we have that,

up to a PX-null set, a solution to (17) is exactly f ?w,V (·)(x) = M(η(x)) for some strictly increasing

function M(·). Since η(X) is a continuous random variable, we have that

γT,V (·)(H, w) = {(FPR(Sign(f ?w,V (·)(x)− δ)),TPR(Sign(f ?w,V (·)(x)− δ))) | δ ∈ R}

= {(FPR(Sign(M(η(x))− δ)) ,TPR(Sign(M(η(x))− δ))) | δ ∈ R}

= {(FPR(Sign(η(x)− w)),TPR(Sign(η(x)− w))) | w ∈ [0, 1]} .

Finally, by using Theorem 1 and the fact that η(X) is a continuous random variable, we obtain that

γT,V (·)(H, w) = γ(Ha). This completes the proof.

Proof of Theorem 5. We first rewrite optimization problem in (17) into

minimize
f∈Fa

E ((1− w)η(X)V (f(X)) + w(1− η(X))V (−f(X))) . (S55)

Since V (·) is proper and strictly convex, for any x ∈ X the solution to the following problem is

unique:

minimize
a∈R

(1− w)ηV (a) + w(1− η)V (−a) . (S56)
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Denote by a?w(η) the unique solution to above problem. By using optimality of a?w(η), we have that

any solution f ?w to (S55) satisfies f ?w(X) = a?w(η(X)) up to a PX null set. Therefore, by definition 4

it suffices to show a?w(η) is a strictly increasing function.

To this end, we first show for any η1 6= η2, a?w(η1) 6= a?w(η2). We show this by contradiction.

Suppose η1 6= η2 but a?w(η1) = a?w(η2). By optimality of ?(η1) and a?w(η2), we have that

(1− w)η1V
′(a?w(η1))− w(1− η1)V ′(−a?w(η1)) = 0 ,

(1− w)η2V
′(a?w(η2))− w(1− η2)V ′(−a?w(η2)) = 0 .

Note that V ′(x) < 0, since V (·) is strictly decreasing. Hence, we must have either w = 0, η1 = η2 = 0

or w = 1, η1 = η2 = 1. Both contradict with the assumption that η1 6= η2.

Next, we show a?w(η) is strictly increasing with respect to η. Let η1 < η2, we have that a?w(η1) 6=

a?w(η2). Moreover, by using the optimality of a?w(η1) and a?w(η2), we obtain that

(1− w)η1V (a?w(η1)) + w(1− η1)V (−a?w(η1)) < (1− w)η1V (a?w(η2)) + w(1− η1)V (−a?w(η2)) ,

(1− w)η2V (a?w(η2)) + w(1− η2)V (−a?w(η2)) < (1− w)η2V (a?w(η1)) + w(1− η2)V (−a?w(η1)) .

Combining these two inequalities, we get

(η1 − η2) {(1− w)V (a?w(η1))− wV (−a?w(η1))} < (η1 − η2) {(1− w)V (a?w(η2))− wV (−a?w(η2))} ,

or equivalently

(η1 − η2) {(1− w)(V (a?w(η1))− V (a?w(η2)))− w(V (−a?w(η1))− V (−a?w(η2)))} < 0 ,

which further implies a?w(η1) < a?w(η2) by using fact that V (·) is strictly decreasing. This completes

the proof of Theorem 5.

Proof of Theorem S2. We present a numerical example to demonstrate that the ROC curve
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generated by the cutoff method can be dominated by the optimal ROC curve over certain class of

model space. In particular, we assume that P(Y = 1) = 1/2, P(Y = −1) = 1/2, and conditioned on

Y , X ∼ N(Y µ,ΣY ), where µ = (1, 1)> ∈ R2, and

Σ1 =

8 5

5 4

 , Σ−1 =

 1 −3

−3 16

 . (S57)

Moreover, the model space we choose is F = {f(x) = x>β + β0 | β ∈ R2 and β0 ∈ R}.

We first generate FPR-TPR pairs (P(f(X) > 0 | Y = −1),P(f(X) > 0 | Y = 1)). Note that the

FPR-TPR pair generated by f ∈ F only depends on its sign Sign(f). Denote by H = {Sign(f) |

f ∈ F} the set of classifier induced by F . Let F0 = {f(x) = x>β | β ∈ R2}, F1 = {f(x) = x>β+1 |

β ∈ R2}, and F2 = {f(x) = x>β− 1 | β ∈ R2}. Note for any f ∈ F and k > 0, Sign(kf) = Sign(f).

Hence, we have H = {Sign(f) | f ∈ F0 ∪ F1 ∪ F2}. This allows us to consider only β ∈ R2 when

generating FPR-TPR pairs.

To proceed, let {rk > 0 | k = 1, 2 . . . , nr} be a sequence of prespecified radius. For each rk, we

sample N points {(s(k)
i , t

(k)
i ) | i = 1, 2 . . . , N} uniformly on the 2-dimensional unit sphere. For each

combination of rk and (s
(k)
i , t

(k)
i ), we set β

(k)
i = (rks

(k)
i , rkt

(k)
i ), and generate three FPR-TPR pairs:

(P(X>β
(k)
i > 1 | Y = −1),P(X>β

(k)
i > 1 | Y = 1))

(P(X>β
(k)
i > −1 | Y = −1),P(X>β

(k)
i > −1 | Y = 1))

(P(X>β
(k)
i > 0 | Y = −1),P(X>β

(k)
i > 0 | Y = 1)) .

Let A be the set of pairs generated by the above scheme. Next, we find a FPR-TPR pair (u?w, v
?
w)

such that any other FPR-TPR pairs are under the line wp−(u − u?w) − (1 − w)p+(v − v?w) = 0 by

using a grid search method on A. Denote by f ?w ∈ F the discriminant function corresponding to

(u?w, v
?
w). We calculate the ROC curve generated by the cutoff method accordingly by evaluating

(FPR(f ?ω − δ),TPR(f ?ω − δ)) for δ ∈ R. All these results are shown in Figure S5, in which the

grey area is a Monte Carlo approximation of A, and the blue curve is the ROC curve for the cutoff
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method. Clearly, the ROC curve generated by cutoff method is dominated by population ROC

curve. This completes the proof of Theorem S2.

