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ABSTRACT
Fine-grained remote sensing object detection aims to locate and

identify specific targets with variable scale and orientation from
complex background in the high-resolution and wide-swath im-
ages, which needs requirement of high precision and real-time
processing simultaneously. Although traditional knowledge dis-
tillation technology show its effectiveness in model compression
and accuracy preservation for natural images, the challenges of
heavy background noise and intra-class similarity faced by remote
sensing images limits the knowledge quality of teacher model and
the learning ability of student model. To address these issues, we
propose the Information Fusion with Knowledge Distillation (IFKD)
method to enhance student model performance by integrating in-
formation from external images, frequency domain, and hyperbolic
space. This includes three key modules: 1) External Disturbance
Enhancement (EDE), which uses MobileSAM to enrich teachers’
knowledge and reduce students’ dependency on teachers; 2) Fre-
quency Domain Reconstruction (FDR) to amplify key feature repre-
sentations and reduce background noise interference by resampling
low-frequency information; 3) Hyperbolic Similarity Mask (HSM)
to increase intra-class differences, guiding students in analyzing
and utilizing teachers’ knowledge, and leveraging the exponen-
tial capabilities of hyperbolic space for performance improvement.
Experimental results verify that the IFKD method significantly en-
hances performance in fine-grained recognition tasks compared
to existing distillation techniques. Specially, 65.8% and 81.4% 𝐴𝑝50
have achieved on optical ShipRSImageNet and SAR Aircraft-1.0
with our method, even which is 0.4% and 4.7% higher than the
teacher.

KEYWORDS
Fine-grained object detection, Knowledge distillation, Remote sens-
ing images, Information fusion.

1 INTRODUCTION
Currently, fine-grained remote sensing object detection has be-

come an area of interest, aimed at identifying and locating specific
targets in a large range of images, such as ships or aircraft, which is
essential for monitoring and protecting the marine and air domains.
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(a) Existing methods and our method

(b) Characteristics of remote sensing images
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Figure 1: Comparison of existing methods and features of
remote sensing images. (a) The existing methods generally
use the information in the teacher-student system to disturb
the information transmission of teachers to students, and
our method perturbs the teacher’s message by introducing
additional information. (b) Complex background of remote
sensing data sets and the characteristics of small intra-class
differences.

Although large-scale deep learning models show favorable perfor-
mance in fine-grained remote sensing detection, it can not meet the
real-time processing requirment. Therefore, how to find a better
balance between accuracy and efficiency has become a key issue
with important research significance. Knowledge Distillation (KD)
[12] is one of the effective methods to solve the above problems.

Most existing KD methods [8, 12, 15, 18, 22, 34, 45] typically
guide the learning of student models by transferring the predic-
tion results [3], intermediate features [36], and attention maps [22]
of the teacher model. To overcome the misleading nature of back-
ground information, various decoupling strategies [9, 36] have been
proposed, which differentiate between instance-related foreground
and instance-unrelated background by generating imitation masks.
Through the above method, perturbation of the own knowledge
set in the distillation process is shown in Fig. 1 (a). However, these
approaches have three limitations. First, they rely too much on im-
perfect teachers’ own knowledge sets. As a result, the potential of
the student model cannot be stimulated, and it is difficult to surpass
the performance of the teacher model. Secondly, compared with
natural images, remote sensing images show complex background
and smaller inter-class differences, which leads to a large amount of
misleading information in teachers’ knowledge set, as shown in Fig

1
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1 (b). Finally, in the fine-grained detection task, the teacher’s knowl-
edge set is difficult to be distinguished and analytically learned by
the student model due to the small differences within the class.

To address practical challenges, this paper introduces a novel
IFKD strategy. This strategy revolves around three key elements:
(1) by introducing information from large models, we enrich and
perturb the original teacher knowledge set, reducing the student’s
reliance on the original knowledge set and unlocking its latent
potential; (2) suppressing noise in the knowledge set through fre-
quency domain techniques enhances the richness and representa-
tional capacity of critical features; (3) the retrieval feature of hy-
perbolic space is used to help students analyze the class difference
problem of knowledge set.

Firstly, by designing the external disturbance enhancement (EDE)
module, MobileSAM is introduced to dynamically generate inter-
ference features and compete with the teacher model for teaching
authority, so as to interfere with the transfer of teacher features
and encourage the student model to explore its own potential. Next,
through a frequency domain reconstruction (FDR) module, we en-
hance the key features of the teacher model at the frequency do-
main level. Typically, low-frequency components carry image style
information [33, 40], so by suppressing low-frequency parts and
enhancing high-frequency features, we improve the expression
power of the teacher model’s key features without losing the orig-
inal feature information. Finally, given the importance of spatial
information in remote sensing images, we introduce a hyperbolic
similarity mask (HSM) module that maps features to hyperbolic
space [13] and constructs masks based on the hyperbolic space
distance between teachers and students [28, 38], guiding student
to analyze knowledge set information effectively.

