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ABSTRACT

Recent years have witnessed increasing interests in tackling heteroscedastic noise
in bandits and reinforcement learning (e.g. Zhou et al., 2021; Zhao et al., 2023a;
Jia et al., 2024; Pacchiano, 2025). In these works, the cumulative variance of the
noise Λ =

∑T
t=1 σ

2
t , where σ2

t is the variance of the noise at round t, is used
to characterize the statistical complexity of the problem, yielding simple regret
bounds of order Õ(d

√
Λ/T 2) for d-dimensional linear bandits with heteroscedas-

tic noise (Zhou et al., 2021; Zhao et al., 2023a). However, with a closer look, Λ
remains the same order even if the noise is close to zero at half of the rounds,
which indicates that the Λ-dependence is not optimal.
In this paper, we revisit the linear bandit problem with heteroscedastic noise. We
consider the setting where the action set is fixed throughout the learning pro-
cess. We propose a novel variance-adaptive algorithm VAEE (Variance-Aware
Exploration with Elimination) for large action set, which actively explores ac-
tions that maximizes the information gain among a candidate set of actions
that are not eliminated. With the active-exploration strategy, we show that
VAEE achieves a simple regret with a nearly harmonic-mean dependent rate, i.e.,

Õ
(
d
[∑T

t=1
1
σ2
t
−
∑Õ(d)

i=1
1

[σ(i)]2

]− 1
2
)

1 where σ(i) is the i-th smallest variance

among {σt}Tt=1. For finitely many actions, we propose a variance-aware vari-
ant of G-optimal design based exploration, which achieves a simple regret of

Õ
(√

d log |A|
[∑T

t=1
1
σ2
t
−
∑Õ(d)

i=1
1

[σ(i)]2

]− 1
2
)

. We also establish a nearly match-
ing lower bound for the fixed action set setting indicating that harmonic-mean de-
pendent rate is unavoidable. To the best of our knowledge, this is the first work
that breaks the

√
Λ barrier for linear bandits with heteroscedastic noise.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem is a fundamental framework for studying the
exploration-exploitation trade-off in sequential decision-making (Auer et al., 2002). In the clas-
sic stochastic bandit setting, an agent repeatedly selects an arm from a set of arms and receives a
stochastic reward associated with the chosen arm. The goal of the agent is to maximize the cumu-
lative reward over a series of rounds by balancing exploration (trying out different arms to gather
information) and exploitation (choosing the best-known arm based on past observations). Over the
past few decades, various algorithms have been proposed to tackle the stochastic bandit problem
from the perspectives of minimax optimal sample complexity (Audibert & Bubeck, 2009; Ménard
& Garivier, 2017; Jin et al., 2021; 2023).

To further leverage the heteroscedastic nature of the noise in real world applications, recent works
have extended the classic bandit framework to account for heteroscedastic noise, where the variance

1The formal notation is given by Õ
(
d
[∑T

t=1
1
σ2
t
−

∑ι(d,T )
i=1

1

[σ(i)]2

]− 1
2
)

, where ι(d, T ) = Õ(d) is a

function of d and T . For simplicity, we use Õ(d) to denote ι(d, T ) throughout the paper.
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of the noise can vary across different arms and time steps (Zhou et al., 2021; Zhao et al., 2023a; Jia
et al., 2024; Pacchiano, 2025). These works have shown that by taking into account the varying vari-
ance of the noise, it is possible to design more efficient algorithms that achieve better performance in
terms of regret bounds. In detail, Zhou et al. (2021) first considered the linear bandit problem with
heteroscedastic noise and proposed a variance-aware algorithm that achieves a regret bound of order
Õ(d
√
Λ+
√
dT ) where Λ =

∑T
t=1 σ

2
t is the cumulative variance of the noise along T time steps and

d is the dimension of the feature space. Later, Zhou & Gu (2022) improved the cumulative regret
bound to Õ(d

√
Λ+d), yielding a simple regret2 bound of order Õ(d

√
Λ/T 2+d/T ). More recently,

Jia et al. (2024) proposed VarCB, which achieves tighter Õ(
√
|A|Λd + d2) cumulative regret for

bandits with few actions, where |A| is the size of the action set and further extend the results to
general function classes. Notably, they also proved a lower bound of order Ω(

√
min(|A|, d)Λ + d)

when d ≤
√
|A|T , indicating that the dependence on

√
Λ is unavoidable in the worst case.

Despite this progress, existing regret bounds depend on the total variance term Λ, which overlooks
the heterogeneity of information gain across actions and time steps with different noise levels. Con-
sider an extreme case: if σ2

t ≈ 0 for all t ≤ t0 with t0 = Õ(d) ≪ T , the d-dimensional weighting
parameter in the linear bandit problem could be recovered almost exactly. In such a case, the regret
bound should be essentially independent of the noise variance after time step t0. This motivates an
important open question in heteroscedastic linear bandits:

Can we improve upon the
√
Λ dependence in the regret bounds in heteroscedastic linear bandits?

In this paper, we revisit the problem of best-arm identification in linear bandits under heteroscedastic
noise, where the variances of the reward distribution may vary significantly across actions. The
primary performance metric we focus on is the simple regret, which measures the suboptimality of
the action recommended after a fixed budget of exploration. Our results highlight the fundamental
role of the harmonic mean of the variances in characterizing the attainable regret rate.

Our main contributions are summarized as follows:

• Variance-adaptive exploration for large action sets. We propose a novel algorithm, VAEE
(Variance-Aware Exploration with Elimination), designed to handle large (potentially infinite)
action sets. The key idea is to maintain a candidate set of promising actions and actively ex-
plore those that maximize the information gain subject to elimination rules. We prove that VAEE
achieves a simple regret bound of

Õ

(
d

[
T∑

t=1

1

σ2
t

−
Õ(d)∑
i=1

1

[σ(i)]2

]− 1
2
)
,

where d is the feature dimension, and {[σ(i)]2} are the ordered list of the variance sequence {σ2
t }.

This establishes a nearly harmonic-mean dependent rate for the simple regret.
• Variance-aware G-optimal design for finite action sets. For the case of a finite action set A,

we propose a variance-adaptive variant of G-optimal design based exploration. We show that this
strategy achieves a simple regret bound with improved dependence on the dimension d as follows

Õ

(√
d log |A|

[
T∑

t=1

1

σ2
t

−
Õ(d)∑
i=1

1

[σ(i)]2

]− 1
2
)
.

• Lower bound matching the harmonic-mean rate. We establish a nearly matching lower bound
for the fixed-action setting, showing that the harmonic-mean dependence is intrinsic to the prob-
lem. This demonstrates that our algorithms are essentially optimal in their variance dependence.

• Breaking the
√
Λ barrier. To the best of our knowledge, this is the first work that surpasses

the classical
√
Λ-type dependence in simple regret bounds for linear bandits with heteroscedastic

noise, where Λ denotes the variance proxy commonly used in prior analyses. A comprehensive
comparison on the simple regret bounds is provided in Table 1 for the reader’s reference.

2Simple regret quantifies the expected gap between the optimal reward and the reward of the arm proposed
by the algorithm.
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Table 1: Comparison between different algorithms for stochastic (linear) contextual bandits. Here
d is the feature dimension, T is the number of rounds, {σt}t∈[T ] is the variance of noise at round
t ∈ [T ], |A| is the size of the arm set, and Λ =

∑T
t=1 σ

2
t is the cumulative variance of the noise.

The lower bounds from Jia et al. (2024); He & Gu (2025) are derived for the cumulative regret.
We convert them to be comparable to our simple regret by dividing them by T . Note that their
lower bounds are derived for the worst case sequence of noise variance, while our lower bound has
a refined dependence on the noise variance sequence.
Algorithm Simple Regret Upper Bound Simple Regret Lower Bound

Weighted OFUL (Zhou et al., 2021) d
√
Λ/T 2 -

Weighted OFUL+ (Zhou & Gu, 2022) d
√
Λ/T 2 -

VOFUL (Zhang et al., 2021) d9/2
√

Λ/T 2 -
VOFUL2 (Kim et al., 2021) d3/2

√
Λ/T 2 -

SAVE (Zhao et al., 2023a) d
√
Λ/T 2 -

LinNATS (Xu et al., 2023) d3/2
√

Λ/T 2 -
VarCB (Jia et al., 2024)

√
|A|Λd/T 2 Ω

(√
min(|A|, d)Λ/T 2

)
He & Gu (2025) - Ω̃

(
d
√

Λ/T 2
)

VAEE (Ours) d
[∑T

t=1
1
σ2
t
−
∑Õ(d)

i=1
1

[σ(i)]2

]− 1
2

Ω
(
d
(∑t

i=1
1
σ2
i

)− 1
2
)

VAGD (Ours)
√

d log |A|
[∑T

t=1
1
σ2
t
−
∑Õ(d)

i=1
1

[σ(i)]2

]− 1
2

-

Notations. We use bold lowercase letters (e.g., a) to denote vectors and bold uppercase letters (e.g.,
A) to denote matrices. For a vector a ∈ Rd, we use ∥a∥2 to denote its Euclidean norm. For a
positive definite matrix A ∈ Rd×d, we define the elliptical norm of a vector a as ∥a∥A =

√
a⊤Aa.

