
Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL FOR SUCCINCT NET-
WORK CHANNEL AND SPATIAL PRUNING VIA DIS-
CRETE VARIABLE QCQP

Anonymous authors
Paper under double-blind review

A QCQP FORMULATION ON NONSEQUENTIAL CONVOLUTIONS

A.1 SKIP ADDITION

We define output channel activation u(t) ∈ {0, 1}Ct and input channel activation v(t) ∈ {0, 1}Ct to
each indicate remaining output channels of the t-th convolution layer and remaining input channels
of the t+1-th layer, respectively. Note that similar to Section 3.2, the definition of u(t) induces
constraints between the shape column activations

(
= q(t)

)
and output channel activation variables(

= u(t)
)
. Concretely, the constraints are given as u(t)j ≤

∑
a,b q

(t)
j,a,b and q(t)j,a,b ≤ u

(t)
j ∀a, b.

We now discuss the constraints between the input and output channel activation variables under four
possible scenarios depending on the architectural implementations of skip additions. Here, we denote
the set of layer index pairs {(s, t)} which have skip additions as P . Concretely, (s, t) ∈ P if and only
if the input feature map of the s+1-th convolution layer is added to the output feature map of the t-th
layer, forming the input feature map of the t+ 1-th layer. Also, let T = {t | (s, t) ∈ P}. For a layer
t, we formulate the channel activation constraints for each possible connection scenarios separately:

(i) If there is no skip addition incoming to the t-th layer (t /∈ T ), then we force u(t) = v(t).

(ii) For a skip addition pair (s, t) ∈ P with matching channel dimensions (Cs=Ct), the input feature
map of the s+1-th convolution layer is directly added to the output feature map from the t-th layer as
illustrated in Figure 1a. In this case, we can formulate the constraints as u(t) � v(t) � u(t) + v(s).

(iii) For a skip addition pair (s, t) ∈ P with mismatching channel dimensions (Cs<Ct), the skip
addition can utilize zero padding (iii− a) or 1× 1 convolutions (iii− b) to resolve the mismatch
(He et al., 2016). We define the augmented channel activation ṽ(s) ∈ {0, 1}Ct and formulate the
constraints for both cases as below.

(iii− a) A (Ct−Cs)-dimensional zero-valued feature map is padded to the end of the s+1-th
convolution layer’s input feature map. We define ṽ(s) =

[
v(s), 0Ct−Cs

]
, as illustrated in

Figure 1b.
(iii− b) 1 × 1 convolution is applied to the s+1-th layer’s input feature map to match the larger

channel dimension (= Ct). Since the number of FLOPs and weights in a 1× 1 convolution
is negligible compared to the total number of FLOPs and weights, we assume all of the
output channels of a 1× 1 convolution are activated and define ṽ(s) = 1Ct as illustrated in
Figure 1c.

We now summarize the constraints for the four cases discussed above to Equation (1).

(i) v(t) = u(t) ∀t /∈ T (ii) u(t) � v(t) � u(t) + v(s) ∀(s, t) ∈ P and Ct = Cs

(iii) ∀(s, t) ∈ P and Ct > Cs,

(iii− a) u(t)j ≤ v
(t)
j ≤ u

(t)
j + v

(s)
j ∀j ≤ Cs and v(t)j = u

(t)
j ∀j > Cs

(iii− b) u(t) � v(t). (1)

Proposition 2 shows that the constraints of Equation (1) prevent inactive weights from remaining in
the pruned network with skip additions.

1



Under review as a conference paper at ICLR 2021

Proposition 2. Optimizing over the input and output channel activation variables u(0:L), v(0:L) and
shape column activation variables q(1:L) under the constraints in Equation (1) prevents the existence
of any inactive weights in the pruned network guaranteeing exact computation of 1) resource usage
and 2) the sum of the importance of active weights in the pruned network.

Proof. See supplementary D.

v(s)

· · ·

Identity

v(t−1) A(t) u(t)

v(s)

v(t)

(a) (ii) in Equation (1)

v(s)

· · ·

Zero padding

v(t−1) A(t) u(t)

0

0

ṽ(s)

v(t)

(b) (iii− a) in Equation (1)

v(s)

· · ·

1x1 conv

v(t−1) A(t) u(t)

1

1

ṽ(s)1

1

v(t)

(c) (iii− b) in Equation (1)

Figure 1: Illustration of the skip addition procedure for each skip addition scenarios.