Proof of Theorem S3. We first prove (S6). For any measurable classifier h, define Rh := {x :

h(x) = 1}. Then, we write the objective function of (S4) in terms of Rh as:

(1− w)P(h(X) = −1, Y = 1) + wP(h(X) = 1, Y = −1)

= (1− w)E((1− I(X ∈ Rh))η(X)) + wE(I(X ∈ Rh)(1− η(X)))

= (1− w)p+ − E(I(X ∈ Rh)(η(X)− w)) .

It is easy to see that the minimizer h?w must be of the form {x : h?w(x) = 1} = {x : η(x) > w} ∪Nw

up to a PX-null set, where Nw ⊆ {η(X) = w}. This completes the proof of (S6).

Next, we prove (S7). Note that γW (Ha) can be decomposed as

γW (Ha) =

{(FPR(h?w),TPR(h?w)) | w = 0 or w = 1} ∪ {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1)} . (S58)

We first show that

{(FPR(h?w),TPR(h?w)) | w = 0 or w = 1} = {(0, s0)} ∪ {(s1, 1)} , (S59)

for some s0 ∈ [0,P(η(X) = 1)/p+] and s1 ∈ [1−P(η(X) = 0)/p−, 1]. Using (S6), we have that when

w = 1,

FPR(h?w) = P(h?w(X) = 1 | Y = −1) =
E(1− η(X))(I(η(X) > 1) + I(X ∈ Nw))

p−
= 0 ,

TPR(h?w) = P(h?w(X) = 1 | Y = 1) =
Eη(X)(I(η(X) > 1) + I(X ∈ Nw))

p+
∈ [0,P(η(X) = 1)/p+] .
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When w = 0, we have that

FPR(h?w) = P(h?w(X) = 1 | Y = −1) ∈ [1− P(η(X) = 0)/p−, 1] ,

TPR(h?w) = P(h?w(X) = 1 | Y = 1) = 1 .

This proves (S59).

Next, note for any w ∈ (0, 1),

FPR(h?w) =
E(1− η(X))(I(η(X) > w) + I(X ∈ Nw))

p−
∈ [0, ᾱ] , (S60)

where ᾱ = 1 − P(η(X) = 0)/p−. Thus, we can further decompose the second set in the RHS of

(S58) as

{(FPR(h?w),TPR(h?w)) | w ∈ (0, 1)} =

{(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) = 0 or ᾱ}∪

{(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) ∈ (0, ᾱ)} .

We next show that

{(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) = 0 or ᾱ} = S0 ∪ S1 , (S61)

where S0 and S1 are defined in (S8) and (S9). To this end, we give the necessary and sufficient

conditions for (α, s(α)) ∈ {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1)} at the two boundary points α = 0

and α = ᾱ. In particular, we shall show that (i) (0, s(0)) ∈ {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1)}

if and only if c(0) < 1; and (ii) (ᾱ, s(ᾱ)) ∈ {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1)} if and only if

limα→(1−P(η(X)=0)/p−)− c(α) > 0.

For (i), by the proof of Proposition S2, we have that s′+(0) < ∞ if and only if c(0) < 1. When

s′+(0) <∞, for any w ∈ (0, 1) such that wp−/((1− w)p+) > s′+(0), we have w > c(0) by (S92). By
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using (ii) in Lemma S3, we have that g(c(0)) = E(1−η(X))I(η(X) > c(0)) = 0, which further implies

P(w ≤ η(X) < 1) = 0. Therefore we obtain FPR(h?w) = 0 and TPR(h?w) = P(η(X) = 1)/p+ = s(0).

When s′+(0) =∞, for any w ∈ (0, 1), we can find α > 0 such that (s(α)−s(0))/α > wp−/((1−w)p+),

which implies

(1− w)p+(1− s(α)) + wp−α < (1− w)p+(1− s(0)) .

Therefore (0, s(0)) can not be the FPR-TPR pairs calculated from h?w. This completes the proof of

(i).

Similarly, by the proof of Proposition S2, we have s′−(ᾱ) = 0 if and only if c̄ = limα→ᾱ c(α) = 0.

When s′−(ᾱ) > 0, since c̄ > 0 and c(ᾱ) = 0, we have that c(α) is not continuous at α = ᾱ. By using

(iii) in Lemma S3, there exists c ∈ (0, 1) such that P(0 < η(X) < c) = 0. Let w ∈ (0, c), we have

that

{x : h?w(x) = 1} = {x : η(x) > w} ∪ Nw = {x : η(x) > 0}

up to PX null set. Therefore we obtain FPR(h?w) = 1− P(η(X) = 0)/p− and TPR(h?w) = 1. When

s′−(ᾱ) = 0, for any w ∈ (0, 1), we can find α < ᾱ such that (s(ᾱ)−s(α))/(ᾱ−α) > wp−/((1−w)p+),

which implies

(1− w)p+(1− s(α)) + wp−α < (1− w)p+(1− s(ᾱ)) + wp−ᾱ .

Therefore (ᾱ, s(ᾱ)) can not be the FPR-TPR pairs calculated from h?w. This completes the proof of

(ii). This proves (S61).

Lastly, it remains to show that

{(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) ∈ (0, ᾱ)} = B1 ∪B2 ∪B3 , (S62)
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where

B1 = {(α, s(α)) : P(η(X) = c(α)) = 0, α ∈ (0, ᾱ)} ,

B2 = {(α, s(α)) : s(α) is non-differentiable at α, α ∈ (0, ᾱ)} ,

B3 = {(α, s(α)) : P(η(X) = c(α)) > 0, α = FPR(h?w) ∈ (0, ᾱ)} . (S63)

To this end, we write the LHS of (S62) as A1 ∪ A2, where

A1 = {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) ∈ (0, ᾱ),P(η(X) = w) = 0} ,

A2 = {(FPR(h?w),TPR(h?w)) | w ∈ (0, 1),FPR(h?w) ∈ (0, ᾱ),P(η(X) = w) > 0} . (S64)

To prove (S62), our plan is to show that

A1 = B1 ∪B2 , A2 ⊆ B2 ∪B3 , B3 ⊆ A2 ∪B2 . (S65)

The second and third fact in (S65) means that A2 \ B2 ⊆ B3 \ B2 and B3 \ B2 ⊆ A2 \ B2, which

further implies that A2 \B2 = B3 \B2, or equivalently,

A2 ∪B2 = B3 ∪B2 . (S66)

By combining (S66) with the first fact in (S65), we get (S62).