We conduct extensive experiments for fine-grained detection
tasks on the optical remote sensing dataset ShipRSImageNet [50]
and the synthetic aperture radar (SAR) remote sensing dataset SAR-
Aircraft-1.0 [51]. Compared with existing advanced knowledge dis-
tillation techniques, our IFKD demonstrate significant performance
improvements. Furthermore, our method successfully unearthe the
potential of the student model, allowing it to surpass the teacher
model’s performance on multiple evaluation metrics. Our contribu-
tions are summarized as follows:

(1) We develope an innovative knowledge distillation method,
named IFKD, which integrates external scene information,
frequency domain information, and hyperbolic space infor-
mation for comprehensively improving the performance of
the student model.

(2) By designing external disturbance enhancement (EDE)mod-
ule to compete with teacher model, the original knowledge
set is enriched and students’ dependence on teachers is
weakened. This strategy helps to promote students’ pattern
discovery and enhance their own feature expression.

(3) Frequency domain reconstruction (FDR) enhances the rep-
resentation of key features in teacher model and reduces
background noise by suppressing low frequency style in-
formation.

(4) In order to further improve the overall performance of the
student model in processing complex data, we make use of
the spatial characteristics of hyperbolic space, pull out the

distribution between classes, and guide students to analyze
the teacher’s knowledge through the hyperbolic similarity
mask (HSM) orientation.

2 RELATEDWORK
2.1 Fine-grained object detection in remote

sensing images
In recent years, the accuracy of object detection has significantly

improved. Currently, mainstream object detection algorithms based
on deep learning can be broadly categorized into one-stage detec-
tors [19, 24, 25, 30] and two-stage detectors [1, 10, 26, 39]. Two-stage
detectors first feed features into a Region Proposal Network (RPN)
to generate a set of proposals, then utilize these proposals to localize
targets, such as in the refinement process of region proposal and
localization in Faster R-CNN [26]. While two-stage detectors have
higher detection accuracy due to their deep backbone networks,
they come with higher computational costs, making them challeng-
ing to deploy in practical applications. Conversely, single-stage
detectors like RetinaNet [19] offer certain advantages in speed,
directly utilizing extracted feature information to predict classifica-
tion and localization results.

The complexity of remote sensing images poses significant chal-
lenges for fine-grained detection tasks [6, 17]. Specifically, remote
sensing images exhibit varying aspect ratios, inconsistent orienta-
tions, and multiscale transformations [5]. Moreover, fine-grained
object detection aims at object-level recognition to further dis-
tinguish their subclasses. Therefore, the emphasis lies not on the
objects themselves but on mining their discriminative features. For
instance, an attribute-guided multi-level enhanced feature network
and an influence network for learning additive information are
proposed by Zhang et al.[49]. Although image-level recognition
methods achieve the purpose of mining discriminative features,
they perform poorly in fine-grained recognition of dense objects
due to the lack of consideration for the spatial positions of geo-
graphic objects, as well as the reliability and stability of multi-object
recognition. In contrast, fine-grained object detection tasks require
accurate localization of targets to enhance feature recognition and
representation capabilities, followed by fine-grained classification
of objects. Currently, many outstanding remote sensing detection
networks are improved based on Faster R-CNN [19], SSD [20], Reti-
naNet [19], etc. For example, Li et al. [16] introduce polygonal
anchors to replace traditional horizontal anchors and develop an
RPN sensitive to rotation, thereby improving the analysis of fine
granularity. Wang et al. [35] address the scale issue by proposing
a special module to fuse multiscale contextual information. Mean-
while, Xu et al. [41] focus more on the scale variation problem to
solve the issue of detection performance degradation and propose
a feature alignment detection method. Cheng et al. [4] enhance the
separability of different targets through a feature enhancement net-
work. Yang et al. [42] propose the precise R3Det, which improves
feature alignment capability through cascade detection.

2.2 Knowledge distillation
Knowledge distillation is an effective model compression tech-

nique, where the implicit knowledge from a teacher model is trans-
ferred to a student model to enhance its performance. Hinton

2
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Figure 2: Overview of our FIKD framework. The teacher network obtains features through feature extractor. The EDE brings up
the perturbation information to expand the knowledge base of teachers, and then the characteristics of teachers and students
are input to the frequency respectively for feature enhancement, and finally mapped to the hyperbolic space for guided
learning.

[12] pioneers the application of knowledge distillation in classi-
fication networks, paving the way for its rapid development. Cur-
rently, knowledge distillation is primarily categorized into logit-
based methods [12, 48], feature-based methods [11, 27, 45], and
relation-based methods [15, 21, 23, 32]. Logit-based methods typi-
cally involve transferring knowledge through the final classification
layer or logits of the model. Feature-based methods entail transfer-
ring knowledge from intermediate features of the teacher model.
Relation-based methods focus on exploring relationships between
different activations, neurons, or samples.