We now formulate the network channel and spatial pruning optimization problem handling nonse-
quential convolutions with the input channel, output channel, and shape column activation variables
below in Equation (2).

maximize
u(0:L),v(0:L),q(1:L)

L∑
t=1

〈
I(t), A(t)

〉
(2)

subject to

L∑
t=0

at

∥∥∥u(t)∥∥∥
1
+
∑
t∈T

at

∥∥∥v(t)∥∥∥
1
+

L∑
t=1

bt

∥∥∥A(t)
∥∥∥
1
≤M

u
(t)
j ≤

∑
a,b

q
(t)
j,a,b and q

(t)
j,a,b ≤ u

(t)
j ∀t, j, a, b

A(t) = v(t−1) ⊗ q(t) ∀t
u(t), v(t) ∈ {0, 1}Ct and q(t) ∈ {0, 1}Ct×Kt×Kt ∀t ∈ [L]

(i) v(t) = u(t) ∀t /∈ T
(ii) u(t) � v(t) � u(t) + v(s) ∀(s, t) ∈ P and Ct = Cs

(iii) ∀(s, t) ∈ P and Ct > Cs,

(iii− a) u(t)j ≤ v
(t)
j ≤ u

(t)
j + v

(s)
j ∀j ≤ Cs and v(t)j = u

(t)
j ∀j > Cs

(iii− b) u(t) � v(t)

Concretely, Equation (2) reduces to the optimization problem for sequential convolution networks
when u(t)=v(t), q

(t)
j,a,b=u

(t)
j , and P=∅ ∀t, j, a, b.

A.2 SKIP CONCATENATION

Skip concatenation, which is a crucial feature of the well-known DenseNet (Huang et al., 2017),
requires different techniques from skip addition. Concretely, the skip concatenation of a layer pair
(p, q) means the p-th layer’s feature map is concatenated with the q-th layer’s feature map before
the q+1-th convolution. To handle the possible skip concatenations, we utilize the fact that when
(p, q) is the skip concatenation pair, q + 1-th convolution operation on the q-th layer can be thought
as separate convolution operations on the p-th layer and the q-th layer, respectively. In this regard,
we first assume there are convolution operations between every pair of layers. Then, we define

2



Under review as a conference paper at ICLR 2021

W (p,q) ∈ RCp×Cq×Kp,q×Kp,q as the convolution weights between p-th layer and q-th layer where
p < q. If there is no skip concatenation from p-th layer to q−1-th layer, we regard there is no
convolution operation between p-th layer and q-th layer and set W (p,q) = 0Kp,q,Kp,q

. Also, we
introduce the corresponding shape column activation variables, q(p,q) ∈ {0, 1}Cq×Kp,q×Kp,q , for the
convolution operation from p-th layer to q-th layer. Then, we extend the optimization problem for
skip concatenation as

maximize
r(0:L),q(1:L,1:L)

L∑
p=1

L∑
q=1

〈
I(p,q), A(p,q)

〉
(3)

subject to

L∑
p=0

ap

∥∥∥r(p)∥∥∥
1
+

L∑
p=1

L∑
q=1

bp,q

∥∥∥A(p,q)
∥∥∥
1
≤M

r
(q)
j ≤

∑
a,b

q
(p,q)
j,a,b and q

(p,q)
j,a,b ≤ r

(q)
j ∀p, q, j, a, b

A(p,q) = r(p) ⊗ q(p,q) ∀p, q
r(p) ∈ {0, 1}Cp and q(p,q) ∈ {0, 1}Cq×Kp,q×Kp,q ∀p, q ∈ [L].

B COORDINATE DESCENT STYLE OPTIMIZATION

In this section, we provide a block coordinate descent-style optimization algorithm for solving
Equation (2) in Algorithm 1. Note that Equation (2) is the generalized version of Equation (3) in
Section 3.2.

Algorithm 1 Succinct channel and spatial pruning optimization via QCQP

Input : B, M , γ, al, a′l, b
′
l, I

(l), ∀l
Initialize u(0:L), v(0:L).
M :=M/γ.
for n = 1, . . . ,MAXITER do

for i = 0, . . . , L−B + 1 do
z =

[
u(i:i+B−1), v(i:i+B−1)]

f̃(z) = f(z; rest of the variables in u, v fixed).
Optimize f̃(z) with respect to z under the constraints in Equation (2).

end for
end for
M := γM
Optimize Equation (2) with respect to q(1:L) while fixing u(0:L) and v(0:L).
Output : u(0:L), v(0:L), q(1:L)

We first set all shape column activation variables to (q
(t)
j,a,b = u

(t)
j ∀t, j, a, b). Then, we optimize

over the input and output channel activation variables (u(0:L), v(0:L)) in a block coordinate de-
scent fashion with the resource constraint M/γ where γ is the average spatial sparsity smaller
than 1. Then, we optimize over the shape column activation variables q(1:L), fixing the input and
output channel activation variables. In all experiments using Algorithm 1, γ is decreased from
‘M/(Resource requirment of the initial network)’ to 1.0 with a step size of 0.1. After the pruning
procedure, we employ one round of finetuning on the pruned network. Note that in Algorithm 1,
we denote the objective function in Equation (2) as f(·) when the shape column activations are all
forced to match the output channel activations (q(t)j,a,b = u

(t)
j ∀t, j, a, b). z denotes the concatenated

variables of input and output channel activation in the target block.