We first prove A1 ⊆ B1 ∪ B2. To show this, we prove that for any (FPR(h?w),TPR(h?w)) ∈ A1,

we have either (FPR(h?w),TPR(h?w)) ∈ B1 or (FPR(h?w),TPR(h?w)) ∈ B2. By applying Lemma S4,

we know that there must exist αw such that (FPR(h?w),TPR(h?w)) = (αw, s(αw)) with c(αw) ≤

w. When c(αw) = w, we have P(η(X) = c(αw)) = P(η(X) = w) = 0, which implies that

(FPR(h?w),TPR(h?w)) = (αw, s(αw)) ∈ B1. When c(αw) < w, by using (S17), we have P(c(αw) <

η(X) < w) = 0 and E(1 − η(X))I(η(X) > c(αw)) = αwp
−. Combining this with Proposition S2

and part (iii) of Lemma S3, it follows that s(α) is non-differentiable at α = αw. This proves that
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(FPR(h?w),TPR(h?w)) = (αw, s(αw)) ∈ B2. This completes the proof of A1 ⊆ B1 ∪B2.

Next we prove that B1 ∪B2 ⊆ A1. We first show that B1 ⊆ A1. By definition of B1, we need to

show that for any α ∈ (0, ᾱ) with P(η(X) = c(α)) = 0, we must have (α, s(α)) ∈ A1. By part (ii)

of Lemma S3, we have that

E(1− η(X))I(η(X) > c(α)) ≤ αp− ≤ E(1− η(X))I(η(X) ≥ c(α)) .

This, combined with P(η(X) = c(α)) = 0, implies E(1−η(X))I(η(X) > c(α)) = αp−. Let w = c(α).

By using (S6), we have

FPR(h?w) =
E(1− η(X))I(η(X) > w)

p−
=
E(1− η(X))I(η(X) > c(α))

p−
= α .

By Lemma S4, we have TPR(h?w) = s(α). Therefore, it follows that (α, s(α)) ∈ A1, which completes

the proof of B1 ⊆ A1.

We next show that B2 ⊆ A1. By definition of B2, it suffices to show that for any α ∈ (0, ᾱ) at

which s(α) is non-differentiable, we must have (α, s(α)) ∈ A1. By Proposition S2 and part (iii) of

Lemma S3, we have that E(1− η(X))I(η(X) > c(α)) = αp− and there exists c ∈ (c(α), 1) such that

P(c(α) < η(X) < c) = 0. Then, for any w ∈ (c(α), c), we can see that P(c(α) < η(X) ≤ w) = 0.

This, combined with (S6), implies that

FPR(h?w) =
E(1− η(X))I(η(X) > w)

p−
=
E(1− η(X))I(η(X) > c(α))

p−
= α .

Again by applying Lemma S4, we have that TPR(h?w) = s(α). This implies that (α, s(α)) ∈ A1,

which completes the proof of B2 ⊆ A1. This finishes the proof of A1 = B1 ∪B2.

Next, we prove the second facts in (S65), which is A2 ⊆ B2∪B3. To show this, we prove that for

any (FPR(h?w),TPR(h?w)) ∈ A2, we have either (FPR(h?w),TPR(h?w)) ∈ B2 or (FPR(h?w),TPR(h?w)) ∈

B3. By Lemma S4, there must exist αw such that (FPR(h?w),TPR(h?w)) = (αw, s(αw)) with

c(αw) ≤ w. When c(αw) = w, we have P(η(X) = c(αw)) = P(η(x) = w) > 0, which implies
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(FPR(h?w),TPR(h?w)) = (αw, s(αw)) ∈ B3. When c(αw) < w, by a similar argument used in the

proof of A1 ⊆ B1 ∪ B2, we have s(α) is non-differentiable at αw. This completes the proof of

A2 ⊆ B2 ∪B3.

It then remains to prove the last fact in (S65), which is B3 ⊆ A2∪B2. To this end, we show that

for any αw = FPR(h?w) ∈ (0, ᾱ) with P(η(X) = c(αw)) > 0, we have either (αw, s(αw)) ∈ A2 or s(α)

is non-differentiable at αw. Since αw ∈ (0, ᾱ), we must have w ∈ (0, 1). By using Lemma S4, we

have c(αw) ≤ w and s(αw) = TPR(h?w). When c(αw) = w, then we have P(η(X) = w) = P(η(X) =

c(αw)) > 0, which further implies (αw, s(αw)) = (FPR(h?w),TPR(h?w)) ∈ A2. When c(αw) < w,

again by a similar argument used in the proof of A1 ⊆ B1 ∪ B2, we have s(α) is non-differentiable

at αw. Therefore, we have B3 ⊆ A2 ∪B2. This completes the proof of (S62).

Finally, (S7) follow trivially from (S59), (S61) and (S62). This completes the proof of Theorem

S3.

Proof of Corollary S3. Denote ᾱ = 1− P(η(X) = 0)/p−. We start by proving that

{(α, s(α)) | α ∈ [0, ᾱ] \ I} = cl(A1) ∪ S0 ∪ S1 , (S67)

where A1 is defined in (S64). To this end, we first show

{(α, s(α)) | α ∈ [0, ᾱ] \ I} ⊆ cl(A1) ∪ S0 ∪ S1 . (S68)

To this end, we start by showing that

{(0, s(0))} ∈ cl(A1) ∪ S0 and {(ᾱ, s(ᾱ))} ∈ cl(A1) ∪ S1 (S69)

For the first claim in (S69), when c(0) < 1, we have {(0, s(0))} = S0 ⊆ cl(A1)∪ S0. When c(0) = 1,

by using definition of c(0), we have P(c0 < η(X) < 1) > 0 for any c0 < 1. Also note the set

{w ∈ (0, 1) | P(η(X) = w) > 0} is countable, which implies that we can find wn ∈ (0, 1) with

P(η(X) = wn) = 0 such that wn → 1 as n → ∞. Combining these with (S6), we obtain that
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αwn = FPR(h?wn
) = E(1− η(X))I(η(X) > wn)/p− > 0, (αwn , s(αwn)) ∈ A1 and

αwn =
1

p−
E(1− η(X))I(η(X) > wn)→ 1

p−
E(1− η(X))I(η(X) = 1) = 0 .