In recent years, several methods have been proposed to com-
press object detectors using knowledge distillation. In their work,
Chen et al. [2] introduce a methodology that aims to extract student
detectors by selectively ignoring the disproportionate emphasis on
foreground and background elements. However, the effectiveness
of this approach has been found lacking. This shortfall highlights
the critical nature of foreground pixels within the context of fea-
ture extraction, prompting the proposal of various strategies to
decouple these elements. Wang et al. [37] take a nuanced approach
by concentrating on the spatial distribution of feature responses,
thereby enabling more refined feature extraction. In a similar vein,
Ruoyu et al. [29] advocate for the utilization of a two-dimensional
mask to diminish background interference, thereby allowing for
a focused enhancement of background details. Du et al. [8] pro-
pose an innovative strategy to identify salient features external to
bounding boxes by categorizing features and mitigating the influ-
ence of detrimental features within those boxes. Complementarily,
Zhang et al. [47] suggest an attention-guided method for feature

extraction that leverages fine-grained and pixel-level details to ap-
proximate mask-based foreground separation. Building upon these
ideas, Li et al. [15] explore the establishment of connections among
different targets, aiming to bolster both intra-class and inter-class
relationships for enhanced discrete learning. Lastly, Yang et al. [43]
address the challenge posed by the prevalence of misleading infor-
mation in remote sensing imagery, underscoring the complexity of
accurate image interpretation in this domain. They introduce an
adaptive multi-scale feature selection module to guide the student
to mimic only core object features. However, whether using these
methods to separate foreground and others, they heavily rely on the
knowledge set of the teacher model, bringing limitations affecting
the distillation performance. On the one hand, the knowledge set
of teachers may not be perfect and the quality may not be high
enough to stimulate the full potential of students. On the other
hand, in fine-grained tasks, the intra-class similarity is high, which
makes students unable to analyze different knowledge and learn
effectively. Therefore, we propose the IFKD method to improve
the knowledge quality by integrating external information to im-
prove the teacher set. Based on the distance of hyperbolic space,
the feature distance is amplified to guide students to analyze the
knowledge set for efficient learning.

3 PROPOSED APPROACH
In the domain of knowledge distillation, the standard framework

includes a training dataset 𝑋 , a pre-trained teacher model 𝑇 , and a
student model 𝑆 that is the focal point of training. Conventional ap-
proaches typically segregate critical knowledge within the teacher

3
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model and convey it to the student model. Herein, the teacher model
𝑇 generates a knowledge corpus 𝐾 = {(𝑥, 𝑛𝜏 (𝑥)) |𝑥 ∈ 𝑋 }, wherein
each pair (𝑥, 𝑛𝜏 (𝑥)) embodies the knowledge to be transferred to
the student. Nevertheless, prior methodologies often adhere to a
static knowledge set, anchoring the student’s learning to this pre-
determined corpus. This static approach engenders two primary
limitations: First of all, students’ learning is limited in this unchang-
ing set, and the perfection and quality of the knowledge set limit
their learning, thus establishing a clear upper limit for students. Sec-
ondly, the quality of knowledge set is affected by the characteristic
quality of teachers.

To mitigate these constraints, we introduce an innovative IFKD
that amplifies the distillation impact through the assimilation of
multifaceted knowledge sources. This method capitalizes on diver-
sifying the information conveyed to the student, enriching their
learning landscape beyond the conventional bounds and it also re-
duces reliance on teachers. As shown in Fig. 2, the teacher network
obtains features through feature extractor. then EDE brings up the
perturbation information to expand the knowledge base of teachers,
and after FRD improves the quality of knowledge set through spec-
tral feature recombination, finally, HSM uses hyperbolic distance
between class features to guide learning in direction.

3.1 External disturbance enhancement module
Introducing external information to perturb the knowledge pro-

vided by the teacher and generate additional knowledge is an in-
novative approach. In this process, we use MobileSAM to generate
additional information pairs for each input image 𝑥 . The generated
information pair is spliced with the original 𝑛𝜏 (𝑥) knowledge pair
to generate the information knowledge pair �̂�𝜏 (𝑥).

�̂�𝜏 (𝑥) = 𝑛𝜏 (𝑥) + 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝑜𝑏𝑖𝑙𝑒𝑆𝐴𝑀 (𝑥)) . (1)

Specially, we do not need to train MobileSAM [46] because it
is obtained by distillation of large data sets and large models of
SAM [14]. Therefore, compared with the teacher model, the knowl-
edge obtained from each image 𝑥 contains richer knowledge and
can complement the original knowledge set as shown in Fig. 3.
Therefore, it is a reasonable practice to introduce MobileSAM to
complement the knowledge provided by the teacher. The disturbed
knowledge set can be expressed as 𝐾 = {(𝑥, �̂�𝜏 (𝑥)) |𝑥 ∈ 𝑋 }, and
the original teacher knowledge set is disturbed, so the teacher’s
information representation to students is also weakened, and stu-
dents no longer over-rely on the original teacher. Therefore, the
overall function of the EDE module can be described as:

𝜙𝐸𝐷𝐸 = 𝑅𝑒𝑠𝑖𝑧𝑒 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝑜𝑏𝑖𝑙𝑒𝑆𝐴𝑀 (𝑥))). (2)

Additionally, MobileSAM may have more authoritative knowl-
edge in certain domains compared to the teacher model, which
can not only reduce the influence of the teacher on the students
but also stimulate the students’ own potential. The uniqueness
of this approach lies in its ability to help student models acquire
knowledge from multiple perspectives, reducing dependence on
the teacher model. Moreover, by introducing external information,
it can increase the diversity and richness of knowledge, thereby
enhancing overall student performance.