We use Id to denote the d× d identity matrix. For a set A, we use |A| to denote its cardinality. We
use Õ(·) to hide logarithmic factors in d, T, 1/δ, 1/σmin, 1/σmax. For a sequence {at}Tt=1, we use
a(i) to denote the i-th smallest element in the sequence.

2 RELATED WORK

Variance-Aware Regret for Linear Bandits with Heteroscedastic Noise. The incorporation of
variance information in linear bandit algorithms has garnered significant attention in recent years,
leading to substantial improvements in regret bounds. Early work by Kirschner & Krause (2018)
introduced the concept of information-directed sampling for bandits with heteroscedastic noise,
demonstrating that leveraging variance information can lead to more efficient exploration strate-
gies. Later, Zhou et al. (2021) proposed a variance-aware algorithm for linear bandits that achieves
a regret bound of order Õ(d

√
Λ +

√
dT ), where Λ =

∑T
t=1 σ

2
t is the cumulative variance of the

noise. This result was further improved by Zhou & Gu (2022) to a tighter bound of Õ(d
√
Λ + d).

Zhao et al. (2023b) later proposed a peeling-based algorithm that achieves a similar regret bound.

The challenge of unknown conditional variances has been addressed by several researchers. Zhang
et al. (2021) and Kim et al. (2021) developed algorithms that operates without prior knowledge of the
variance, achieving regret bounds that adapt to the observed noise levels. However, these approaches
are not tractable for large action sets and incur sub-optimal dependence on d. Zhao et al. (2023a)
proposed a computationally efficient algorithm that achieves a regret bound of order Õ(d

√
Λ + d)

without requiring prior knowledge of the variances.

More recently, Pacchiano (2025) extended the variance-aware framework of Zhao et al.
(2023a) to the general function approximation setting, achieving a regret bound of order
Õ(deluder

√
log(F)Λ + deluder log(F)), where deluder is the eluder dimension and log(F) is the

log-covering number of the function class F . Concurrently, Jia et al. (2024) introduced VarCB, an
algorithm that attains a regret bound of Õ(

√
|A|Λd+d2) for bandits with few actions, and extended

their results to general function classes. They also established a worst-case lower bound of order
Ω(
√
min(|A|, d)Λ + d) when d ≤

√
|A|T . He & Gu (2025) further studied the setting where the

action set can change arbitrarily over time and proved an instance-dependent lower bound of order

3
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Ω(d
√
Λ/ log T ) for the expected cumulative regret. These results indicate that the

√
Λ dependence

is unavoidable in such settings.

Bandits with Heavy-Tailed Noise. The topic of robustness to heavy-tailed rewards has received
considerable attention in recent years, addressing the limitations of classical bandit algorithms that
assume sub-Gaussian or bounded noise. Bubeck et al. (2013) pioneered this research direction by
studying heavy-tailed rewards in multi-armed bandits, establishing that standard concentration in-
equalities fail in such environments. For linear bandits, Medina & Yang (2016) proposed truncation-
based methods and median-of-means estimators to handle heavy-tailed noise, achieving sublinear
regret bounds. Shao et al. (2018) adopted median-of-means techniques with a well-designed allo-
cation of decisions to achieve nearly optimal regret bounds. Later, Xue et al. (2020) introduced a
SupLin-based algorithm (Chu et al., 2011) which further improved the dimension dependence in the
regret bounds. More related works include Li & Sun (2024), Huang et al. (2023), which proposed
Huber regression based algorithms to handle heteroscedastic heavy-tailed noise. Recently, Ye et al.
(2025) proposed a Catoni’s estimator based algorithm that achieves adaptive regret bounds in bandits
with general function approximation.

Variance-Dependent Bounds in MDPs. As a natural extension of bandits, Markov Decision Pro-
cesses (MDPs) have also been studied under the lens of variance-dependent regret bounds. In tabular
MDPs, Zanette & Brunskill (2019) first established a variance-dependent regret bound which scales
with the square root of the maximum variance of the value function. Afterwards, Zhou et al. (2023)
proposed MVP-V, an algorithm that achieves a regret bound scaling with the square root of the total
variance of the value function, achieving worst-case optimal regret bound. In MDPs with linear
function approximation, Zhao et al. (2023a) proposed a variance-aware algorithm that achieves a
second-order and horizon-free regret bound. More recently, there have been several works (Wang
et al., 2024; Zhao et al., 2024; Wang et al., 2025; Zhao et al., 2025) presenting variance-dependent
regret bounds in MDPs with general function approximation.

3 PRELIMINARIES

We consider a heteroscedastic variant of the classic linear bandit problem. Let T be the total number
of rounds. The action set A is fixed. At each round t ∈ [T ], the interaction between the agent and
the environment is as follows:

1. The agent selects at ∈ A based on the past observations Ft−1 = (a1, r1, . . . ,at−1, rt−1) up to
time t− 1.

2. The environment generates the stochastic noise ηt at round t and reveals the stochastic reward
rt = ⟨θ∗,at⟩+ ηt to the agent.

WLOG, we assume that for all a ∈ A, it holds that ∥a∥2 ≤ 1 and ∥θ∗∥2 ≤ 1.

Remark 3.1. Our assumption that the action set is fixed is necessary for achieving the harmonic-
mean dependent rate. In scenarios where the action set can change arbitrarily over time, it is possible
to construct instances where the cumulative variance Λ =

∑T
t=1 σ

2
t remains the most appropriate

measure of statistical complexity. This is because an adversarially chosen action set can force the
algorithm to repeatedly explore less informative actions when the noise level is low, thereby negating
the benefits of a harmonic-mean based approach. A detailed study of this phenomenon is provided
by He & Gu (2025), which demonstrates that in the case of adversarially changing contexts, there
exists a lower bound of order Ω(d

√
Λ/ log T ) for the expected cumulative regret, indicating that the√

Λ dependence is unavoidable in such settings.

Therefore, to fully leverage the advantages of our proposed variance-adaptive algorithms and
achieve the improved regret bounds, we focus on the standard stochastic linear bandit setting (Latti-
more & Szepesvári, 2020) where the action set is fixed throughout the learning process.

We introduce the following assumption on the noise ηt.

Assumption 3.2. The noise ηt is conditionally σt-sub-Gaussian, i.e., for all λ ∈ R, it holds that
E [exp (ληt) | Ft−1] ≤ exp(λ2σ2

t /2), where Ft−1 is the filtration up to round t − 1. We assume
that there exist known constants σmin, σmax > 0 such that σmin ≤ σt ≤ σmax for all t ∈ [T ].

4
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Remark 3.3. This assumption follows from the original formulation of heteroscedastic bandits by
Kirschner & Krause (2018). Later works (Zhou et al., 2021; Zhao et al., 2023a; Jia et al., 2024) have
slightly generalized this assumption to only require the variance of ηt to be bounded by σ2

t and the
magnitude of ηt to be bounded by a constant. However, this generalization does not significantly
affect our analysis or results, as we will discuss in Appendix E that our algorithms can be extended
to handle heavy-tailed noise by replacing the least-squares estimator with a robust estimator.

In this paper, we focus on the best-arm identification problem in linear bandits with heteroscedastic
noise. The performance of an algorithm is measured by the simple regret defined as follows:

SR(T ) = E
[
max
a∈A
⟨θ∗,a⟩ − ⟨θ∗, âT ⟩

]
, (3.1)

where âT is the action recommended by the algorithm after T rounds of exploration.
Remark 3.4. In the stochastic linear bandit literature, simple regret is closely connected to cumu-
lative regret. In particular, if an algorithm achieves cumulative regret of order Õ(

√
dT ), then its

simple regret can be shown to be of order Õ(
√
d/T ) (Lattimore & Szepesvári, 2020). In the het-

eroscedastic setting, however, the varying and unpredictable noise levels make this relationship more
subtle. For example, a harmonic-mean dependence of the simple regret on the variances does not
necessarily translate to the same dependence for cumulative regret. In this work, we therefore focus
on directly analyzing the simple regret of our proposed algorithms.

4 VARIANCE-AWARE EXPLORATION WITH ELIMINATION

In this section, we propose Variance-Aware Exploration with Elimination (VAEE), a variance-
adaptive approach designed for linear bandits operating in environments with heteroscedastic noise
and potentially large action spaces. The algorithm is displayed in Algorithm 1, which builds upon
the Optimism in the Face of Uncertainty for Linear bandits (OFUL) framework while incorporating
variance information to improve exploration efficiency and regret bounds.