Then using the continuity of s(α) (c.f., Theorem 1), we have that limn→∞ s(αwn) = s(0). Therefore,

{(0, s(0))} ∈ cl(A1) ⊆ cl(A1) ∪ S0. This completes the proof of the first claim.

For the second claim in (S69), when limα→ᾱ− c(α) > 0, then obviously {(ᾱ, s(ᾱ))} ∈ cl(A1) ∪ S1

since {(ᾱ, s(ᾱ))} = S1. When limα→ᾱ− c(α) = 0, note that part (iii) in Lemma S3 implies that

P(0 < η(X) < c1) > 0 for any c1 > 0. Therefore, we can find 0 < w′n < c1 with P(η(X) = w′n) = 0

such that w′n → 0 as n → ∞. By combining these with (S6), we obtain that αw′n = FPR(h?w′n) =

E(1− η(X))I(η(X) > w′n)/p− < ᾱ, (αw′n , s(αw′n)) ∈ A1 and

αw′n =
1

p−
E(1− η(X))I(η(X) > w′n)→ 1

p−
E(1− η(X))I(η(X) > 0) = ᾱ .

Again by using continuity of s(α), we have that limn→∞ s(αw′n) = s(ᾱ) = 1. Therefore it follows

that {(ᾱ, s(ᾱ))} ∈ cl(A1) ⊆ cl(A1) ∪ S1. This proves the second claim, and therefore completes the

proof of (S69).

Next, we prove that

{(α, s(α)) | α ∈ (0, ᾱ) \ I} ⊆ cl(A1) . (S70)

Since B1 ⊆ A1 (c.f. (S65)), by Proposition S1 we have that

{(α, s(α)) | α ∈ (0, ᾱ) \ cl(I)} ⊆ A1 .

Therefore it suffices to show (α−l , s(α
−
l )) ∈ cl(A1) and (α+

l , s(α
+
l )) ∈ cl(A1) for any α−l , α

+
l ∈ (0, ᾱ).

Again using Proposition S1, for any α ∈ (α−l , α
+
l ), we have P(η(X) = c(α)) > 0, α−l = E(1 −

η(X))I(η(X) > c(α))/p− and α+
l = E(1− η(X))I(η(X) ≥ c(α))/p−.

We first show (α−l , s(α
−
l )) ∈ cl(A1). Since α−l > 0, we can find c(α) < wn < 1 with P(η(X) =
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wn) = 0 and αwn = FPR(h?wn
) = E(1−η(X))I(η(X) > wn)/p− > 0 such that wn → c(α). Therefore

we have that αwn ≤ α−l , (αwn , s(αwn)) ∈ A1 and

αwn =
1

p−
E(1− η(X))I(η(X) > wn)→ 1

p−
E(1− η(X))I(η(X) > c(α)) = α−l ,

which further implies s(αwn) → s(α−l ) by the continuity of s(α). This completes the proof of

(α−l , s(α
−
l )) ∈ cl(A1).

We next show that (α+
l , s(α

+
l )) ∈ cl(A1). Since α+

l < ᾱ, we can find 0 < w′n < c(α) with

P(η(X) = w′n) = 0 and αw′n = FPR(h?w′n) = E(1−η(X))I(η(X) > w′n)/p− < ᾱ such that wn → c(α).

This implies αw′n ≥ α−l , (αw′n , s(αw′n)) ∈ A1 and

αw′n =
1

p−
E(1− η(X))I(η(X) > w′n)→ 1

p−
E(1− η(X))I(η(X) ≥ c(α)) = α+

l .

Therefore we have s(αw′n) → s(α+
l ), which further means (α+

l , s(α
+
l )) ∈ cl(A1). This finishes the

proof of (S70).

Now we have that

{(α, s(α)) | α ∈ (0, ᾱ) \ I} ∪ {(0, s(0))} ∪ {(ᾱ, s(ᾱ))} ∪ S0 ∪ S1

⊆ cl(A1) ∪ {(0, s(0))} ∪ {(ᾱ, s(ᾱ))} ∪ S0 ∪ S1 ,

by using (S70). Combining this with facts that S0 ⊆ {(0, s(0))}, S1 ⊆ {(ᾱ, s(ᾱ))} and the two

claims in (S69), we finish the proof of (S68).

Our next step is to prove

cl(A1) ∪ S0 ∪ S1 ⊆ {(α, s(α)) | α ∈ [0, ᾱ] \ I} . (S71)
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By using (S69), we have

{(0, s(0))} ∪ {(ᾱ, s(ᾱ))} ⊆ cl(A1) ∪ S0 ∪ S1 .

Therefore to get (S71), it suffices to prove

cl(A1) \ ({(0, s(0))} ∪ {(ᾱ, s(ᾱ))}) ⊆ {(α, s(α)) | α ∈ (0, ᾱ) \ I} . (S72)

By using (S70), this is equivalent to show (α, s(α)) /∈ cl(A1) for any α ∈ (α−l , α
+
l ). We show

this claim by contradiction. Suppose (α, s(α)) ∈ cl(A1) for some α ∈ (α−l , α
+
l ). There must exist

wn ∈ (0, 1) with αn = FPR(h?wn
) ∈ (0, ᾱ) and P(η(X) = wn) = 0, such that αn → α. Without loss

of generality, we can assume wn → w?. Since αn = FPR(h?wn
) = E(1− η(X))I(η(X) > wn)/p−, we

have either α = E(1− η(X))I(η(X) > w?)/p− or α = E(1− η(X))I(η(X) ≥ w?)/p−. Moreover, by

using Proposition S1, we have that P(η(X) = c(α)) > 0 and

E(1− η(X))I(η(X) > c(α)) < αp− < E(1− η(X))I(η(X) ≥ c(α)) . (S73)

When α = E(1−η(X))I(η(X) > w?)/p−, the first inequality in (S73) implies c(α) > w?, contradicts

the second inequality since c(α) < 1 (c.f. part (i) in Lemma S3) and P(η(X) = c(α)) > 0. Similar

contradictions can be obtained for α = E(1− η(X))I(η(X) ≥ w?)/p−. This completes the proof of

(S71). By combining (S68) and (S71), we finish the proof of (S67).