(a) Disturb by EDE feature knowledge

(b) Original feature knowledge

Figure 3: EDE module disturbance visualization results. (a)
Disturb by EDE feature knowledge. (b) Original feature
knowledge. MobileSAM generates new knowledge enriched
by otherwise low-quality teacher characteristics.

3.2 Frequency domain reconstruction module
In the process of constructing a teaching resource knowledge

base, simply adding disturbances and expanding information is not
enough. Enhancing the quality of teaching is also crucial. Especially
in the field of fine-grained remote sensing target detection, given
the scarcity of target information and the complexity of style infor-
mation in remote sensing images, this study delves into the spectral
characteristics of remote sensing images from the perspective of
frequency domain analysis. Specifically, high-frequency compo-
nents of images typically carry more global information, such as
the shape of objects, while low-frequency components tend to ex-
press more local features [33, 40], such as texture. Based on this,
this study employs Discrete Fourier Transform (DFT) to assess the
contributions of different frequency domain components to image
analysis. Firstly, high-frequency and low-frequency components of
image features are extracted. Subsequently, it elaborates on how to
utilize frequency domain analysis to enhance the quality of teacher
features, the 𝜙𝐹𝐷𝑅 operational steps are as show in algorithm 1. For
any given input feature 𝑓 (ℎ,𝑤, 𝑐) ∈ 𝑅𝐻×𝑊 ×𝐶 , where 𝐻 ,𝑊 , and 𝐶
represent the height, width, and number of channels, we perform
DFT on it to obtain its frequency domain representation:

F (𝑓 (ℎ,𝑤, 𝑐)) (𝑢,𝑣,𝑐 ) =
𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑓 (ℎ,𝑤, 𝑐) 𝑒− 𝑗2𝜋
(
ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣

)
, (3)

where 𝐹 (𝑓 ) (𝑢,𝑣,𝑐 ) ∈ 𝑅𝑈 ×𝑉 ×𝐶 , 𝑈 , 𝑉 , represent the Frequency do-
main space range.

We shift the low-frequency components of the image to the
center position of the spectrum. Then, we filter these components
through a specific window function, where the window𝑀𝐵𝑖𝑛𝑎𝑟𝑦 is
defined as a binarymask, usingmostly random numbers to generate
the length of the mask.

𝑀𝐵𝑖𝑛𝑎𝑟𝑦 =

{
1, , if max( |𝑢 − 𝐻

2 |, |𝑣 −
𝑊
2 |) ≤ 𝑟 ·min(𝐻,𝑊 )

2
0, Otherwise

, (4)
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where r is the ratio to control the size of𝑀𝐵𝑖𝑛𝑎𝑟𝑦 that distinguishes
between high- and low-frequency components of the 𝑓 gain by:

F𝑙 (𝑓 ) = 𝑀𝐵𝑖𝑛𝑎𝑟𝑦 ⊙ 𝐹 (𝑓 ) , (5)

Fℎ (𝑓 ) =
(
1 −𝑀𝐵𝑖𝑛𝑎𝑟𝑦

)
⊙ 𝐹 (𝑓 ) , (6)

where ⊙ denotes the Hadamard product. Finally, by performing the
inverse Fourier transform, we can convert these frequency domain
components back to spatial domain, obtaining the corresponding
low-pass features 𝑓 𝑙 = F −1 (F𝑙 (𝑓 )).

Then, by applying a mask operation to the low-frequency compo-
nents, form 𝑓 𝑙 = 𝑓 𝑙⊙𝑀𝐹𝑅𝑆 . According to Eq.3, a new low-frequency
spectrum 𝑓 𝑙 and 𝑓 ℎ , expressed as:

𝑓 𝑙 = F −1 (F𝑙 (𝑓 )), (7)
which is obtained by returning to the frequency domain.𝑀𝐹𝑅𝑆 [8]
is a global mask that can effectively retrieve important features and
eliminate harmful features, so that we interfere with the original
low-frequency features. After to further enhance the capture of
global structural information, we adopt a learnable filter𝑊𝑓 𝑖𝑙𝑡𝑒𝑟 ∈
𝑅𝑈 ×𝑉 ×𝐶 aimed at removing information irrelevant to the structure.
By performing element-wise multiplication, we obtain the filtered
features �F𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 describe as:�F𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = (Fℎ (𝑓 ) + F̂𝑙 (𝑓 𝑙 ))) ⊙𝑊𝑓 𝑖𝑙𝑡𝑒𝑟 , (8)
finally, the filtered features are transformed into the spatial do-
main by Fourier inversion 𝑓 = F −1 ( �F𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ), and the optimized
features are used to guide students in the learning process of the
model.