Variance Adaptation. The algorithm explicitly incorporates variance information σt observed at
each time step and uses variance-weighted updates for both the covariance matrix and parameter
estimation (Zhou et al., 2021). This allows the algorithm to adaptively adjust its confidence sets
based on the observed noise levels, leading to more accurate estimates of the underlying parameters.

Active Exploration. Algorithm 1 employs an active exploration strategy that selects actions based
on their potential to maximize information gain. Specifically, at each round, the algorithm chooses
the action that maximizes the uncertainty in the parameter estimate, as measured by the Mahalanobis
distance with respect to the inverse covariance matrix. This encourages exploration of actions that
are expected to provide the most informative feedback.

Algorithm 1 Variance-Aware Exploration with Elimination (VAEE)
Require: A ⊂ Rd, δ.

1: Initialize V0 ← λId, θ̂0 ← 0, A1 ← A.
2: for t = 1, . . . , T do
3: Pull the action at ← maxe∈At

∥e∥V −1
t−1

.
4: The agent receives the reward rt and the variance σt.
5: Calculate Vt ← Vt−1 + σ−2

t ata
⊤
t .

6: Calculate θ̂t ← V −1
t

∑t
s=1 σ

−2
s asrs.

7: Set confidence set as follows Ct ← {θ | ∥θ − θ̂t∥2V −1
t

≤ βt}.
8: Eliminate low rewarding arms: At+1 ←

{
a ∈ At : maxe∈At

minθ∈Ct
⟨θ, e⟩ ≤

maxθ∈Ct⟨θ,a⟩
}

.
9: end for

4.1 CASE STUDY ON WHY WEIGHTED OFUL FAILS

Now we present a case study to demonstrate that Weighted OFUL fails for structural reason rather
than the analysis, especially when the variance sequence includes low-variance windows and in-

5
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Table 2: Simple and Cumulative Regrets of Algorithm 1 and Weighted-OFUL (Zhou & Gu, 2022).
We use R(T ) ≤

∑T
t=1 SR(t) to upper bound the regret of Algorithm 1.

Scenario σ2
t Simple Regret Cumulative Regret

Algorithm 1 Weighted OFUL Algorithm 1 Weighted OFUL

Fast-Decaying Noise σ2
t = 1/t2 Õ

(
d

T 3/2

)
Õ
(
d
T

)
Õ(d) Õ(d)

Flat Noise (1/d) σ2
t ≡ 1/d Õ

(√
d
T

)
Õ
(√

d
T

)
Õ
(√

dT
)

Õ
(√

dT
)

Many Moderate Spike
α ∈ (0, 1), σ2

t ={
x, t ≤ αT,

1, t > αT,
with x = T−1/3

Õ
(

d
T 2/3

)
Õ
(

d√
T

)
Õ
(
d T 1/3

)
Õ
(
d
√
T
)

Front-Loaded
Super-Precision

σ2
t ={
min{1/2, t−2}, t ≤ T 4/5,

1/2, t > T 4/5,

Õ
(

d
T 6/5

)
Õ
(

d√
T

)
Õ(d) Õ

(
d
√
T
)

formation for learning the d-dimensional vector grows anisotropically across coordinates. Our
variance-sequence-aware design reallocates exploration toward weak coordinates and achieves an
instance-variance-sequence dependent bound. In the example below, our algorithm attains simple
regret in order εe−Θ(log T/ε2), while Weighted OFUL yields εe−Θ(log T ). When ε = T−1/4, the
simple regret of VAEE is shaprer than that of Weighted OFUL by a factor of TΘ(

√
T ).

Setup. Consider e1 = (1, 0), e2 = (0, 1), and x = (1 − ε, ε) with θ∗ = e1, confidence radii
βt ≤ β = Θ(log T ), and ε = T−1/4. There is a global window W of length L where the noise
variance is σ2

t = T−α for t ∈W with α ∈ (0, 1); outside W the variance is constant.

For simplicity, assume the first coordinate is already well explored: pulls of e1 and x both supply
substantial information about the first coordinate, and both our method and weighted OFUL sample
x (or e1) frequently. Thus, the first-coordinate information dominates that of the second, and we
focus on the error caused by limited information in the second coordinate.

Weighted OFUL in the low-variance window. Case 1 (start with e2). Each pull of e2 increases
the second-coordinate information by Tα. Once about log T/ε2 information has been accumulated
via e2, the policy switches to x. Intuitively, with high probability UCBx(t) ≈ (1 − ε) + ε =
1 and UCB2(t) ≈ ε, so UCB2(t) ≤ UCBx(t) and x is selected.

Case 2 (keep pulling x). Each pull of x contributes only ε2Tα to the e2 direction, so after L pulls
the total second-coordinate information is at most Lε2Tα.

Simple Regret of Weighted OFUL. Choose L = cLT
−α log T

ε4 ⇒ Lε2Tα = cL log T. By a
standard Chernoff/Hoeffding concentration, the failure probability of recommending âT = x decays
as exp

(
−Θ(log T

)
, hence the simple regret satisfies SR(T ) ≤ ε · exp

(
−Θ(log T )

)
.

Simple Regret of Algorithm 1. Since our algorithm pulls the arm with the largest exploration
bonus (Line 2 of Algorithm 1), it allocates the window W to e2 and gains LTα ≍ cL

log T
ε4 units

of second-coordinate information within W . By the standard concentration inequality, the failure
probability of recommending âT = x decays as exp

(
− Θ(log T/ε2)

)
, hence the simple regret

satisfies SR(T ) ≤ ε · exp
(
− Θ(log T/ε2)

)
. Since ε = T−1/4, our simple regret is significantly

lower than that of Weighted OFUL by a factor of TΘ(
√
T ).

4.2 THEORETICAL RESULTS FOR VAEE

We now present the main theoretical results for VAEE. The following theorem establishes a simple
regret bound with harmonic-mean dependence.

Theorem 4.1 (Simple Regret of VAEE). Set βt = 2
√
λ + 16

√
log(4t2/δ) · d log dλ+tσ−2

min

dλ and

λ = 1 in Algorithm 1. Let σ(i)
T be the i-th smallest element in {σ2

τ}Tτ=1. With probability at least
1− δ, the simple regret of Algorithm 1 satisfies

SR(T ) = Õ(
√
d) min

1≤k≤T+1

x =

√√√√ ι(T )− k + 1∑T
i=k

1

[σ
(i)
T

]2

∣∣∣∣ x ∈ [σ
(k−1)
T , σ

(k)
T ]

 ,

6
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where ι(T ) = 2d log(1 +
∑

τ∈[T ] σ
−2
τ /d).

Remark 4.2. Theorem 4.1 provides a simple regret bound for VAEE that depends on the harmonic
mean of the variances σ2

t . To see this, we can simplify the bound by substituting k = Õ(d) and
ι(T ) = Õ(d) , which yields the following simplified expression:

SR(T ) = Õ

(
d

[
T∑

t=1

1

σ2
t

−
Õ(d)∑
i=1

1

[σ(i)]2

]− 1
2
)
. (4.1)

This bound in (4.1) highlights that the simple regret decreases as the harmonic mean of the variances
increases, effectively capturing the influence of low-variance actions on the overall performance.
Notably, this result breaks the traditional

√
Λ barrier, where Λ =

∑T
t=1 σ

2
t , demonstrating that

our variance-adaptive approach can achieve significantly better performance in environments with
heteroscedastic noise.
Remark 4.3. It is worth noting that our harmonic-mean dependence is subtracted by the contribu-
tion of the Õ(d) smallest variances. This subtraction is unavoidable due to the inherent difficulty of
estimating a d-dimensional parameter, which requires at least d well-explored actions. In the worst-
case scenario, these d actions may correspond to the smallest variances, and then it is impossible to
achieve a near zero simple regret with only T = O(1) rounds of noise-free exploration. Therefore,
the subtraction term in our bound is necessary to account for this fundamental limitation.

Nonetheless, we can still show that our simple regret bound is strictly sharper than the
√
Λ-type

bounds in prior works (Zhou et al., 2021; Zhao et al., 2023a; Jia et al., 2024). To see this, we

observe that min1≤k≤T+1

{
x =

√
ι(T )−k+1∑T
i=k

1

[σ
(i)
T

]2

∣∣∣∣ x ∈ [σ
(k−1)
T , σ

(k)
T ]
}

is the solution to the following

equation: x2 = ι(t)∑t
i=1

1

max(σ2
i
,x2)

. We further have

x2 ≤ ι(t)∑t
i=1

1
σ2
i+x2

≤ ι(t)
t

x2+t−1
∑t

i=1 σ2
i

=
ι(t)(x2 + t−1

∑t
i=1 σ

2
i )

t
, (4.2)

where the second inequality follows from mean inequality. Rearranging the terms yields x2 =
Õ(dΛ/t2) when t = Ω(d). Please refer to Appendix B for detailed derivations.