We additionally conducted an experiment to check the CPLEX performance of Algorithm 1 compared
to direct optimization on Equation (2), which we denote as Algorithm 0. However, Algorithm 0 is not
scalable even in ResNet-20 on CIFAR-10. Therefore we compare Algorithm 0 and 1 for the first eight

3



Under review as a conference paper at ICLR 2021

layers of ResNet-56. We set B = 2 and adjust γ with a step size of 0.1. Algorithm 1 succeeds in
increasing the objective value to 100.16 in 12 minutes, while Algorithm 0 reaches 106.27 in 1 hour.
Also, Algorithm 1 requires only 3 hours and 4GB memory for pruning ResNet-50 on ImageNet.

C IMPLEMENTATION DETAILS

For ResNet experiments, we mostly follow the implementation from FPGM (He et al., 2019). We
apply batch normalization and remove bias weight in every convolution layer. Zero padding and
1× 1 convolution are used as the downsampling technique in CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet (Russakovsky et al., 2015), respectively.

For CIFAR-10 experiments on ResNet (He et al., 2016) architectures, we finetune the pruned model
from the pretrained network given in He et al. (2019) and follow the protocol of He et al. (2019)
for fair comparison. We finetune the pruned network for 200 epochs with batch size 128 and initial
learning rate 0.01. Then, we adjust the learning rate at 60, 120, and 160 epoch by multiplying
0.2 each time. We use SGD optimizer with momentum 0.9, weight decay 5× 10−4, and Nesterov
momentum. For CIFAR-10 experiments on the DenseNet-40 (Huang et al., 2017) architecture, we
finetune the pruned network for 300 epochs with batch size 128 and initial learning rate 0.1. We
adjust the learning rate at 150 and 225 epoch by multiplying 0.1. Here, we also use SGD optimizer
with momentum 0.9, weight decay 5× 10−4, and Nesterov momentum.

For ImageNet experiments on ResNet architectures, we follow the protocol of FPGM and start from
the pretrained network provided by PyTorch (Paszke et al., 2017). We finetune the pruned network for
80 epochs on ImageNet with batch size 384 and the initial learning rate of 0.015. Then, we adjust the
learning rate at 30 and 60 epoch by multiplying 0.1. Here, we use SGD optimizer with momentum
0.9 and weight decay 10−4. For ImageNet experiments on VGG-16 (Simonyan & Zisserman, 2015),
we follow the protocol of Molchanov et al. (2017) for network training. We start from the pretrained
network from Pytorch. We finetune the pruned network using SGD optimizer with a constant learning
rate 10−4 and batch size 32 for 5 epochs. We run all ImageNet experiments on a machine with Intel
Xeon E5-2650 CPU and 4 TITAN XP GPUs.

D PRUNING CONSISTENCY

Pruning operation that removes weights through output channel direction leads to inactive weights
during the pruning procedure and prevent the exact modeling of the hard resource constraints (FLOPs
and network size). In previous channel pruning methods based on the greedy approach, the pruned
network requires post-pruning procedures to eliminate the remaining inactive weights. However, our
formulation guarantees the exclusion of inactive weights from the pruned network.

D.1 PRELIMINARY

We assume each pruning methods outputs a pruning mask A(t) ∈ {0, 1}Ct−1×Ct×Kl×Kl . Then, we
denote the pruned weights as Ŵ (t) = W (t) � A(t). In the pruned network with pruned weights
Ŵ (1:L), we denote the input feature map of the t+1-th convolution as V (t) ∈ RCt×Ht×Wt . Also,
we denote the output feature map of the t-th convolution as U (t) ∈ RCt×Ht×Wt . To avoid nota-
tion clutter, we ignore batch normalization and nonlinear activation function in this section. Then,
U (t) = g(t)(V (t−1); Ŵ (t)), where g(t) : RCt−1×Ht−1×Wt−1 → RCt×Ht×Wt , represents the convolu-
tion operation. In particular,