Algorithm 1 𝜙𝐹𝐷𝑅 operational steps
Input: Features in the teacher feature layer 𝑓
Output: The reconstituted features 𝑓
1: Initially, compute the low-frequency components F𝑙 (𝑓 ) and

high-frequency components Fℎ (𝑓 ) through the defined Eq.3,
Eq.5, and Eq.6

2: According to formula Eq.7, the time domain semaphore of low
frequency 𝑓 𝑙

3: By applying a mask operation to the low-frequency compo-
nents, form 𝑓 𝑙 = 𝑓 𝑙 ⊙ 𝑀𝐹𝑅𝑆

4: According to Eq.3, a new low-frequency spectrum F̂𝑙 (𝑓 𝑙 ) is
obtained by returning to the frequency domain

5: Adopt a learnable filter𝑊𝑓 𝑖𝑙𝑡𝑒𝑟 ∈ 𝑅𝐻×𝑊 ×𝐶

6: Transform the filtered features to the spatial domain�F𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = (Fℎ (𝑓 ) + F̂𝑙 (𝑓 𝑙 )) ⊙𝑊𝑓 𝑖𝑙𝑡𝑒𝑟

7: return 𝑓 = F −1 ( �F𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 )

3.3 Hyperbolic similarity mask
Extensive research demonstrates that the hyperbolic space ef-

fectively embeds linguistic entities, including common words [31],
phrases [7], and elements for computer vision tasks [13]. In the field
of computer vision, it is acknowledged that hierarchical relation-
ships between images are pervasive. All knowledge methods are

(a) Feature difference between original image classes

(b) Feature difference between hyperbolic space mapping classes

Figure 4: Visualization of hyperbolic space. (a) Feature differ-
ence between original image classes. (b) Feature difference
between hyperbolic space mapping classes. Feature maps the
hyperbolic space to amplify the intra-class differences.

based on distance equivalent power law distribution in hyperbolic
space, so the similarity is high. Based on this feature, we can map
knowledge to hyperbolic networks for more fine-grained learning
as shown in Fig. 4.

Therefore, we believe that both teacher and student features in
the space have many similar retrievable details. These details can
be mapped by the characteristics of the power-law distribution of
the hyperbolic space. For teacher features 𝑓𝑡 and student features 𝑓𝑠
at the same location, the Möbius [13] addition is defined as follows:

𝑓𝑡 ⊕𝑒 𝑓𝑠 =
(
1 + 2𝑐 ⟨𝑓𝑡 , 𝑓𝑠

〉
+ 𝑒 |𝑓𝑠 |2

)
𝑓𝑡 +

(
1 − 𝑒 |𝑓𝑡 |2

)
𝑓𝑠

1 + 2𝑐
(
𝑓𝑡 , 𝑓𝑠

〉
+ 𝑒2 |𝑓𝑡 |2 |𝑓𝑠 |2

. (9)

Thus, their distance can be expressed as:

𝑑𝑒 (𝑓𝑡 , 𝑓𝑠 ) =
2
√
𝑒
arctanh(

√
𝑒 | − 𝑓𝑡 ⊕𝑒 𝑓𝑠 |), (10)

when 𝑒 = 1, the formula simplifies to the geodesic distance, and
adjusting 𝑐 allows the simulation of different Euclidean distances.
Consequently, our HSM is formulated as:

𝑀𝐻𝑆𝑀 =

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑑𝑒

(
𝑓
(ℎ,𝑤 )
𝑡 − 𝑓 (ℎ,𝑤 )

𝑠

)
. (11)

Specifically, similar features in the same location have lower
weights due to their proximity, while features in the same loca-
tion but with different features have higher weights. This ensures
that, while amplifying similar knowledge, the set of these different
weights based on these knowledge becomes a hyperbolic similarity
mask (HSM). Through hyperbolic space mask, students are guided
to carry out directional learning.

3.4 Information fusion distillation loss
Our approach is based on information fusion distillation, which

includes feature distillation and detection head distillation. Specifi-
cally, feature distillation is given follows:
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𝐿𝑓 𝑒𝑎𝑡 =

𝑀∑︁
𝑙=1

1
𝑁𝑙

𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝑀
𝑙𝑖 𝑗

𝐻𝑆𝑀

𝐶∑︁
𝑐=1

(
𝜙𝐸𝐷𝐸 + 𝜙𝐹𝐷𝑅 (𝐹𝑡

𝑙𝑖 𝑗𝑐
) − 𝜙𝑎𝑑𝑎𝑝𝑡

(
𝐹𝑠
𝑙𝑖 𝑗𝑐

))2
, (12)

where𝑀 denotes the number of layers in the Feature Pyramid
Network (FPN),𝑀𝐻𝑆𝑀 denotes the hyperbolic similarity mask, 𝐶
represents the number of channels, 𝜙𝐸𝐷𝐸 disturbs the teacher’s
knowledge, 𝜙𝐹𝐷𝑅 performs feature recombination, and 𝜙𝑎𝑑𝑎𝑝𝑡 is
a convolutional adaptive function used to adapt 𝐹𝑠 to the same
dimension as 𝐹𝑡 . The detection head distillation can be expressed
as:

𝐿ℎ𝑒𝑎𝑑 =

𝑀∑︁
𝑙=1

1
𝑁𝑙

𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝑀
𝑙𝑖 𝑗

𝐻𝑆𝑀

𝐶∑︁
𝑐=1

𝜙𝐵𝑖𝑛𝑎𝑟𝑦

(
𝑦𝑠
𝑙𝑖 𝑗𝑐

, 𝑦𝑡
𝑙𝑖 𝑗𝑐

)
, (13)

Here, 𝑙 represents the 𝑙-th FPN layer, 𝑦𝑠 and 𝑦𝑡 are the outputs
of the classification head from the teacher model and the student
model, respectively, at the 𝑙-th FPN layer, and 𝜙𝐵𝑖𝑛𝑎𝑟𝑦 is the binary
cross-entropy function used in the classification head.