Now we are ready to prove (S10). By using Proposition S1, for any (α, s(α)) ∈ B3 (c.f. (S63)),

we have α ∈ [α−l , α
+
l ] for some index l. Therefore we can represent B3 with

B3 =
⋃
l

{(αl, s(αl))} (S74)
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for some αl ∈ [α−l , α
+
l ]. Moreover, by using (S7), we have that

cl(γW (Ha)) = cl(B1 ∪B2) ∪ cl(B3) ∪ {(0, s0)} ∪ {(s1, 1)} ∪ S0 ∪ S1

= cl(A1) ∪ S0 ∪ S1 ∪ cl(B3) ∪ {(0, s0)} ∪ {(s1, 1)}

= {(α, s(α)) | α ∈ [0, ᾱ] \ I} ∪B3 ∪ {(0, s0)} ∪ {(s1, 1)}

= {(α, s(α)) | α ∈ [0, ᾱ] \ I} ∪ (
⋃
l

{(αl, s(αl))}) ∪ {(0, s0)} ∪ {(s1, 1)}

where the third equality uses (S67) and the fact that limiting points of B3 must lie in {(α, s(α)) |

α ∈ [0, ᾱ] \ I}. Note (0, s0) � (0, s(0)) and (s1, 1) � (ᾱ, 1), we obtain that

γ?W (Ha) = PF(cl(γW (Ha))) = {(α, s(α)) | α ∈ [0, ᾱ] \ I} ∪ (
⋃
l

{(αl, s(αl))})

This completes the proof of Corollary S3.

Proof of Corollary S4. First by Theorem S3, we have that γW (Ha) ⊆ S(Ha). Next, by us-

ing Corollary S3 and the definition of γ?W (Ha), we get {(α, s(α)) | α ∈ [0, ᾱ] \ I} ⊆ γ?W (Ha) ⊆

cl(γW (Ha)). These combined with Lemma S5 implies PF(conv(γW (Ha))) = γ(Ha). Therefore we

finish the proof of Corollary S4.

Proof of Theorem S4. We first prove

γW (H) \ {(FPR(h?w,H),TPR(h?w,H)) : w = 0 or w = 1} ⊆ γ(H) . (S75)

For any w ∈ [0, 1], let h?w,H be a solution of (S4) and denote (uw, vw) = (FPR(h?w,H),TPR(h?w,H)).

It suffices to show for any w ∈ (0, 1), the solution of (S4) can not be dominated by any other point

in S(H). We show this by contradiction. Suppose that there exists h ∈ S(H) such that h � hw.

Let (u, v) = (FPR(h),TPR(h)). Then we have that u ≤ uw, v ≥ vw and (u, v) 6= (uw, vw). This,

together with w ∈ (0, 1), implies that

(1− w)p+(1− vw) + wp−uw > (1− w)p+(1− v) + wp−u ,
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which contradicts with the optimality of (uw, vw) for (S4) as

(1− w)p+(1− vw) + wp−uw ≤ (1− w)p+(1− v) + wp−u .

This proves (S75).

Next we prove that γ?W (H) ⊆ γ(H). Denote by γ̃W (H) the LHS of (S75). By definition of γ?W (H)

we have that

γ?W (H) = PF(cl(γW (H))) = PF(cl(γ̃W (H)) ∪ {(u0, v0)} ∪ {(u1, v1)}) .

To show γ?W (H) ⊆ γ(H), by using (S75) it suffices to prove that if (uw, vw) /∈ cl(γ̃W (H)) for

w = 0 or 1, then there exists h ∈ H such that (FPR(h),TPR(h)) ∈ cl(γ̃W (H)) and h dominates

h?w,H. First, we consider the case where w = 0. Assume (uwn , vwn) is a converging sequence

for some wn ∈ (0, 1) such that wn → 0, and denote its limit as (ũ0, ṽ0) ∈ cl(γW (H)). Note

(u0, v0) /∈ cl(γW (H)), we have that (ũ0, ṽ0) 6= (u0, v0). Since S(H) is closed, there exists h ∈ H such

that (FPR(h),TPR(h)) = (ũ0, ṽ0). We shall then show h dominates h?w,H. On one hand, by the

optimality of (uwn , vwn), we have that (1−wn)p+(1−vwn)+wnp
−uwn ≤ (1−wn)p+(1−v0)+wnp

−u0,

which implies

(u0 − uwn)wnp
− ≥ (1− wn)p+(v0 − vwn) . (S76)

By letting wn → 0, we obtain that ṽ0 ≥ v0. On the other hand, by the optimality of (u0, v0), we have

that vwn ≤ v0. By combining this with (S76), we obtain that (u0−uwn)wnp
− ≥ (1−wn)p+(v0−vwn) ≥

0, which implies that uwn ≤ u0. By letting wn → 0, we get ũ0 ≤ u0. Therefore we show that ũ0 ≤ u0

and ṽ0 ≥ v0, which together with (ũ0, ṽ0) 6= (u0, v0) implies that (ũ0, ṽ0) dominates (ũ0, ṽ0). This

finishes the proof of the case that w = 0.

Next, we consider the case where w = 1. Similarly, assume (uwn , vwn) is a converging sequence

for some wn ∈ (0, 1) such that wn → 1, and we denote its limit as (ũ1, ṽ1) ∈ cl(γW (H)). Since

(u1, v1) /∈ cl(γW (H)), we have that (ũ1, ṽ1) 6= (u1, v1). By closedness of S(H), there must exist h ∈ H
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such that (FPR(h),TPR(h)) = (ũ1, ṽ1). We next show that h dominates h?w,H. On one hand, by the

optimality of (uwn , vwn), we have that (1−wn)p+(1−vwn)+wnp
−uwn ≤ (1−wn)p+(1−v1)+wnp

−u1,

which further implies that

u1 − uwn ≥
(1− wn)p+

wnp−
(v1 − vwn) . (S77)

Letting wn → 1, we obtain that ũ1 ≤ u1. On the other hand, by optimality of (u1, v1), we have that

uwn ≥ u1. Combining with (S77), we obtain that v1 ≤ vwn . Letting wn → 1, it follows that ṽ1 ≥ v1.