U
(t)
j =

Ct−1∑
i=1

g
(t)
i,j

(
V

(t−1)
i ; Ŵ

(t)
i,j

)
, (4)

where g(t)i,j : RHt−1×Wt−1 → RHt×Wt is a 2-D convolution operation with Ŵ (t)
i,j . Also, for ResNet,

we formulate the relationship between the output feature map of a layer and the input feature map of

4



Under review as a conference paper at ICLR 2021

the subsequent layer as

(i) V (t) = U (t) ∀t /∈ T (5)

(ii) V (t) = U (t) + V (s) ∀(s, t) ∈ P and Ct = Cs

(iii) ∀(s, t) ∈ P and Ct > Cs,

(iii− a) V (t)
j = U

(t)
j + V

(s)
j ∀j ≤ Cs and V (t)

j = U
(t)
j ∀j > Cs

(iii− b) V (t) = U (t) + Ṽ (s) where Ṽ (s) is V (s) after 1× 1 convolution.

D.2 INACTIVE WEIGHTS

Before we specify inactive weights, we first define two important terms (trivially zero and meaning-
less). A feature map is trivially zero if the feature map is zero for any input, V (0). A feature map is
meaningless if the values in the feature map do not have any effect on the final layer output feature
map, U (L). Concretely, we state the definitions of trivially zero and meaningless in a cascading
fashion.

Trivially zero We define trivially zero in the ascending order of t. Concretely, we define trivially
zero in the following order V (0) → U (1) → V (1) → U (2) → · · · → V (L−1) → U (L).

1. V (0)
j in the input feature map is not trivially zero for all j.

2. U (t)
j is trivially zero if and only if A(t)

i,j = 0Kt,Kt or V (t−1)
i is trivially zero for all i ∈ [Ct−1]

due to Equation (4).

3. In case of V (t)
j , we divide the cases according to Equation (5).

(i) V
(t)
j is trivially zero if and only if U (t)

j is trivially zero.

(ii) V
(t)
j is trivially zero if and only if U (t)

j is trivially zero and V (s)
j is trivially zero.

(iii− a) If j ≤ Cs, the condition is the same with (ii). Otherwise, the condition is the same
with (i).
(iii− b) We suppose the output feature map of the 1× 1 convolution, Ṽ (s)

j , is not trivially

zero. Therefore, V (t)
j is not trivially zero.

Meaningless We define meaningless in descending order of t. Concretely, we define meaningless
in the following order U (L) → V (L−1) → U (L−1) → V (L−2) → · · · → U (1) → V (0).

1. U (L)
j in the final feature map is not meaningless for all j.

2. V (t)
i is meaningless if A(t+1)

i,j = 0Kt+1,Kt+1
or U (t+1)

j is meaningless for all j ∈ [Ct+1] due to
Equation (4).

3. U (t)
i is meaningless if and only if V (t)

i is meaningless.

We now move on define active weight and inactive weight in Definition 1 with trivially zero and
meaningless.

Definition 1 (Active weight, inactive weight). A weight W (t)
i,j,a,b is an inactive weight if 1) the weight

is pruned (A(t)
i,j,a,b = 0) or 2) the corresponding input channel feature map (V (t−1)

i ) is trivially zero

or 3) the corresponding output channel feature map (U (t)
j ) is meaningless. Conversely, a weight

W
(t)
i,j,a,b is an active weight if 1) the weight is not pruned (A(t)

i,j,a,b = 1) and 2) the corresponding

input channel feature map (V (t−1)
i ) is not trivially zero and 3) the corresponding output channel

feature map (U (t)
j ) is not meaningless.

Note that only active weights should account for computation of the resource usage and the sum of
the importance of weights. In this next subsection, we show that the inactive weights are provably
excluded from the network pruned with our formulation.

5



Under review as a conference paper at ICLR 2021

D.3 PRUNING CONSISTENCY IN OUR FORMULATION

In our method, discrete variables u(0:L), v(0:L), and q(1:L) satisfy the constraints in Equation (6). We
assume at least one of channel activation is set for each layer. Concretely,

∥∥u(t)∥∥
1
≥ 1 and

∥∥v(t)∥∥
1
≥

1 ∀t.