The overall loss is a weighted sum of distillation loss and con-
ventional detector loss:

𝐿 = 𝐿𝐺𝑇 + 𝛼𝐿𝑓 𝑒𝑎𝑡 + 𝛽𝐿ℎ𝑒𝑎𝑑 , (14)

where 𝐿𝐺𝑇 is the training loss of the student detector, and 𝛼 and 𝛽
are hyperparameters used to balance different distillation losses.

4 EXPERIMENTS
4.1 Experiment settings

We evaluate two fine-grained remote sensing object detection
datasets: SAR-Aircraft-1.0 [51] and ShipRSImageNet [50]. SAR-
Aircraft-1.0, released in 2023, is a SAR fine-grained aircraft de-
tection dataset that contains 4,368 images and 16,463 aircraft object
instances, categorized into 6 classes: A220, A320/321, A330, ARJ21,
Boeing737, Boeing787, and others. Out of these, 3,489 images serve
for training and 879 for test. ShipRSImageNet, introduced in 2021,
is a challenging public ship detection dataset with 3,426 images and
17,573 ship instances across 50 categories. For this dataset, 2,748
images are used for training and 678 for test. In our experiments,
we employ two levels of detectors, namely the two-stage detector
Faster R-CNN and the one-stage detector RetinaNet, as baseline
detection networks. We choose a deeper network with a ResNet50
feature extractor as the teacher model; meanwhile, lightweight
ResNet18 or MobileNetV2 serve as student models. The backbone
of all models is initialized with weights pre-trained on ImageNet.
All experiments are implemented using the PyTorch and mmde-
tection frameworks, following 1x learning rate schedule and the
default configuration file and train 100 epochs.

4.2 Performance on different detection
frameworks

In this research, we conducted comprehensive validation of our
proposed Inter-frame Feature Knowledge Distillation (IFKD) tech-
nique. This validation encompassed both the two-stage Faster R-
CNN and the single-stage RetinaNet frameworks. Our experimental
findings, as detailed in tables referred to in tables 1 and 2, clearly il-
lustrate that implementing the IFKD strategy considerably enhances

Table 1: Results using different detection methods in the
SAR-Aircraft-1.0 dataset.

𝑀𝑒𝑡ℎ𝑜𝑑 Faster R-CNN RetinaNet

𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒 𝑚𝐴𝑝 𝐴𝑃50 𝐴𝑃75 𝑚𝐴𝑝 𝐴𝑃50 𝐴𝑃75

𝑇 : 𝑅𝑒𝑠𝑁𝑒𝑡50 52.0 76.7 59.9 53.2 74.0 60.1

𝑆 : 𝑅𝑒𝑠𝑁𝑒𝑡18 49.2 76.0 57.8 50.0 73.1 57.9

𝑂𝑢𝑟𝑠 : 𝑅𝑒𝑠𝑁𝑒𝑡18 52.1 77.1 60.0 53.9 75.5 60.2

𝐺𝑎𝑖𝑛 +2.9 +1.4 +2.2 +3.9 +2.4 +2.3

𝑆 : 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉 2 55.4 80.0 64.4 53.3 76.7 59.2

𝑂𝑢𝑟𝑠 : 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉 2 55.7 81.4 64.7 54.9 78.5 59.2

𝐺𝑎𝑖𝑛 +0.3 +1.4 +0.3 +1.6 +1.8 +0

Table 2: Results using different detection methods in the
ShipRSImageNet dataset.

𝑀𝑒𝑡ℎ𝑜𝑑 Faster R-CNN RetinaNet

𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒 𝑚𝐴𝑝 𝐴𝑃50 𝐴𝑃75 𝑚𝐴𝑝 𝐴𝑃50 𝐴𝑃75

𝑇 : 𝑅𝑒𝑠𝑁𝑒𝑡50 55.8 68.5 63.8 45.9 56.8 51.2

𝑆 : 𝑅𝑒𝑠𝑁𝑒𝑡18 48 63.2 55.2 34 44.8 38.8

𝑂𝑢𝑟𝑠 : 𝑅𝑒𝑠𝑁𝑒𝑡18 49.8 65.8 58.8 35.8 46.8 40.8

𝐺𝑎𝑖𝑛 +1.8 +2.6 +3.6 +1.8 +2.0 +2.0

𝑆 : 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉 2 48.8 62.3 55.9 40.6 52.8 45.8

𝑂𝑢𝑟𝑠 : 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉 2 49.4 64.4 57.4 44.4 57.2 50.1

𝐺𝑎𝑖𝑛 +1.4 +2.14 +1.5 +3.8 +4.7 +4.3

the capabilities of student detectors. Notably, in some tests, the stu-
dent models even outperformed their corresponding teacher mod-
els. Specifically, within the scope of the SAR-Aircraft-1.0 dataset
analysis, we observed remarkable outcomes: a student detector em-
ploying MobileNetV2 as its feature extractor achieved an 𝐴𝑃50 of
80.0%, surpassing the teacher model’s 𝐴𝑃50 of 76.7% even without
the benefit of knowledge distillation. Upon integrating the IFKD
technique, the student model’s performance was further amplified
to 81.4%. These results not only underscore the significant enhance-
ment potential of the student model when appropriately guided but
also suggest that there are further opportunities to push beyond
the initial perceived limits of performance.