Hence we have shown that ũ1 ≤ u1 and ṽ1 ≥ v1, which, together with (ũ1, ṽ1) 6= (u1, v1), implies

that (ũ1, ṽ1) dominates (u1, v1). This finishes the proof for w = 1.

Next, we present an example to show that it is indeed possible to have γW (H) 6= γ(H) when the

model is mis-specified. In particular, we consider a standard quadratic discriminant analysis (QDA)

setup, in which we have

Y ∼ Bernoulli(1/2) and X =


N(µ−,Σ−) if Y = −1

N(µ+,Σ+) if Y = 1

where µ− = (0, 0, 0)>, µ+ = (1, 1, 1)>, Σ− = Diag {1, 9, 16} and Σ+ = Diag {9, 16, 1}. We consider

the model space to be H = {Sign(f) | f ∈ F} with F = {x>β − 1 | βi ∈ [0, 1], i = 1, 2, 3}.

First, we generate FPR-TPR pairs (P(X>β > 1 | Y = −1),P(X>β > 1 | Y = 1)) using a

grid search over [0, 1]3 for β. All the FPR-TPR pairs are shown in both panels of Figure S3 as an

approximation to S(H). Next, we highlight all pairs on the upper boundary in the top panel of

Figure S3, which corresponds to the population ROC curve of the constrained method γC(H). We

can see that the pareto frontier of population constrained ROC curve γ?C(H) coincides with γC(H),

which is also the same as the optimal ROC curve. For the weighted method, finding a solution to

(S4) is equivalent to finding a FPR-TPR pair (u?w, v
?
w) such that any other FPR-TPR pairs are under

the line wp−(u− u?w)− (1−w)p+(v− v?w) = 0. The population ROC curve of the weighted method

γW (H) is the solid curve in the bottom panel of Figure S3. Clearly, we have γW (H) = γ?W (H), and

it is a strict subset of γ(H). Moreover, we have PF(conv(γW (H))) does not contain γ(H) \ γW (H).
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Therefore we have

γ(H) \ γ?W (H) 6= ∅ and γ(H) \ PF(conv(γW (H))) 6= ∅ .

This completes the proof of Theorem S4.

Proof of Proposition S1. We first show that c(α) = c(α̃) for any α ∈ I(α̃). To prove this, we

only need to show that g(c(α̃)) ≤ αp− and g(c) > αp− for any c < c(α̃). For the former claim, note

that for any α ∈ I(α̃),

g(c(α̃)) = E(1− η(X))I(η(X) > c(α̃)) ≤ αp− . (S78)

For the later claim, note that for any c < c(α̃),

g(c) ≥ g(c(α̃)) + (1− c(α̃))P(η(X) = c(α̃)) = E(1− η(X))I(η(X) ≥ c(α̃)) > αp− . (S79)

Now we are ready to prove linearity of s(α) when α ∈ I(α̃). Without loss of generality, we may

assume that α > 0. By using (S22) and the fact that

P(X ∈ Nα) =
E(1− η(X))(α− I(η(X) > c(α)))

1− c(α)
=
αp− − E(1− η(X))I(η(X) > c(α))

1− c(α)
, (S80)

we have that

s(α) =
P(R?

α)− αp−

p+
=
P(η(X) > c(α)) + P(Nα)

p+
− αp−

p+

=
αp− − E(1− η(X))I(η(X) > c(α))

p+(1− c(α))
+
P(η(X) > c(α))− αp−

p+

=
c(α̃)p−

p+(1− c(α̃))
α +

E(η(X)− c(α̃))I(η(X) > c(α̃))

p+(1− c(α̃))
, (S81)

where we have used the fact that c(α) = c(α̃) for any α ∈ I(α̃). This proves the linearity of s(α)

over I(α̃) when P(η(X) = c(α̃)) > 0 for some c(α̃)) < 1.
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Conversely, suppose that s(α) is linear in δα̃. Then, s(α) must be differentiable. Moreover, by

Proposition S2, it follows that its derivative over δα̃ is s′(α) = s′+(α) = p−c(α)
p+(1−c(α))

, which must be a

constant function over the interval δα̃. Hence, c(α) is a constant over the interval δα̃. Then for any

α1, α2 ∈ δα̃ with α1 < α2, by using (ii) of Lemma S3, we have that

E(1− η(X))I(η(X) > c(α1)) ≤ α1p
− and E(1− η(X))I(η(X) ≥ c(α2)) ≥ α2p

− . (S82)

Combining these two equations with the fact that c(α1) = c(α2) = c(α̃), we obtain that

(1− c(α̃))P(η(X) = c(α̃)) = E(1− η(X))I(η(X) ≥ c(α̃))− E(1− η(X))I(η(X) > c(α̃))

= E(1− η(X))I(η(X) ≥ c(α2))− E(1− η(X))I(η(X) > c(α1))

≥ (α2 − α1)p− > 0 ,

which proves that P(η(X) = c(α̃)) > 0. This completes the proof.

Proof of Proposition S2. We first show that (i) s(α) is differentiable at α for 0 < α < 1−P(η(X)=0)
p−

if and only if c(α) is continuous at α; and (ii) s(α) is left-differentiable at α = 1− P(η(X)=0)
p−

. Then

we show that (iii) s(α) is right-differentiable at α = 0 if and only if c(0) < 1.

To prove (i) and (ii), we first derive the left and right derivative of s(α) over (0, 1 − P(η(X)=0)
p−

],

denoted as s′+(α) and s′−(α), respectively. First, using (S29), we obtain that for any 1− P(η(X)=0)
p−

≥

α̃ > α > 0,

(α̃− α)
p−c(α̃)

p+(1− c(α̃))
≤ s(α̃)− s(α) ≤ (α̃− α)

p−c(α)

p+(1− c(α))
. (S83)

Letting α̃ → α and using the right continuity of c(α) (c.f. Lemma S3), we obtain that for any

α ∈ (0, 1− P(η(X)=0)
p−

), the right derivative of s(α) is

s′+(α) =
p−c(α)

p+(1− c(α))
(S84)

Next, we derive the left derivative of s(α) over (0, 1− P(η(X)=0)
p−

]. From (S29), we know that for
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any 0 < α̃ < α,

(α− α̃)
p−c(α)

p+(1− c(α))
≤ s(α)− s(α̃) ≤ (α− α̃)

p−c(α̃)

p+(1− c(α̃))
.