4.3 COMPARISON WITH WEIGHTED OFUL

In this subsection, we present a case study to illustrate the limitations of using the cumulative vari-
ance Λ =

∑T
t=1 σ

2
t as a measure of statistical complexity in linear bandits with heteroscedastic

noise and the potential weakness of existing algorithms that rely on this measure. For simplicity, we
assume

∑T
t=1 1/σ

2
t ≫

∑Õ(d)
i=1 1/[σ(i)]2. Therefore, according to (4.1) and Zhou & Gu (2022),

SRAlg 1 ≍ d

( T∑
t=1

1

σ2
t

)−1/2

, SRWeighted−OFUL ≍ d

√∑T
t=1 σ

2
t

T
(4.3)

First, by the HM-AM inequality, we have T/(
∑

t
1
σ2
t
) ≤

∑
t σ

2
t /T , which leads to a general rela-

tionship between the regret bounds of our methods: SRAlg 1 ≤ SRWeighted−OFUL for any sequence
σ2
t . Therefore, our regret bound is always sharper. In the Table 2, we demonstrate the specific rate

of improvement for some special variance sequences. We note that an improvement in simple regret
does not necessarily lead to an improvement in cumulative regret. For example, this is evident in
fast-decaying noise, as discussed in Remark 3.4.

5 STOCHASTIC LINEAR BANDIT WITH FINITE ACTION SPACE

In this section, we consider the special case where the action set A is finite. We propose a variance-
adaptive G-optimal design based exploration strategy and establish a simple regret bound with
harmonic-mean dependence which improved over Theorem 4.1 by a factor of

√
d.
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Algorithm 2 Variance Adaptive G-Optimal Design (VAGD)
Require: A ⊂ Rd, δ.

1: Find nearly G-optimal design π ∈ ∆(A) with |supp(π)| ≤ 4d log log d + 16 as described in
Theorem 5.2 that minimizes

max
a∈A
∥a∥V (π)−1 subject to

∑
a∈A

π(a) = 1.

2: Let T0(a)← ∅ for all a ∈ A.
3: for t = 1, . . . , T do
4: Pull the action at := argmina∈A

∑
τ∈T (a)

1
σ2
τ ·π(a)

5: Observe reward rt and variance σt.
6: Update the set Tt(at)← Tt−1(at) ∪ {t} and Tt(a)← Tt−1(a) for all a ̸= at.
7: end for
8: Outout aT+1 = argmaxa∈A⟨θ̂T ,a⟩ where θ̂T = V −1

T

∑T
t=1 σ

−2
t rtat and VT = I +∑T

t=1 σ
−2
t ata

⊤
t .

5.1 VARIANCE-ADAPTIVE G-OPTIMAL DESIGN BASED EXPLORATION

G-optimal design. In Algorithm 2, we need to find a nearly G-optimal design π ∈ ∆(A)
that maximizes log detV (π). We first introduce some necessary notations and definitions re-
garding D-optimal and G-optimal designs. Let π : A → [0, 1] be a distribution on A so
that

∑
a∈A π(a) = 1. Based on π ∈ P(Aℓ), define V (π) ∈ Rd×d and g(π) ∈ R as fol-

lows V (π) =
∑

a∈A π(a)aa⊤, g(π) = maxa∈A ∥a∥2V (π)−1 . A design π is defined as a G-
optimal design if it minimises g. And a design π is defined as a D-optimal design if it maximises
f(π) = log detV (π). The set Supp(π) is sometimes called the core set. The following theorem
characterizes the size of the core set and the minimum of g and establishes the equivalence of G-
optimal and D-optimal designs.

Theorem 5.1. (Lattimore & Szepesvári, 2020, Kiefer-Wolfowitz) Assume thatA ⊂ Rd is compact
and span(A) = Rd. The following are equivalent: (a) π∗ is a minimiser of g; (b) π∗ is a maximiser
of f(π) = log detV (π); (c) g (π∗) = d.

Furthermore, there exists a minimiser π∗ of g such that |Supp (π∗) | ≤ d(d+ 1)/2.

However, the core set size of the G-optimal design given by Theorem 5.1 is at most d(d + 1)/2,
which may cause additional overhead in our variance-adaptive algorithm. To address this issue, we
can find an approximate G-optimal design with a smaller core set size using the following theorem.

Theorem 5.2 (Lattimore et al. 2020). Suppose that A ⊂ Rd is compact and span(A) = Rd. There
exists a probability distribution π ∈ ∆(A) such that g(π) ≤ 2d and the cardinality of the core set of
π is at most 4d log log d+ 16.

Adaptive arm selection. After obtaining the approximate G-optimal design π, we use it to guide
the arm selection process. Unlike traditional G-optimal design-based algorithms, which pull arms
according to the fixed distribution π, our algorithm adaptively selects arms based on the observed
variances σt. Specifically, at each round t, we choose the arm at that has been pulled the fewest
times relative to its probability under π, weighted by the inverse of the observed variance. This
adaptive strategy prevents over-exploration caused by the unpredictable and heteroscedastic nature
of noise and ensures that we collect sufficient information from all arms in the core set of π.

Weighted least-squares estimator. Inspired by Zhou et al. (2021), we use a variance-weighted
least-squares estimator to estimate the unknown parameter θ∗. Specifically, after T rounds of ex-
ploration, we compute the estimator θ̂T as follows:

θ̂T = V −1
T

T∑
t=1

σ−2
t rtat, VT = I +

T∑
t=1

σ−2
t ata

⊤
t .
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Under the finite action space regime, we show that this estimator achieves a tighter confidence bound
compared to the general case, replacing the

√
d factor with

√
log(|A|) in the confidence radius.

Finally, we recommend the action aT+1 that maximizes the estimated reward based on θ̂T .

5.2 SIMPLE REGRET BOUND FOR VAGD

Theorem 5.3 (Simple Regret of Algorithm 2). Suppose that A ⊂ Rd is compact and span(A) =
Rd. If we follow Algorithm 2, then it holds that with probability at least 1− δ,

⟨θ∗,a∗⟩ − ⟨θ∗,aT+1⟩ ≤ 2

√√√√d log(|A|/δ)/
[ T∑

t=1

1

σ2
t

−
4d log log d+16∑

i=1

1

[σ
(i)
T ]2

]
.

Remark 5.4. Theorem 5.3 establishes a simple regret bound for Algorithm 2 that depends on the
harmonic mean of the noise variances σ2

t , while improving the dependence on the dimension d com-
pared to Theorem 4.1. In particular, the

√
d factor in the numerator is replaced by

√
log(|A|), which

can be substantially smaller when the action setA is finite and of moderate size. This improvement is
obtained by exploiting the finite action space structure and employing a variance-adaptive G-optimal
design exploration strategy. Consequently, Algorithm 2 is especially effective in settings with lim-
ited action sets, enabling more efficient exploration and improved simple regret performance.

6 LOWER BOUND

In this section, we establish a lower bound for the simple regret in linear bandits with heteroscedastic
noise. Our lower bound nearly matches the upper bound in Theorem 4.1 up to logarithmic factors,
demonstrating the optimality of our proposed algorithm.
Theorem 6.1 (Instance-dependent lower bound.). For any d ≥ 2 and T ≥ 1, and any algorithm A,
there exists a linear bandit instance with heteroscedastic Gaussian noise satisfying our assumptions
such that the simple regret is lower bounded as follows:

E[SR(T )] ≥ 3

16
d ·
( T∑

t=1

1

σ2
t

)−1/2

.

Remark 6.2. Theorem 6.1 establishes an variance-sequence-dependent lower bound for the simple
regret in linear bandits with heteroscedastic noise. This lower bound matches the upper bound in
Theorem 4.1 up to logarithmic factors, indicating that our proposed algorithm is nearly optimal in
terms of its dependence on the harmonic mean of the variances σ2

t . This result highlights the funda-
mental difficulty of the best-arm identification problem in linear bandits with heteroscedastic noise
and underscores the effectiveness of our variance-adaptive approach. In contrast, in Table 1, the
worst-case lower bound is derived by constructing an instance where all variances are equal, which
does not capture the complexity of heteroscedastic linear bandits, especially when the variances vary
significantly across actions and time steps.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the sample complexity of stochastic linear bandits with heteroscedastic noise
under a fixed action set. We propose a variance-adaptive algorithm that achieves a nearly instance-
optimal simple regret bound, characterized by the harmonic mean of the noise variances. We further
establish a nearly matching lower bound, demonstrating the optimality of our algorithm. Together,
these results provide a comprehensive characterization of the statistical complexity of linear bandits
with heteroscedastic noise.

There are several promising directions for future work. First, one could consider settings where the
context is not fixed but instead sampled from an unknown distribution. Second, it would be natural
to extend our results to the case where the noise variances are unknown and must be estimated
from data. Third, in reinforcement learning, the variance of the noise is governed by the transition
dynamics, which can themselves be estimated from historical data. Extending our results to Markov
decision processes using such estimated variances would be an interesting direction to explore.