∥∥∥u(t)∥∥∥
1
≥ 1 and

∥∥∥v(t)∥∥∥
1
≥ 1 ∀t (6a)

u
(t)
j ≤

∑
a,b

q
(t)
j,a,b and q

(t)
j,a,b ≤ u

(t)
j ∀t, j, a, b (6b)

(i) v(t) = u(t) ∀t /∈ T (ii) u(t) � v(t) � u(t) + v(s) ∀(s, t) ∈ P and Ct = Cs (6c)
(iii) ∀(s, t) ∈ P and Ct > Cs,

(iii− a) u(t)j ≤ v
(t)
j ≤ u

(t)
j + v

(s)
j ∀j ≤ Cs and v(t)j = u

(t)
j ∀j > Cs

(iii− b) u(t) � v(t)

Lemma 1. For l ∈ [L], if v(l−1)j = 1, then V (l−1)
j is not trivially zero.

Proof. We prove by mathematical induction with respect to l.

1. When l = 1, the statement is true since input data is not trivially zero.

2. Suppose the statement is true for l = 1, . . . , t.

3. For j such that v(t)j = 1, we can think of three possible cases according to Equation (6c)

(i) If t /∈ T , u(t)j = v
(t)
j = 1. First, ∃i, v

(t−1)
i = 1 since ‖v(t−1)‖1 ≥ 1 from

Equation (6a). By the induction hypothesis, V (t−1)
i is not trivially zero. On the

other hand, ∃a, b q
(t)
j,a,b = 1 since u

(t)
j ≤

∑
a,b q

(t)
j,a,b from Equation (6b). Then,

A
(t)
i,j,a,b = v

(t−1)
i q

(t)
j,a,b = 1. By the second condition of trivially zero (2), U (t)

j is not trivially

zero since V (t−1)
i is not trivially zero and A(t)

i,j,a,b = 1. Also, by the third definition of

trivially zero (3− (i)), V (t)
j is not trivially zero since U (t)

i is not trivially zero.

(ii) If ∀(s, t) ∈ P and Ct = Cs, u(t)j + v
(s)
j ≥ v

(t)
j = 1. Then, u(t)j = 1 or v(s)j = 1. If

u
(t)
j = 1, U

(t)
j is not trivially zero as in (i). If v(s)j = 1, V

(s)
j is not trivially zero by the

induction hypothesis. By the definition of trivially zero (3− (ii)), V (t)
j is not trivially zero

since V (s)
j or U (t)

j is not trivially zero.
(iii) ∀(s, t) ∈ P and Ct > Cs,
(iii− a) If j ≤ Cs, the proof is the same with (ii). Otherwise, the proof is the same with
(i).
(iii− b) By the definition of trivially zero (3− (iii− b)), V (t)

j is not trivially zero. In every

possible cases, V (t)
j is not trivially zero and the statement is true for l = t+1.

By mathematical induction, for l ∈ [L], if v(l−1)j = 1, then V (l−1)
j is not trivially zero.

Lemma 2. For l ∈ [L], if u(l)i = 1, then U (l)
i is not meaningless.

Proof. We prove by mathematical induction with respect to l.

1. When l = L, the statement is true since U (L) is not meaning less.

6



Under review as a conference paper at ICLR 2021

2. Suppose the statement is true for l = t+1, . . . , L.

3. For i such that u(t)i = 1, v(t)i = 1 since v(t)i ≥ u
(t)
i . Then, ∃j u

(t+1)
j = 1 since ‖u(t+1)‖1 ≥

1 from Equation (6a). By the induction hypothesis, U (t+1)
j is not meaningless. On the other

hand, ∃a, b q
(t+1)
j,a,b = 1 since u(t+1)j ≤

∑
a,b q

(t+1)
j,a,b from Equation (6b). Then, A(t+1)

i,j,a,b =

vtiq
(t+1)
j,a,b = 1. By the definition of meaningless (2), V (t)

i is not meaningless. By the definition

of meaningless (3), U (t)
i is not meaningless. The statement is true for l = t.

By mathematical induction, for l ∈ [L], if u(l)i = 1, then U (l)
i is not meaningless.

Proposition 2. Optimizing over the input and output channel activation variables u(0:L), v(0:L) and
shape column activation variables q(1:L) under the constraints in Equation (6) prevents the existence
of any inactive weights in the pruned network guaranteeing exact computation of 1) resource usage
and 2) the sum of the importance of active weights in the pruned network.

Proof. Weight W (l)
i,j,a,b is not pruned if A(l)

i,j,a,b = 1. If A(l)
i,j,a,b = 1, then u(l)j = 1 and v(l−1)i = 1.

Then, by Lemma 1 and Lemma 2, V (l−1)
i is not trivially zero and U (l)

j is not meaningless. By

Definition 1, the weight W (l)
i,j,a,b is active. All the remaining weights in the network pruned with

our method are active, which guarantees the exact specification of resource usage and sum of the
importance of active weights in Equation (2).