Now we consider two cases: (i) c(α) is continuous at α; and (ii) c(α) is discontinuous at α. When

c(α) is continuous at α, we have that limα̃→α−
p−c(α̃)

p+(1−c(α̃))
= p−c(α)

p+(1−c(α))
and s′−(α) = p−c(α)

p+(1−c(α))
. Hence,

in this case, we have that s′−(α) exists for α ∈ (0, 1− P(η(X)=0)
p−

] and c(α) is continuous at α.

When c(α) is discontinuous at α, then by the proof of (iii) in Lemma S3, we know that g(c(α)) =

αp− and P(c(α) < η(X) < c̄) = 0, where c̄ = limα̃→α− c(α̃). This further implies that P(X ∈ Nα) =

αp−−g(c(α))
1−c(α)

= 0. By (S22) and Theorem 2, we know that for any α > 0, p+s(α) = P(X ∈ R?
α)− αp−

with R?
α = {x : η(x) > c(α)} ∪ Nα and P(X ∈ Nα) = αp−−g(c(α))

1−c(α)
. For any 0 < α̃ < α, we have that

c(α̃) ≥ c̄ > c(α) due to the discontinuity of c(α). Therefore,

p+(s(α)− s(α̃)) = P(X ∈ R?
α)− αp− − P(X ∈ R?

α̃) + α̃p−

= P(η(X) > c(α)) + P(X ∈ Nα)− P(η(X) > c(α̃))− P(X ∈ Nα̃)− p−(α− α̃)

= P(c(α) < η(X) ≤ c(α̃))− α̃p− − g(c(α̃))

1− c(α̃)
− p−(α− α̃)

= P(c̄ ≤ η(X) ≤ c(α̃))− α̃p− − g(c(α̃))

1− c(α̃)
− p−(α− α̃) , (S85)

where we have used the fact that P(X ∈ Nα) = 0 and P(c(α) < η(X) < c̄) = 0. Moreover, note

that

g(c̄) = E(1− η(X))I(η(X) > c̄) = E(1− η(X))I(η(X) > c(α))− (1− c̄)P(η(X) = c̄)

= αp− − (1− c̄)P(η(X) = c̄) . (S86)

where we have used the fact that E(1−η(X))I(η(X) > c(α)) = g(c(α)) = αp− and P(c(α) < η(X) <
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c̄) = 0. Using this, we obtain that

g(c(α̃)) = g(c̄)− (g(c̄)− g(c(α̃)))

= αp− − (1− c̄)P(η(X) = c̄)− E(1− η(X))I(c̄ < η(X) ≤ c(α̃))

Substituting this into (S85), we obtain that

p+(s(α)− s(α̃))

=
(α− α̃)p−c(α̃)

1− c(α̃)
+
c̄− c(α̃)

1− c(α̃)
P(η(X) = c̄) +

E(η(X)− c(α̃))I(c̄ < η(X) ≤ c(α̃))

1− c(α̃)

=
(α− α̃)p−c(α̃)

1− c(α̃)
+
c̄− c(α̃)

1− c(α̃)
P(η(X) = c̄) +

E(η(X)− c(α̃))I(c̄ < η(X) < c(α̃))

1− c(α̃)
, (S87)

Now we derive s′−(α) by considering two scenarios. First, if c(α̃) = c̄ for some 0 < α̃ < α, then the

last two terms in (S87) vanishes, and we have that s′−(α) = limα̃→α−
p−c(α̃)

p+(1−c(α̃))
= p−c̄

p+(1−c̄) .

Second, if c(α̃) > c̄ for all 0 < α̃ < α, then by definition of c(α̃), we must have g(c̄) > α̃p− for

all α̃ < α, which implies that g(c̄) ≥ αp−. This together with (S86), implies that P(η(X) = c̄) ≤ 0,

or equivalently P(η(X) = c̄) = 0. This implies that the second term in (S87) vanishes.

Now we bound the third term in (S87). Note that

∣∣∣∣E(η(X)− c(α̃))I(c̄ < η(X) < c(α̃))

1− c(α̃)

∣∣∣∣ ≤ (c(α̃)− c̄)P(c̄ < η(X) < c(α̃))

1− c(α̃)
. (S88)

Next we bound P(c̄ < η(X) < c(α̃)). Using (S86), P(η(X) = c̄) = 0 and the definition of c(α̃),

we have that g(c̄) = αp− and g(c) > α̃p− for any c ∈ (c̄, c(α̃)). This implies that g(c) > α̃p− =

αp−+(α̃−α)p− = g(c̄)+(α̃−α)p−. Therefore, (α− α̃)p− > g(c̄)−g(c) = E(1−η(X))I(c̄ < η(X) ≤

c) ≥ (1− c)P(c̄ < η(X) ≤ c). Letting c→ c(α̃), we obtain that

P(c̄ < η(X) < c(α̃)) = lim
c→c(α̃)−

P(c̄ < η(X) ≤ c) ≤ lim
c→c(α̃)−

(α− α̃)p−

1− c
=

(α− α̃)p−

1− c(α̃)

Combining this with (S88), we obtain that the absolute value of the third term in (S87) is bounded
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by (α−α̃)(c(α̃)−c̄)p−
(1−c(α̃))2

, which further implies that

∣∣∣∣s′−(α)− p−c̄

p+(1− c̄)

∣∣∣∣ ≤ ∣∣∣∣ lim
α̃→α−

p−c(α̃)

p+(1− c(α̃))
− p−c̄

p+(1− c̄)

∣∣∣∣+

∣∣∣∣ lim
α̃→α−

(c(α̃)− c̄)p−

(1− c(α̃))2

∣∣∣∣ = 0 .

Hence, in this case, we have that s′−(α) = p−c̄
p+(1−c̄) for α ∈ (0, 1− P(η(X)=0)

p−
] and c(α) is discontinuous

at α.