9
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A LLM USAGE

We used an LLM only for grammatical and stylistic polishing of the manuscript. No research ideas
or results were generated by the LLM. The authors wrote and verified all technical content.

B PROOF OF THEOREM 4.1

Lemma B.1 (Matrix Inversion Lemma, Harville (1998)). For any invertible matrix A ∈ Rd×d,
vector u, v ∈ Rd, it holds that

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Lemma B.2 (Elliptical Potential Lemma, Abbasi-Yadkori et al. (2011)). For any sequence of vec-
tors {xt}Tt=1 ⊂ Rd, let V0 = λI for some λ > 0 and Vt = Vt−1 +xtx

⊤
t for t ≥ 1. If ∥xt∥2 ≤ L for

all t, then we have
T∑

t=1

min{1, ∥xt∥2V −1
t−1

} ≤ 2d log
λ+ TL2

dλ
.

Lemma B.3. With probability at least 1− δ, it holds for all t ∈ [T ] that

∥θ̂t − θ∗∥Vt
≤ βt := 2

√
λ+ 16

√
log(4t2/δ) · d log dλ+ tσ−2

min

dλ
.

Proof. The proof follows from the standard analysis of OFUL (Abbasi-Yadkori et al., 2011) with
variance-weighted updates.

We have

∥θ̂t − θ∗∥2Vt
= (θ̂t − θ∗)⊤Vt(θ̂t − θ∗)

=

( t∑
s=1

σ−2
s asrs −

t∑
s=1

σ−2
s ata

⊤
t θ

∗ − λθ∗
)⊤

V −1
t · Vt · V −1

t ·
( t∑

s=1

σ−2
s asrs −

t∑
s=1

σ−2
s ata

⊤
t θ

∗ − λθ∗
)

=

( t∑
s=1

σ−2
s asηs − λθ∗

)
V −1
t

( t∑
s=1

σ−2
s asηs − λθ∗

)

≤ 2λ2∥θ∗∥2
V −1
t

+ 2

( t∑
s=1

σ−2
s asηs

)⊤

V −1
t

( t∑
s=1

σ−2
s asηs

)
︸ ︷︷ ︸

I0,t

, (B.1)

where the second equality follows from the definition of θ̂t, the third equality follows from the
definition of rs and ηs, the inequality follows from Young’s inequality. To further bound I0,t, we
introduce the following notation:

d0 = 0, dt =

t∑
s=1

σ−2
s asηs, It = 1(0 ≤ s ≤ t, I0,s ≤ γs), γs := 64 log(4s2/δ) · d log dλ+ sσ−2

min

dλ
.

Decomposing I0,t into a martingale difference sequence, we have

I0,t = d⊤
t−1V

−1
t dt−1 + 2σ−2

t ηta
⊤
t V

−1
t dt−1 + σ−4

t η2t a
⊤
t V

−1
t at

≤ I0,t−1 + 2σ−2
t ηta

⊤
t V

−1
t dt−1︸ ︷︷ ︸

I1,t

+σ−4
t η2t a

⊤
t V

−1
t at︸ ︷︷ ︸

I2,t

. (B.2)

From the matrix inversion lemma (Lemma B.1), we have

I1,t = σ−2
t ηta

⊤
t

(
V −1
t−1 −

σ−2
t V −1

t−1ata
⊤
t V

−1
t−1

1 + σ−2
t a⊤t V

−1
t−1at

)
dt−1
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= σ−2
t ηt

(
atV

−1
t−1dt−1 −

σ−2
t ∥at∥2V −1

t−1

atV
−1
t−1dt−1

1 + σ−2
t ∥at∥2V −1

t−1

)

= σ−2
t ηt

atV
−1
t−1dt−1

1 + σ−2
t ∥at∥2V −1

t−1

.

Based on our assumpition on the noise ηt, I1,t · It is also a sub-Gaussian random variable with
variance proxy bounded by

σ−2
t

∥at∥2V −1
t−1

∥dt−1∥2V −1
t−1

(1 + σ−2
t ∥at∥2V −1

t−1

)2
· It.

Adding I1,s · Is up to t and using Lemma D.3, we have with probability at least 1− δ/2,

t∑
s=1

I1,s · Is ≤

√√√√√2 log(2/δ)

t∑
s=1

σ−2
s

∥as∥2V −1
s−1

∥ds−1∥2V −1
s−1

(1 + σ−2
s ∥as∥2V −1

s−1

)2
· Is

≤

√√√√2 log(2/δ)

t∑
s=1

min{1, ∥σ−1
s as∥2V −1

s−1

} · γt

≤

√
2γt log(2/δ) · 2d log

dλ+ tσ−2
min

dλ

≤ 1

4
γt + 8 log(2/δ) · d log dλ+ tσ−2

min

dλ
, (B.3)

where the second inequality follows from the definition of Is and the fact that
σ−2
s ∥as∥2

V
−1
s−1

(1+σ−2
s ∥as∥2

V
−1
s−1

)2
≤ 1,

the third inequality follows from Lemma B.2, and the last inequality follows from Young’s inequal-
ity.

Using union bound over all t ≥ 1, we have with probability at least 1− δ/2,

t∑
s=1

I1,s · Is ≤
1

4
γt + 8 log(4t2/δ) · d log dλ+ tσ−2

min

dλ

for all t ≥ 1.

For the second term I2,t, it follows from the matrix inversion lemma (Lemma B.1) that

I2,t = σ−4
t η2t a

⊤
t

(
V −1
t−1 −

σ−2
t V −1

t−1ata
⊤
t V

−1
t−1

1 + σ−2
t a⊤t V

−1
t−1at

)
at

= σ−4
t η2t

(
∥at∥2V −1

t−1

−
σ−2
t ∥at∥4V −1

t−1

1 + σ−2
t ∥at∥2V −1

t−1

)

= σ−4
t η2t

∥at∥2V −1
t−1

1 + σ−2
t ∥at∥2V −1

t−1

,

Using union bound over t ≥ 1, we have with probability at least 1− δ/2,

I2,t ≤ σ−4
t σ2

t log(4t
2/δ)

∥at∥2V −1
t−1

1 + σ−2
t ∥at∥2V −1

t−1
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for all t ≥ 1.

Thus, for any t ≥ 1,

t∑
s=1

I2,s ≤
t∑

s=1

σ−2
s log(4s2/δ)

∥as∥2V −1
s−1

1 + σ−2
s ∥as∥2V −1

s−1

≤ log(4t2/δ)

t∑
s=1

min{1, ∥σ−1
s as∥2V −1

s−1

}

≤ 2 log(4t2/δ) · d log dλ+ tσ−2
min

dλ
, (B.4)

where the last inequality follows from Lemma B.2.

Substituting (B.3) and (B.4) into (B.2), and using induction on t, we have with probability at least
1− δ,

I0,t ≤ γt := 64 log(4t2/δ) · d log dλ+ tσ−2
min

dλ
,

which further implies that

∥θ̂t − θ∗∥2Vt
≤ 2λ2∥θ∗∥2

V −1
t

+ 2I0,t ≤ 2λ+ 256 log(4t2/δ) · d log dλ+ tσ−2
min

dλ
.

Lemma B.4. If we follow Algorithm 1 to choose the action at, then it holds for any t ∈ [T ] that

∥at∥2V −1
t−1

≤ min
1≤k≤t+1

{
x2 =

ι(t)− k + 1∑t
i=k

1

[σ
(i)
t ]2

∣∣∣∣[σ(i)
t ]2 is the i-th smallest element in {σ2

τ}tτ=1,

x ∈ [σ
(k−1)
t , σ

(k)
t ]

}
,

where ι(t) = 2d log
(

d+
∑

τ∈[t] σ
−2
τ

d

)
.

Proof. When x ∈ [0, 1], x ≤ 2 log(1 + x), which further indicates that∑
τ∈[t]

min
{
1,

1

σ2
τ

∥aτ∥2V −1
τ−1

}
≤ 2

∑
τ∈[t]

log
(
1 +

1

σ2
τ

∥aτ∥2V −1
τ−1

)
≤ 2 log

det(Vτ )

det(V0)

≤ 2d log
(d+∑τ∈[t] σ

−2
τ

d

)
. (B.5)

Let

ι(t) := 2d log
(d+∑τ∈[t] σ

−2
τ

d

)
.