Proposition 1. Optimizing over the input and output channel activation variables r(0:L) and shape
column activation variables q(1:L) under the constraints in Equation (8) prevents the existence of any
inactive weights in the pruned network guaranteeing exact computation of 1) resource usage and 2)
the sum of the importance of active weights in the pruned network.

Proof. Proposition 1 is the special case of Proposition 2 when u(t)=v(t)
(
:= r(t)

)
, q(t)j,a,b=u

(t)
j , and

P=∅ ∀t, j, a, b.

E QCQP FORMULATION

maximize
r(0:L)

L∑
l=1

〈
I(l), A(l)

〉
(7)

subject to

L∑
l=0

al

∥∥∥r(l)∥∥∥
1
+

L∑
l=1

bl

∥∥∥A(l)
∥∥∥
1
≤M

A(l) = r(l−1)r(l)
ᵀ
⊗ JKl

∀l ∈ [L]

r(l) ∈ {0, 1}Cl

Proposition 3. Equation (7) is a QCQP problem.

Proof. We define the importance of 2-D filter, which is the sum of the importance of weights in
the filter as F (l) ∈ RCl−1×Cl

+ ∀l. Concretely, F (l)
i,j =

∑
a,b I

(l)
i,j,a,b ∀i, j. We wish to express

the objective function and constraints in Equation (7) with respect to r(0:L). Note that
∥∥A(l)

∥∥
1
=

K2
l

∥∥r(l−1)∥∥
1

∥∥r(l)∥∥
1

and
〈
I(l), A(l)

〉
= r(l−1)

ᵀ
F (l)r(l). To express Equation (7) in a standard

QCQP form, we denote
[
r(0), r(1), . . . , r(L)

]
as r ∈ {0, 1}N where N =

∑L
l=0 Cl. Standard QCQP

7



Under review as a conference paper at ICLR 2021

form of Equation (7) is

maximize
r∈{0,1}N

1

2
rᵀP0r

subject to

1

2
rᵀP1r+ qᵀ1r ≤M,

where

ours− cP0 =



0 F (1) 0 · · · 0 0

F (1)ᵀ 0 F (2) · · · 0 0

0 F (2)ᵀ 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 F (L)

0 0 0 · · · F (L)ᵀ 0


,

P1 =



0 b1K
2
1JC1 0 · · · 0 0

b1K
2
1JC1

0 b2K
2
2JC2

· · · 0 0

0 b2K
2
2JC2

0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 bLKL
2JCL

0 0 0 · · · bLK
2
LJCL

0


, and q1 = [a0, . . . , a0︸ ︷︷ ︸

C0

, a1, . . . , a1︸ ︷︷ ︸
C1

, · · · , aL, . . . , aL︸ ︷︷ ︸
CL

].

maximize
r(0:L),q(1:L)

L∑
l=1

〈
I(l), A(l)

〉
(8)

subject to

L∑
l=0

al

∥∥∥r(l)∥∥∥
1
+

L∑
l=1

bl

∥∥∥A(l)
∥∥∥
1
≤M.

r
(l)
j ≤

∑
a,b

q
(l)
j,a,b and q

(l)
j,a,b ≤ r

(l)
j ∀l, j, a, b

A(l) = r(l−1) ⊗ q(l) ∀l
r(l) ∈ {0, 1}Cl and q(l) ∈ {0, 1}Cl×Kl×Kl ∀l ∈ [L]

Proposition 4. Equation (8) is a QCQP problem.

Proof. To prove Equation (8) is a QCQP problem, we show that objective function
∑L

l=1

〈
I(l), A(l)

〉
,

and the constraint
∑L

l=0 al
∥∥r(l)∥∥

1
+
∑L

l=1 bl
∥∥A(l)

∥∥
1
, are sum of quadratic and linear terms of r(0:L)

and q(1:L). Note that 〈
I(l), A(l)

〉
=

Cl−1∑
i=1

Cl∑
j=1

Kl∑
a=1

Kl∑
b=1

I
(l)
i,j,a,br

(l−1)
i q

(l)
j,a,b

∥∥∥r(l)∥∥∥
1
=

Cl∑
i=1

r
(l)
i

∥∥∥A(l)
∥∥∥
1
=

Cl−1∑
i=1

Cl∑
j=1

Kl∑
a=1

Kl∑
b=1

r
(l−1)
i q

(l)
j,a,b.

8



Under review as a conference paper at ICLR 2021

Clearly, the objective function and all the constraints in Equation (8) can be expressed as the sum
of quadratic and linear terms of r(0:L) and q(1:L). Therefore, Equation (8) is a QCQP problem with
discrete variables, r(0:L) and q(1:L).