4.3 Comparison with state-of-the-arts
We compare our IFKD with the most advanced knowledge distil-

lation techniques currently available, including FitNet [27], AT [45],
FKD [47], InsDist [15], FGD [44], FRS [8], ARSD [43]. Specifically,
FitNet and AT represent two methods based on feature distillation.
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Table 3: Comparison with sate-of-the-art methods using dif-
ferent detection, where we use ResNet50 with RetinaNet as
the teacher network and MobileNetV2 with RetinaNet as the
student network.

Model
SAR-Aircraft-1.0 ShipRSImageNet

𝑚𝐴𝑝 𝐴𝑃50 𝐴𝑃75 𝑚𝐴𝑝 𝐴𝑃50 𝐴𝑃75

Teacher 53.2 74.0 60.1 45.9 56.8 51.2

Student 53.3 76.7 59.2 40.6 52.8 45.8

FRS (NIPS) 52.3 75.8 60.4 45.4 58.4 51.2

FGD (CVPR) 52.8 75.8 59.0 44.5 57.2 50.8

ARSD (TGRS) 52.6 78.0 59.7 43.8 57.8 49.7

InsDist (TGRS) 50.2 75.1 59.3 42.3 56.2 47.3

FitNet (ICLR) 52.6 78.2 55.5 41.0 53.3 45.8

FKD (ICLR) 52.8 77.3 59.3 40.1 54.0 44.8

Ours 54.9 78.5 59.2 46.1 59.8 51.5

FKD employs guided distillation and non-local distillation strate-
gies to address the imbalance between foreground and background
pixels and the lack of relationship extraction among different pix-
els. FRS and FGD emphasize the importance of different features
through masking techniques. In recent years, ARSD and InsDist
have been designed for knowledge distillation in remote sensing
images. To ensure a fair comparison, we implement these methods
according to the hyperparameter settings described in their original
papers, and test them in the same experimental setup and datasets.

As shown in Table 3, in the SAR-Aircraft-1.0 dataset, although
the undistilled student model already surpasses the teacher model
in𝑚𝐴𝑃 and 𝐴𝑃50 metrics, other distillation methods rely too much
on the knowledge of the teacher model, leading to a decrease in
performance after distillation. In contrast, our method introduces
additional tacit knowledge, enhancing the knowledge transfer of
teacher features and stimulating its potential, resulting in a 2.1%
increase in the𝑚𝐴𝑃 metric for the student model. On the ShipRSIm-
ageNet dataset, considering its inclusion of 50 categories and higher
difficulty, the teacher model with deeper feature extractors signif-
icantly outperforms the student model. While other distillation
methods can improve the performance of the student model, their
enhancement is limited by the capability of the teacher model. Con-
versely, our method, by disturbing the knowledge of the teacher
through EDE, weakens its constraints on the student model, al-
lowing the student model’s performance to no longer be bound by
the upper limit of the teacher’s capabilities. Our experimental re-
sults demonstrate the effectiveness of this approach, surpassing the
performance upper limit of the teacher model on multiple metrics
(𝑚𝐴𝑃 , 𝐴𝑃50, 𝐴𝑃75).

(a) 𝑚𝑚𝐴𝐴𝑝𝑝 changes with α (a) 𝑚𝑚𝐴𝐴𝑝𝑝 changes with  β

Figure 5: Hyperparametric sensitivity studies of 𝛼 and 𝛽 . The
teacher model is based on ResNet50 wiht RetinaNet, and the
student model is based on MobileNetV2, validated on the
SAR-Aircraft-1.0 dataset. (a) The effect of 𝛼 . (b) Impact by 𝛽 .

4.4 Ablation study
We conduct ablative experiments on different modules, aiming

to delve into the specific influences of each module on the process
of knowledge distillation. As shown in Table 4, the experimental
results clearly demonstrate that each individual module can effec-
tively enhance the performance of the student model. Specifically,
through a detailed comparison based on the 𝐴𝑃50 metric, we find
that the EDE module brings the most significant performance im-
provement, reaching 4.1% on top of the baseline (AT [45]) module;
closely following is the HSM module, achieving a performance
growth of 4.0%; while the FDR module enhances by 3.4%. Combin-
ing the modules pairwise also yields decent results. It is noteworthy
that when these three modules are used in combination, we achieve
the highest performance improvement of up to 6.8%. This result
indicates that by integrating additional sources of knowledge and
leveraging the guiding mechanism in hyperbolic space, we can
not only expand and enrich the model’s knowledge base, but also
effectively stimulate the potential of the student model, thereby
significantly enhancing the overall performance of the model.