Note that for i ≤ t,
∥at∥V −1

t−1
≤ ∥at∥V −1

i−1
≤ ∥ai∥V −1

i−1

due to the fact that Vt−1 ⪰ Vi−1 and the definition of ai in Algorithm 1. Therefore, following
inequality (B.5), we obtain that∑

τ∈[t]

min
{
1,

1

σ2
τ

∥at∥2V −1
t−1

}
≤
∑
τ∈[t]

min
{
1,

1

σ2
τ

∥at∥2V −1
t−1

}
≤ ι(t). (B.6)
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As LHS of (B.6) is strictly increasing with respect to ∥at∥V −1
t−1

as long as ι(t) < t, we can derive a
bound for ∥at∥V −1

t−1
by solving

∑
τ∈[t]

min

{
1,

1

σ2
τ

x2

}
= ι(t). (B.7)

To solve (B.7), we define a sorted sequence of {σi}ti=1 in increasing order, denoted as

σ
(1)
t ≤ σ

(2)
t ≤ · · · ≤ σ

(t)
t .

Let σ(0)
t := 0. Suppose that x ∈ [σ

(k−1)
t , σ

(k)
t ] for some k ∈ [t]. Then for i < k, we have

min

{
1,

1

[σ
(i)
t ]2

x2

}
= 1;

for i ≥ k, we have

min

{
1,

1

[σ
(i)
t ]2

x2

}
=

x2

[σ
(i)
t ]2

.

After rewriting the LHS of the above equality, we have

k − 1 +

t∑
i=k

x2

[σ
(i)
t ]2

= ι(t).

We can then rearrange the above inequality to obtain

∥at∥2V −1
t−1

≤ x2,

where

x2 := min
1≤k≤t+1

{
ι(t)− k + 1∑t

i=k
1

[σ
(i)
t ]2

∣∣∣∣[σ(k−1)
t ]2 ≤ ι(t)− k + 1∑t

i=k
1

[σ
(i)
t ]2

≤ [σ
(k)
t ]2

}
.

This completes the proof.

Remark B.5. In the previous proof, x2 is the solution for the implicit equation (B.7). We can also
rewrite it as

sx2
t∑

i=1

1

max(σ2
i , x

2)
= ι(t),

which implies that

x2 =
ι(t)∑t

i=1
1

max(σ2
i ,x

2)

.

We further have

x2 ≤ ι(t)∑t
i=1

1
σ2
i+x2

≤ ι(t)
t

x2+t−1
∑t

i=1 σ2
i

=
ι(t)(x2 + t−1

∑t
i=1 σ

2
i )

t
.

Rearranging the above inequality, we obtain

x2 ≤
ι(t)

∑t
i=1 σ

2
i

t[t− ι(t)]
= Õ(

d
∑t

i=1 σ
2
i

t2
)

when t = Ω(d).
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Theorem B.6 (Simple Regret of VAEE, restatement of Theorem 4.1). If we set λ = 1 and βt =

2
√
λ + 16

√
log(4t2/δ) · d log dλ+tσ−2

min

dλ in Algorithm 1, then with probability at least 1 − δ, the
simple regret of Algorithm 1 is bounded as

SR(T ) = Õ(
√
d) min

1≤k≤T+1

{
x =

√√√√ ι(T )− k + 1∑T
i=k

1

[σ
(i)
T ]2

∣∣∣∣[σ(i)
T ]2 is the i-th smallest element in {σ2

τ}Tτ=1,

x ∈ [σ
(k−1)
T , σ

(k)
T ]

}
,

where ι(T ) = 2d log
(

d+
∑

τ∈[T ] σ
−2
τ

d

)
.

Proof. By Lemma B.3, with probability at least 1− δ, it holds for all t ∈ [T ] that θ∗ ∈ Ct := {θ ∈
Rd : ∥θ̂t − θ∥Vt

≤ βt}. In the following, we condition on the event that θ∗ ∈ Ct for all t ∈ [T ].

With the conditioned event, we can show by induction that for any t ∈ [T ], a∗ ∈ At:

max
θ∈Ct−1

⟨θ,a∗⟩ ≥ ⟨θ∗,a∗⟩ ≥ max
a∈At−1

⟨θ∗,a⟩ ≥ max
a∈At−1

min
θ∈Ct−1

⟨θ,a⟩,

where the first inequality follows from the fact that θ∗ ∈ Ct−1, the second inequality follows from
the definition of a∗, and the last inequality follows from the definition of At−1.

Let a∗ = argmaxa∈A⟨θ∗,a⟩ be the optimal action. By the definition of simple regret, we have

SR(T ) = ⟨θ∗,a∗ − aT ⟩
≤ max

a∈AT

max
θ∈CT−1

⟨θ,a⟩ − ⟨θ∗,aT ⟩

≤ max
a∈AT

⟨θ̂T−1,a⟩+ βT ∥aT ∥V −1
T−1
− ⟨θ̂T−1,aT ⟩+ βT ∥aT ∥V −1

T−1
,

where the first inequality follows from the event that θ∗ ∈ Ct for all t ∈ [T ], and the fact that
a∗ ∈ AT , the second inequality follows from the definition of CT−1 and the definition of aT in
Algorithm 1.

Then it suffices to bound maxa∈AT
⟨θ̂T−1,a⟩ − ⟨θ̂T−1,aT ⟩. Since aT ∈ AT , it is guaranteed that

there exists θ′
T ∈ CT−1 such that

⟨θ′
T ,aT ⟩ − max

a∈AT

min
θ∈CT−1

⟨θ,a⟩ ≥ 0,

which further implies that

max
a∈AT

⟨θ̂T−1,a⟩ − ⟨θ̂T−1,aT ⟩ = max
a∈AT

⟨θ̂T−1,a⟩ − ⟨θ′
T ,aT ⟩+ ⟨θ′

T − θ̂T−1,aT ⟩

≤ max
a∈AT

⟨θ̂T−1,a⟩ − ⟨θ′
T ,aT ⟩+ βT ∥aT ∥V −1

T−1

≤ 3βT max
a∈AT

∥a∥V −1
T−1

= 3βT ∥aT ∥V −1
T−1

,

where the last inequality holds because maxa∈AT
⟨θ̂T−1,a⟩ − maxa∈AT

minθ∈CT−1
⟨θ,a⟩ ≤

2βT maxa∈AT
∥a∥V −1

T−1
based on the definition of CT−1 and the last equality follows from the action

selection rule in Algorithm 1.

Hence, the simple regret of Algorithm 1 is bounded as

SR(T ) ≤ 5βT ∥aT ∥V −1
T−1

≤ Õ(
√
d) min

1≤k≤T+1

{
x =

√√√√ ι(T )− k + 1∑T
i=k

1

[σ
(i)
T ]2

∣∣∣∣[σ(i)
T ]2 is the i-th smallest element in {σ2

τ}Tτ=1,

x ∈ [σ
(k−1)
T , σ

(k)
T ]

}
,

where the last inequality follows from the choice of βT and the result in the previous lemma.
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C PROOF OF THEOREM 6.1

The proofs of our lower bound require the following Lemmas, which is standard technique used for
lower bound.
Lemma C.1 (Le Cam two-point method (Le Cam, 1986)). Let P and Q be probability measures on
the same measurable space, and let ϕ : Ω→ {0, 1} be any (possibly randomized) test. Then

1

2

(
P{ϕ = 1}+Q{ϕ = 0}

)
≥ 1

2

(
1− δTV(P,Q)

)
,

where δTV(P,Q) = supA |P (A) − Q(A)| is total variation distance. Moreover, by Pinsker’s in-
equality,

δTV(P,Q) ≤
√

1
2 KL(P∥Q).

Hence the average error of any test is bounded below by

1

2

(
P{ϕ = 1}+Q{ϕ = 0}

)
≥ 1

2

(
1−

√
1
2 KL(P∥Q)

)
.

Lemma C.2 (Pinsker’s inequality (Pinsker, 1964)). For any probability measures P,Q,

δTV(P,Q) ≤
√

1
2 KL(P∥Q).

Lemma C.3 (Yao’s minimax principle (Yao, 1977)). Let Π be the set of deterministic algorithms
(measurable decision rules), P a family of instances with loss L(π,θ) and let D be distributions
over P . Then

inf
π∈Π

sup
θ∈P

Eθ

[
L(π,θ)

]
≥ sup

µ∈D
inf
π∈Π

Eθ∼µEθ

[
L(π,θ)

]
.

In other words, the worst-case risk of the best deterministic algorithm is at least the Bayes risk under
any prior µ.

Now, we are ready to prove our lower bound.

Proof of Theorem 6.1. Step 1 (per-coordinate two-point divergence). Let action set A =
{−1, 1}d. The unknown parameter belongs to

Θ = {−c,+c}d for some c > 0.

The optimal arm for θ is a∗(θ) = sign(θ). Since each coordinate mistake costs 2c, the simple regret
is

SR(T ) = Eθ

[
⟨θ,a∗(θ)⟩ − ⟨θ, âT ⟩

]
= 2c · Eθ

[
Ham

(
âT , sign(θ)

)]
,

where

Ham(u,v) ≜
d∑

j=1

1{uj ̸= vj}.