Proposition 5. Equation (2) is a QCQP problem.

Proof. To prove Equation (2) is a QCQP problem, we show that
∑L

t=1

〈
I(t), A(t)

〉
and∑L

t=0 at
∥∥u(t)∥∥

1
+
∑

t∈T at
∥∥v(t)∥∥

1
+
∑L

t=1 bt
∥∥A(t)

∥∥
1

are sum of quadratic and linear terms of
u(0:L), v(0:L) and q(1:L). Note that〈

I(t), A(t)
〉
=

Ct−1∑
i=1

Ct∑
j=1

Kt∑
a=1

Kt∑
b=1

I
(t)
i,j,a,bv

(t−1)
i q

(t)
j,a,b

∥∥∥u(t)∥∥∥
1
=

Ct∑
i=1

u
(t)
i

∥∥∥v(t)∥∥∥
1
=

Ct∑
i=1

v
(t)
i

∥∥∥A(t)
∥∥∥
1
=

Ct−1∑
i=1

Ct∑
j=1

Kt∑
a=1

Kt∑
b=1

v
(t−1)
i q

(t)
j,a,b.

Clearly, the objective function and all the constraints in Equation (2) can expressed by the sum of
quadratic and linear terms of u(0:L), v(0:L) and q(1:L). Therefore, Equation (2) is a QCQP problem
with discrete variables, u(0:L), v(0:L), and q(1:L).

F SPATIAL PATTERN APPEARING IN PRUNED NETWORK

Figure 2: Visualization of shape column activations in the first convolution layer with q(1) ∈
{0, 1}16×3×3 (left) and shape column activations in the eighth convolution layer with q(8) ∈
{0, 1}32×3×3 (right) in ResNet-20 after pruned by ‘ours (c+s)’. Black area indicates that the shape
column activation is set.

‘ours-cs’ discovers diverse spatial patterns in convolution weights, as illustrated in Figure 2.

G EXPERIMENTS ON MOBILENETV2

We additionally apply our pruning method on MobileNetV2 (Sandler et al., 2018). We start from the
pretrained network with accuracy 71.88 provided by Pytorch. Then, we finetune the pruned network
for 150 epochs using SGD optimizer with weight decay 0.00004, momentum 0.9, and batch size 256.
For the training schedule, we apply a learning rate warm-up for the initial five epochs, which steps up
from 0 to 0.05. Then, we use the cosine learning rate decay for the remaining epochs.

9



Under review as a conference paper at ICLR 2021

Network Method Top1 Pruned Acc↑ Top1 Acc drop↓ FLOPs(%)↓
MobileNetV2 NetAdapt (Yang et al., 2018) 70.9 0.9 70

AMC (He et al., 2018) 70.8 1.0 70
MetaPruning (Liu et al., 2019) 71.2 0.6 69

ours-c 70.8 1.0 67
ours-cs 70.2 1.6 67
ours-c (tuned) 71.0 0.8 67
ours-cs (tuned) 70.9 0.9 67

Table 1: Top1 pruned accuracy and accuracy drop from the baseline network at given FLOPs on
MobileNetV2 architecture at ImageNet

We show our experiment results with three recent pruning baselines NetAdapt (Yang et al., 2018),
AMC (He et al., 2018), and MetaPruning (Liu et al., 2019) in Table 1. ‘(tuned)’ indicates that the
normalizing factor, γl, is tuned with grid search. A fixed value is used otherwise. Our method shows
performance competitive to the other baselines, NetAdapt, AMC and MetaPruning. However, we
note that our method is much more efficient than NetAdapt, AMC, and MetaPruning since NetAdapt
requires repetitive finetuning steps for the proposed networks, AMC requires repetitive trial and
error steps to train DDPG (Lillicrap et al., 2016) agent, and MetaPruning trains PruningNet of which
network size is at least 30 times bigger than that of original model.

H ABLATION STUDY

40 50 60 70 80
7

8

9

FLOPs(%)

E
rr

or
(%

)

(a) ResNet-20

30 40 50 60 70 80

7

8

9

10

11

FLOPs(%)

(b) ResNet-32

30 40 50 60 70 80

7

8

9

10

FLOPs(%)

FPGM
ours(c)
ours(c+s)

(c) ResNet-56

Figure 3: The plots of classification error (%) versus FLOPs (%) on various ResNet architectures.

20 30 40 50 60 70
7

8

9

Pruning ratio(%)

E
rr

or
(%

)

(a) ResNet-20

30 40 50 60 70

7

8

9

10

Pruning ratio(%)

(b) ResNet-32

30 40 50 60 70
6

7

8

9

Pruning ratio(%)

FPGM
ours(c)
ours(c+s)

(c) ResNet-56

Figure 4: The plots of classification error (%) versus pruning ratio (%) on various ResNet architec-
tures.