4.5 Sensitivity to hyperparameters
In our IFKD method, by introducing two key hyperparameters,

𝛼 and 𝛽 , we aim to balance different distillation losses and opti-
mize the learning efficiency of the student model. To analyze the
impact of these two parameters on model performance in depth,
we adopted a strategy of fixing one parameter while dynamically
adjusting the other to observe performance changes. Specifically,
experiments conducted on the RetinaNet model using the SAR-
Aircraft-1.0 dataset’s distillation results are presented in Fig. 5.

From Fig. 5(a), it can be observed that when the value of 𝛼 is
too small, the contribution of knowledge distillation to the student
model is extremely limited. However, as 𝛼 gradually increases, we
observe a corresponding increase in the𝑚𝐴𝑃 performance metric
of the student model, indicating that moderate increments in 𝛼 can
effectively facilitate the acquisition of more valuable knowledge
from the teacher model by the student model. However, when 𝛼
increases to a certain extent, the model performance sharply de-
clines, which may be due to the disruptive effect of excessively large
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Table 4: Ablative study of different distillation modules on
ShipRSImageNet dataset,where we use ResNet50 with Reti-
naNet as the teacher network and MobileNetV2 with Reti-
naNet as the student network

AT(baseline) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EDE ✓ ✓ ✓ ✓

FDR ✓ ✓ ✓ ✓

HSM ✓ ✓ ✓ ✓

𝐴𝑃50(%) 53.0 57.1 56.4 57.0 57.4 57.7 57.6 59.8

（a）Teacher

（b）Student

（d）our

（c）AT

Figure 6: Qualitative analysis on ShipRSImageNet dataset
with distilled and baseline Retianet-ResNet50. The red box
represents the detected structure and the blue represents the
real result. (a) Teacher result. (b) Student result. (c) AT result.
(d) Our result

distillation losses during training, leading to the student model’s
inability to learn effectively.

Similarly, Fig. 5(b) shows the trend of 𝛽 parameter’s impact,
which follows a pattern similar to𝛼 . A too small 𝛽 limits the learning
potential of the student model, as it makes the student model overly
reliant on the teacher model, hindering its ability to fully utilize
its own learning capacity. However, appropriately increasing 𝛽 can
promote the independence and learning efficiency of the student
model, yet excessively high 𝛽 values can also have a negative impact
on model performance. In this article, we end up choosing 𝛼 to be
0.06 and 𝛽 to be 0.5.

4.6 Visualization
We conduct a qualitative comparison of the results among the

teacher model, student model, AT [45] method, and our method. As
shown in Fig. 6, when the target merges with the environment, both
the teacher (Fig. 6(a)) and the non-distilled student model (Fig. 6(b))

fail to extract fine-grained knowledge, resulting in erroneous detec-
tion boxes. The AT method (Fig. 6(b)), due to its excessive reliance
on the teacher model, generates multiple detection boxes and fails
to surpass its capacity limit, thereby operating with erroneous de-
tections. In contrast, our method (Fig. 6(d)) leverages additional
knowledge to assist student learning, thereby reducing its reliance
on teacher feature representations. In the SAR-Aircraft-1.0 dataset,
as shown in Fig. 6, when the target feature is particularly close to
the environment and the inner class similarity is particularly high,
the teacher (Fig. 6(a)) model can successfully detect the target due
to its excellent feature extraction ability, but it cannot correctly
classify the example. The student model (Fig. 6(b)) not only has
the wrong detection, but also produces the wrong classification
result. Although the student model with knowledge distillation AT
[45] (Fig. 6(c)) inherits the excellent performance of teachers, it
is limited by over-dependence on the characteristics of teachers,
which leads to the wrong category classification. In contrast, our
approach (Fig. 6(d)) is able to absorb key characteristics of teachers
and identify erroneous knowledge in them, reducing excessive re-
liance on teacher information, and thus achieving more accurate
target identification and positioning. Ultimately, our method guides
the student to avoid such errors, indicating that our IFKD possesses
better guidance and discrimination capabilities.

5 CONCLUSION
This paper proposes an effective distillation method for fine-

grained object detection in remote sensing images. We discuss
the influence of the teacher feature knowledge base on the stu-
dent and analyze the adverse effects of excessive reliance on the
teacher knowledge base. Based on this finding, we propose a solu-
tion based on the IFKDmethod by incorporating additional informa-
tion. Specifically, we introduce EDE to weaken the representation of
the teacher’s own features on the student and enrich the knowledge
base to broaden the student’s horizon. We refine the knowledge
base through FDR to improve the quality of knowledge, and finally
guide the student through HSM to stimulate its potential, thereby
enhancing the overall performance of the student detector. The
IFKD method effectively improves the performance of modern de-
tectors and can be widely applied to both one-stage and two-stage
detection frameworks.

Future plans based on this paper could involve further refining
and extending the proposed IFKDmethod for fine-grained object de-
tection in remote sensing images. Conduct research to optimize the
EDE technique to effectively weaken the influence of the teacher’s
features on the student while enriching the student’s knowledge
base.
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