Let S =
∑T

t=1 σ
−2
t denote the total precision. Fix j ∈ [d] and consider neighboring parameters that

differ only on coordinate j:

θ
(j,+)
j = +c, θ

(j,−)
j = −c, θ

(j,+)
k = θ

(j,−)
k ∈ {±c} (k ̸= j).

Let P(j)
+ ≡ Pθ(j,+) and P(j)

− ≡ Pθ(j,−) be the laws of the full transcript under these two instances.
By the chain rule for KL and the fact that at = πt(Ht−1) contributes to KL,

KL(P(j)
+ ∥P

(j)
− ) =

T∑
t=1

E
[
KL
(
N (µ

(j,+)
t , σ2

t )
∥∥N (µ

(j,−)
t , σ2

t )
)]
,

where µ
(j,±)
t = ⟨θ(j,±),at⟩. The means differ only on coordinate j, so µ

(j,+)
t − µ

(j,−)
t = (+c −

(−c))at,j = 2c at,j and thus

KL
(
N (µ

(j,+)
t , σ2

t )
∥∥N (µ

(j,−)
t , σ2

t )
)
=

(µ
(j,+)
t − µ

(j,−)
t )2

2σ2
t

=
(2c at,j)

2

2σ2
t

=
2c2

σ2
t

,
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since a2t,j = 1. Summing over t yields the instance divergence

KL(P(j)
+ ∥P

(j)
− ) = 2c2

T∑
t=1

1

σ2
t

= 2c2S.

Step 2 (Le Cam + Pinsker ⇒ per-coordinate average error). Apply Lemma C.1 with the test
ϕ = 1{ŝj = +1} between P

(j)
+ and P

(j)
− , and bound the TV distance by Lemma C.2. We get

1

2

(
P

(j)
+ {ŝj ̸= +1}+ P

(j)
− {ŝj ̸= −1}

)
≥ 1

2

(
1−

√
1
2 KL(P

(j)
+ ∥P (j)

− )
)

=
1

2

(
1− c

√
S
)
.

Choose c = 1
4S

−1/2 to obtain the uniform per-coordinate bound

1

2

(
P

(j)
+ {ŝj ̸= +1}+ P

(j)
− {ŝj ̸= −1}

)
≥ 3

8
for all j ∈ [d].

Step 3 (aggregate to d coordinates under Hamming loss). This part requires the following lemma.
The proof of this Lemma is defer to Appendix C.1.

Lemma C.4 (From two-point bounds to a d-dimensional Hamming-risk lower bound). Let Θ =
{±c}d and put the uniform prior on Θ. Let HT denote the full transcript and let ŝ = ŝ(HT ) ∈
{±1}d be any estimator of sign(θ). For each coordinate j ∈ [d], fix two instances θ(j,+),θ(j,−) ∈ Θ

that differ only in coordinate j (i.e., θ(j,+)
j = +c, θ(j,−)

j = −c and θ
(j,+)
k = θ

(j,−)
k for all k ̸= j).

Denote by P
(j)
+ and P

(j)
− the corresponding laws of HT under these two instances. Assume that for

every j,
1

2

(
P

(j)
+ {ŝj ̸= +1}+ P

(j)
− {ŝj ̸= −1}

)
≥ η, for some η ∈ (0, 1/2]. (C.1)

Then the Bayes Hamming risk under the uniform prior satisfies

Eθ Eθ

[
Ham(ŝ, sign(θ))

]
≥ η d, (C.2)

and, consequently, by Yao’s minimax principle,

inf
π

sup
θ∈Θ

Eθ

[
Ham(ŝ, sign(θ))

]
≥ η d. (C.3)

Invoke Lemma C.4 with η = 3
8 to conclude that the Bayes Hamming risk under the uniform prior

on Θ satisfies

Eθ Eθ

[
Ham(ŝ, sign(θ))

]
≥ 3

8
d.

By Lemma C.3 (Yao’s principle), this also lower-bounds the minimax Hamming risk:

inf
π

sup
θ∈Θ

Eθ

[
Ham(ŝ, sign(θ))

]
≥ 3

8
d.

Step 4 (convert Hamming loss to simple regret). In Θ = {±c}d, each coordinate mistake costs
exactly 2c in value. Therefore

inf
π

sup
θ∈Θ

Eθ

[
SR(π,θ, T )

]
≥ 2c · 3

8
d =

3

4
c d =

3

16
dS−1/2,

where we used c = 1
4S

−1/2.

C.1 PROOF OF LEMMA C.4

Proof of Lemma C.4. By definition of Hamming distance,

Ham(ŝ, sign(θ)) =

d∑
j=1

1{ŝj ̸= sign(θj)}.
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Taking expectation under the model instance θ and then averaging over the uniform prior on Θ, the
Bayes Hamming risk equals

Eθ Eθ

[
Ham(ŝ, sign(θ))

]
=

d∑
j=1

Eθ Pθ

{
ŝj ̸= sign(θj)

}
. (C.4)

Fix a coordinate j ∈ [d]. Write θ = (θj ,θ−j), and condition on θ−j . Under the uniform prior on
Θ, we have P{θj = +c | θ−j} = P{θj = −c | θ−j} = 1

2 . Hence, conditionally on θ−j , the law of
the transcript HT is the equal mixture

M(j)
θ−j

= 1
2 P

(j)
+ + 1

2 P
(j)
− , (C.5)

where P
(j)
+ and P

(j)
− are the endpoint laws that differ only in coordinate j (with θ−j held fixed).

Identify the conditional Bayes error for coordinate j with the average two-point error. Consider
the indicator loss for estimating sign(θj) by the (measurable) decision rule ŝj(HT ) ∈ {±1}. The
conditional Bayes error probability for coordinate j, given θ−j , is

Errj(θ−j) ≜ E
HT∼M(j)

θ−j

[
1
2 1{ŝj(HT ) ̸= +1} + 1

2 1{ŝj(HT ) ̸= −1}
]
.

Using (C.5), this equals the average of the two endpoint errors:

Errj(θ−j) =
1
2 P

(j)
+ {ŝj ̸= +1} + 1

2 P
(j)
− {ŝj ̸= −1}. (C.6)

By the assumption (C.1), we have, for every θ−j ,

Errj(θ−j) ≥ η. (C.7)

Average over θ−j and sum over j. By the tower property (law of total expectation),

Eθ Pθ

{
ŝj ̸= sign(θj)

}
= Eθ−j

[
Errj(θ−j)

]
.

Combining with (C.7) yields

Eθ Pθ

{
ŝj ̸= sign(θj)

}
≥ η for every j ∈ [d]. (C.8)

Summing (C.8) over j = 1, . . . , d and using (C.4) gives

Eθ Eθ

[
Ham(ŝ, sign(θ))

]
=

d∑
j=1

Eθ Pθ

{
ŝj ̸= sign(θj)

}
≥ η d,

which is (C.2).

From Bayes to Minimax. By Yao’s minimax principle (Lemma C.3), the Bayes risk under the
uniform prior lower-bounds the minimax (worst-case) risk over Θ of any deterministic policy:

inf
π

sup
θ∈Θ

Eθ

[
Ham(ŝ, sign(θ))

]
≥ Eθ Eθ

[
Ham(ŝ, sign(θ))

]
≥ η d,

which is (C.3). This completes the proof.

D PROOF OF THEOREM E.3

Lemma D.1. If we follow Algorithm 2 to choose the action a1:T , and compute θ̂T and VT , then it
holds that

VT ⪰
[ T∑

t=1

1

σ2
t

−
|supp(π)|∑

i=1

1

[σ
(i)
T ]2

]
V (π).
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Proof. Consider the action am ∈ A such that π(am) > 0 and
∑

τ∈TT (a)
1

σ2
τ ·π(a)

is minimized. It is
straightforward to see that

VT ⪰
∑
a∈A

[ ∑
τ∈TT (am)

1

σ2
τ · π(am)

]
π(a)aa⊤ =

∑
τ∈TT (am)

1

σ2
τ · π(am)

V (π). (D.1)

Then it suffices to lower bound
∑

τ∈TT (am)
1

σ2
τ ·π(am) .

We consider the arms in supp(π)\{am}. For the round t(a) when the arm a is pulled and∑
τ∈Tt(a)

1
σ2
τ ·π(a)

≥
∑

τ∈TT (am)
1

σ2
τ ·π(am) , it is guaranteed by the selection rule that a will not

be pulled in the subsequent rounds. We denote by σ(a) the last variance observed when pulling the
arm a. Then we have∑
a∈supp(π)\{am}

π(a)
∑

τ∈TT (a)

1

σ2
τ · π(a)

≤
∑

a∈supp(π)\{am}

π(a)

[ ∑
τ∈TT (am)

1

σ2
τ · π(am)

+
1

[σ(a)]2 · π(a)

]
≤ [1− π(am)]

∑
τ∈TT (am)

1

σ2
τ · π(am)

+
∑

a∈supp(π)\{am}

1

[σ(a)]2

≤ [1− π(am)]
∑

τ∈TT (am)

1

σ2
τ · π(am)

+

|supp(π)|−1∑
i=1

1

[σ
(i)
T ]2

,

(D.2)

where the first inequality is due to the definition of σ(a) and the last inequality follows from the fact
that {σ(a)}a∈supp(π)\{am} are the variance signals observed at distinct rounds.