10



Under review as a conference paper at ICLR 2021

H.1 EXPERIMENTS ON VARIOUS FLOPS CONSTRAINT

In Figure 3, we prune and finetune the ResNet architectures under various FLOPs constraints with
‘ours-c’, ‘ours-cs’, and FPGM. ‘ours-cs’ outperforms ‘ours-c’ and FPGM under almost all FLOPs
constraints.

H.2 EXPERIMENTS ON VARIOUS NETWORK SIZE CONSTRAINT

In Figure 4, we prune and finetune the ResNet architectures under various network size constraints
with ‘ours-c’, ‘ours-cs’, and FPGM. ‘ours-cs’ outperforms ‘ours-c’ and FPGM on almost all network
size constraints.

0 20 40 60 80 100
0

20

40

60

80

100

FLOPs(%)

Pr
un

in
g

ra
tio

(%
)

(a) ResNet-20

0 20 40 60 80 100
0

20

40

60

80

100

FLOPs(%)

(b) ResNet-32

0 20 40 60 80 100
0

20

40

60

80

100

FLOPs(%)

uniform
molchanov
ours

(c) ResNet-56

Figure 5: The possible pairs of resource usage (FLOPs and pruning ratio) from three different pruning
criteria : (1) ‘uniform’ which greedily prunes channels layer-wise, (2) ‘molchanov’ which greedily
prunes the channels from all layers, and (3) ‘ours’ which prunes via QCQP.

H.3 ABLATION STUDY ON THE POSSIBLE PAIRS OF RESOURCE USAGE (FLOPS AND PRUNING
RATIO)

In the real-world, the resource constraint for network pruning may vary significantly in terms of how
much each resource is available. In some cases, we may allow high FLOPs but strictly limit the
network size, while in other cases, low FLOPs are much more important. However, when we prune
the channels greedily, possible pairs of resource usages are limited and nonadjustable. In contrast, our
method can target any resource budget pairs. Figure 5 shows the possible pairs (FLOPS and pruning
ratio) from three different pruning methods: ‘uniform’, which greedily prunes channels layer-wise,
‘molchanov’, which greedily prunes the channels from all layers, and ‘ours’, which prunes via QCQP.
‘ours’ results in diverse pairs of target resources which cover the pairs of ‘uniform’ and ‘molchanov’.

I EXPERIMENTS ON FCN-32S FOR SEGMENTATION

We apply our pruning method on FCN-32s (Long et al., 2015) for segmentation on PASCAL Visual
Object Classes Challenge 2011 dataset. Then, we evaluate the segmentation performance with a
widely-used measure, mean Intersection over Union (mIoU).

I.1 IMPLEMENTATION DETAILS

We use SGD optimizer with weight decay 0.0005, momentum 0.99, and batch size 1. For the original
network to be pruned, we train FCN-32s for 12 epochs with a constant learning rate 10−11. Then, we
prune the original network of which mIoU 62.58 (%) and finetune the pruned network for 25 epochs
with a constant learning rate 6× 10−11.

I.2 EXPERIMENT RESULTS

We show our experiment results in Figure 6. The pruned network reduces the FLOPs by 27% with
0.15 (%) mIoU drop for ‘ours-c’ and 0.09 (%) mIoU drop for ‘ours-cs’.

11



Under review as a conference paper at ICLR 2021

20 40 60 80 100

48

50

55

60

63

FLOPs(%)

m
Io

U
(%

)

baseline
ours-c
ours-cs

Figure 6: The plot of mIoU (%) versus FLOPs (%) on FCN-32s.

REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In CVPR, 2019.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In ECCV, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. In
Tech Report, 2009.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K. Cheng, and J. Sun. Metapruning: Meta learning
for automatic neural network channel pruning. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In ICLR, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. In IJCV, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
ECCV, 2018.

12


	QCQP formulation on Nonsequential convolutions
	Skip addition
	Skip concatenation

	Coordinate descent style optimization
	Implementation details
	Pruning consistency
	Preliminary
	Inactive weights
	Pruning consistency in our formulation

	QCQP formulation
	Spatial pattern appearing in pruned network
	Experiments on MobileNetV2
	Ablation study
	Experiments on various FLOPs constraint
	Experiments on various network size constraint
	Ablation study on the possible pairs of resource usage (FLOPs and pruning ratio)

	Experiments on FCN-32s for segmentation
	Implementation details
	Experiment results