Consequently, we have shown that in all scenarios that, for any α ∈ (0, 1− P(η(X)=0)
p−

],

s′−(α) =
p−c̄

p+(1− c̄)
= lim

α̃→α−

p−c(α̃)

p+(1− c(α̃))
(S89)

where c̄ = limα̃→α− c(α̃). This completes the proof of case (ii) that s(α) is left-differentiable at

α = 1 − P(η(X)=0)
p−

. Combining this with (S84) and the fact that c(α) is right continuous, we know

that s(α) is differentiable over (0, 1− P(η(X)=0)
p−

), if and only if s′−(α) = s′+(α), which is then equivalent

to the fact that c(α) is continuous at α. This then proves case (i) that s(α) is differentiable if and

only if c(α) is continuous for any 0 < α < 1− P(η(X)=0)
p−

.

Finally, we prove (iii). Recall that we need to show that s(α) is right-differentiable at α = 0 if

and only if c(0) < 1. By Theorem 2, we have that R?
α = {x : η(x) > c(α)} ∪ Nα when α > 0 with

c(α) < 1, which further implies that R?
0 ⊆ R?

α for any α > 0. Combining this with (7) we obtain

that

p+(s(α)− s(0)) = Eη(X)I(X ∈ R?
α)− Eη(X)I(X ∈ R?

0) = Eη(X)I(X ∈ R?
α \R?

0)

= Eη(X)I(c(α) < η(X) < 1) + c(α)P(X ∈ Nα)

= Eη(X)I(c(α) < η(X) < 1) +
c(α)

1− c(α)
E(1− η(X))(α− I(η(X) > c(α)))

=
αp−c(α)

1− c(α)
+
Eη(X)I(c(α) < η(X) < 1)

1− c(α)
− c(α)

1− c(α)
P(c(α) < η(X) < 1)

=
αp−c(α)

1− c(α)
+
E(η(X)− c(α))I(c(α) < η(X) < 1)

1− c(α)
,
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which implies that

s(α)− s(0)

α
=

p−c(α)

p+(1− c(α))
+
E(η(X)− c(α))I(c(α) < η(X) < 1)

p+(1− c(α))α
(S90)

By (iii) in Lemma S3, we have c(0) = limα→0+ c(α). When c(0) = 1, we have that

lim
α→0+

s(α)− s(0)

α
=∞ . (S91)

Next, we prove that that when c(0) < 1, we have

lim
α→0+

s(α)− s(0)

α
=

p−c(0)

p+(1− c(0))
. (S92)

Sufficiently, in view of (S90), we only need to show limα→0+
1
α
E(η(X)−c(α))I(c(α) < η(X) < 1) = 0

when c(0) < 1. To this end, we consider two cases: (i) there exists α̃ > 0 such that c(α) = c(0)

for 0 < α < α̃; and (ii) c(α) < c(0), for any α > 0. For the first case, by part (ii) of Lemma

S3, we have that g(c(α)) = E(1 − η(X))I(η(X) > c(α)) ≤ αp− for α ∈ [0, 1 − P(η(X)=0)
p−

]. Note

c(α) = c(0) for 0 < α < α̃, we obtain g(c(α)) = g(c(0)) = 0 for 0 < α < α̃. This combining

with c(0) < 1, implies that P(c(α) < η(X) < 1) = 0 for 0 < α < α̃. Hence we have that

1
α
E(η(X) − c(α))I(c(α) < η(X) < 1) = 0 for 0 < α < α̃. Hence, in the first case, we have

limα→0+
1
α
E(η(X)− c(α))I(c(α) < η(X) < 1) = 0.

For the second case, using part (ii) in Lemma S3, we know that g(c(α)) ≤ αp−. Letting α→ 0

and using the fact that limα→0+ c(α) = c(0), we obtain that

0 = lim
α→0

αp− ≥ lim
α→0+

g(c(α)) = E(1− η(X))I(η(X) ≥ c(0)) = g(c(0)) + (1− c(0))P(η(X) = c(0)) ,

which further implies that g(c(0)) = 0 and P(η(X) = c(0)) = 0, where we have used the fact that
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c(0) < 1. Note that g(c(0)) = 0 also implies that P(c(0) < η(X) < 1) = 0. As a result, we have

E(η(X)− c(α))I(c(α) < η(X) < 1) = E(η(X)− c(α))I(c(α) < η(X) < c(0))

≤ (c(0)− c(α))P(c(α) < η(X) < c(0)) , (S93)

αp− ≥ g(c(α)) = g(c(α))− g(c(0)) = E(1− η(X))I(c(α) < η(X) ≤ c(0))

≥ (1− c(0))P(c(α) < η(X) ≤ c(0))

= (1− c(0))P(c(α) < η(X) < c(0)) ,

which implies that P(c(α) < η(X) < c(0)) ≤ αp−

1−c(0)
. Combining this with (S93), we get

0 ≤ E(η(X)− c(α))I(c(α) < η(X) < 1)

α
≤ (c(0)− c(α))P(c(α) < η(X) < c(0))

α

≤ p−

1− c(0)
(c(0)− c(α)) ,

which implies that limα→0+ E(η(X)− c(α))I(c(α) < η(X) < 1)/α = 0. This completes the proof of

(S92).

Combining (S91) and (S92), it follows that s(α) is right-differentiable at 0 if and only if c(0) < 1,

which proves case (iii). This completes the proof.
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Figure S2: Examples of population ROC curve using weighted method. The solid curve in the top
panel is the optimal ROC curve. The dashed straight line in the bottom panel is the linear piece
that can not be recovered by the weighted method directly. However, after connecting the points
linearly, the optimal ROC curve can be recovered.
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Figure S3: Population ROC curve of the constrained method (solid curve in the top panel) and
population ROC curve of the weighted method (solid curve in the bottom panel). The set of grey
dots in both panels denote an approximation to the set of all possible FPR-TPR pairs.
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Figure S4: Population ROC curve (blue curve) of the weighted method under surrogate loss. The
grey area represents an approximation of all possible FPR-TPR pairs.
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Figure S5: Population ROC curve (blue curve) of the cutoff method. The grey area represents an
approximation of all possible FPR-TPR pairs.
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