Rearranging (D.2), we obtain that

∑
a∈supp(π)

π(a)
∑

τ∈TT (a)

1

σ2
τ · π(a)

≤
∑

τ∈TT (am)

1

σ2
τ · π(am)

+

|supp(π)|−1∑
i=1

1

[σ
(i)
T ]2

. (D.3)

Note that LHS of (D.3) is exactly
∑T

t=1
1
σ2
t

, which further indicates that

∑
τ∈TT (am)

1

σ2
τ · π(am)

≥
T∑

t=1

1

σ2
t

−
|supp(π)|−1∑

i=1

1

[σ
(i)
T ]2

.

As a result, we have

VT ⪰
[ T∑

t=1

1

σ2
t

−
|supp(π)|−1∑

i=1

1

[σ
(i)
T ]2

]
V (π)

following (D.1).

Lemma D.2. In Algorithm 2, for any arm a ∈ A, with probability at least 1− δ, we have

|⟨θ̂T − θ∗,a⟩| ≤ ∥a∥V −1
T

√
2 log(2|A|/δ)

≤ ∥a∥V (π)−1

√√√√2 log(2|A|/δ)/
[ T∑

t=1

1

σ2
t

−
|supp(π)|∑

i=1

1

[σ
(i)
T ]2

]
.

Proof. From the definition of θ̂T and VT , it is straightforward to obtain the following inequality:

|⟨θ̂T − θ∗,a⟩| = |⟨V −1
T

T∑
t=1

σ−2
t rtat − V −1

T VT · θ∗,a⟩|

= |⟨V −1
T

T∑
t=1

σ−2
t atηt,a⟩|
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=
∣∣∣ T∑
t=1

σ−2
t ηt⟨at, V −1

T a⟩
∣∣∣. (D.4)

Applying Lemma D.3 to (D.4), we have that with probability at least 1− δ,

|⟨θ̂T − θ∗,a⟩| ≤

√√√√2

T∑
t=1

σ−2
t ⟨at, V −1

T a⟩2 log(2/δ)

≤

√√√√2

T∑
t=1

[σ−1
t a⊤t V

−1
T a]2 log(2/δ)

=

√√√√2

T∑
t=1

a⊤V −1
T σ−1

t atσ
−1
t a⊤t V

−1
T a log(2/δ)

≤
√

2a⊤V −1
T a log(2/δ),

where the last inequality is due to the fact that
∑T

t=1 σ
−2
t ata

⊤
t = VT .

By Lemma D.1, we further have

|⟨θ̂T − θ∗,a⟩| ≤ ∥a∥V −1
T

√
2 log(2/δ)

≤ ∥a∥V (π)−1

√√√√2 log(2/δ)/
[ T∑

t=1

1

σ2
t

−
|supp(π)|∑

i=1

1

[σ
(i)
T ]2

]
,

from which the desired result follows by taking a union bound over all a ∈ A.

Lemma D.3 (Hoeffding’s inequality). Let {xi}ni=1 be a stochastic process, {Gi}i be a filtration so
that for all i ∈ [n], xi is Gi-measurable, while E[xi|Gi−1] = 0 and xi|Gi−1 is a σi-sub-Gaussian
random variable. Then, for any t > 0, with probability at least 1− δ, it holds that

n∑
i=1

xi ≤

√√√√2

n∑
i=1

σ2
i log(1/δ).

Theorem D.4 (Simple Regret of Algorithm 2, restatement of Theorem 5.3). Suppose that A ⊂ Rd

is compact and span(A) = Rd. If we follow Algorithm 2, then it holds that with probability at least
1− δ,

⟨θ∗,a∗⟩ − ⟨θ∗,aT+1⟩ ≤ 2

√√√√d log(|A|/δ)/
[ T∑

t=1

1

σ2
t

−
4d log log d+16∑

i=1

1

[σ
(i)
T ]2

]
.

Proof. From the definition of aT+1, we have

⟨θ∗,a∗⟩ − ⟨θ∗,aT+1⟩ = ⟨θ̂T − θ∗,aT+1⟩+ ⟨θ∗ − θ̂T ,a
∗⟩+ ⟨θ̂T ,a∗ − aT+1⟩

≤ |⟨θ̂T − θ∗,aT+1⟩|+ |⟨θ̂T − θ∗,a∗⟩|

≤
(
∥aT+1∥V (π)−1 + ∥a∗∥V (π)−1

)√√√√2 log(2|A|/δ)/
[ T∑

t=1

1

σ2
t

−
|supp(π)|∑

i=1

1

[σ
(i)
T ]2

]

≤ 2

√√√√d log(2|A|/δ)/
[ T∑

t=1

1

σ2
t

−
4d log log d+16∑

i=1

1

[σ
(i)
T ]2

]
,

where the first inequality follows from the definition of aT+1, the second inequality is due to Lemma
D.2 and the last inequality is due to Theorem 5.2.
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Algorithm 3 Variance-Aware Exploration with Elimination (VAEE for heavy-tailed noise)
Require: A ⊂ Rd, δ.

1: Initialize V0 ← λId, θ̂0 ← 0, A1 ← A.
2: for t = 1, . . . , T do
3: Pull the action at ← maxe∈At

∥e∥V −1
t−1

.
4: The agent receives the reward rt and the variance σt.
5: Calculate Vt ← Vt−1 + σ−2

t ata
⊤
t .

6: Calculate

θ̂t ← argmin
∥θ∥2≤1

λ

2
∥θ∥22 +

t∑
i=1

ℓτi

(
ri − ⟨ai,θ⟩

σi

)
,

where τi = τ0 ·

√
1+σ−2

i ∥ai∥2

V
−1
i−1

σ−1
i ∥ai∥V

−1
i−1

.

7: Set confidence set as follows

Ct ← {θ | ∥θ − θ̂t∥2V −1
t
≤ βt}.

8: Eliminate low rewarding arms: At+1 ←
{
a ∈ At : maxe∈At

minθ∈Ct
⟨θ, e⟩ ≤

maxθ∈Ct⟨θ,a⟩
}

.
9: end for

E EXTENSION TO HEAVY-TAILED NOISE

In this section, we extend our results to the setting where the noise is heavy-tailed. Specifically, we
consider the following assumption on the noise.
Assumption E.1. For any round t (t ≥ 1), the noise ηt satisfies that

E[ηt|a1:t, η1:t−1] = 0, E[η2t |a1:t, η1:t−1] ≤ σ2
t .

This assumption is more general than the sub-Gaussian assumption on the noise, which only requires
the second moment of the noise to be bounded.

To handle the heavy-tailed noise, we consider the following adaptive pseudo-Huber regression esti-
mator (Ruppert, 2004; Sun, 2021; Li & Sun, 2024):

ℓτ (x) := τ ·
(√

τ2 + x2 − τ
)
, (E.1)

where τ > 0 is a robustification parameter. The pseudo-Huber loss behaves like the squared loss
when |x| is small, and behaves like the absolute loss when |x| is large, which is firstly applied by Li
& Sun (2024) into the heteroscedastic linear bandit setting.
Lemma E.2 (Theorem 2.1, Li & Sun 2024). Let κ = d · log(1 + T/dσ2

min). If we set τ0 ≥
max{

√
2κ, 2

√
d}/
√

log(2T 2/δ), then with probability at least 1− 4δ, it holds for all t ∈ [T ] that

∥θ̂t − θ∗∥Vt
≤ βt := 32

(
κ

τ0
+

√
κ log

2t2

δ
+ τ0 log

2t2

δ

)
+ 5
√
λ.

Theorem E.3 (Simple Regret of Algorithm 3). Consider the linear bandit problem with heavy-
tailed noise satisfying Assumption E.1. If we set τ0 = Θ(

√
d) and λ = 1 in Algorithm 3, then with

probability at least 1− 4δ, it holds that

SR(T ) = Õ(
√
d) · min

1≤k≤T+1

x =

√√√√ ι(T )− k + 1∑T
i=k

1

[σ
(i)
T ]2

∣∣∣∣x ∈ [σ
(k−1)
T , σ

(k)
T ]

 ,

where ι(T ) = 2d log
(

d+
∑

τ∈[T ] σ
−2
τ

d

)
. Recall that {σ(i)

T }Ti=1 is the sorted sequence of {σt}Tt=1 in
the ascending order.
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Proof. The proof follows the same line as the proof of Theorem 4.1, with the only difference being
the confidence radius βt. By setting τ0 = Θ(

√
d), we have βt = Õ(

√
d). Following the same

analysis as in Theorem 4.1, we can obtain the desired result.
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