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A Connections To Literature On Continual And Off-Policy RL

In this section, we begin by highlighting connections to the literature on catastrophic forgetting and
task structure in continual RL. Moreover, in the main text we primarily discussed the connection
between polynomial mixing times and implications for on-policy model-free and on-policy model-
based RL approaches. Here we will discuss connections to off-policy approaches as well.

A.1 Connection to Literature on Continual RL

Catastrophic Forgetting and Experience Replay: In the main text, we began to highlight connec-
tions between myopic optimization bias and catastrophic forgetting [McCloskey and Cohen, 1989]
in continual RL. Indeed, this often results from myopic updates that do not properly consider the
long-term distribution of experiences needed to properly address the stability-plasticity dilemma [Car-
penter and Grossberg, 1987] of continual RL as explained in [Khetarpal et al., 2020]. A particularly
successful approach in this regard has been those based on experience replay [Lin, 1992] such as
recent approaches to continual RL [Isele and Cosgun, 2018, Riemer et al., 2018, Rolnick et al., 2019]
or approaches that use a scalable generative form of replay [Riemer et al., 2019]. As highlighted
by [Pan et al., 2018], experience replay is closely related to model-based RL approaches. As such,
we should only expect experience replay to help us optimize for the infinite horizon objective to the
extent that our replay buffer reflects the stationary distribution of the current policy. The likelihood
that this would happen by chance is quite small in environments with high mixing times in which
the transitions are highly biased towards the transient distribution. As such, off-policy correction or
model-based approaches are preferable in the general case. That said, in an environment that passive
task switches that are independent of the agent’s behavior, maintaining a replay buffer with reservoir
sampling [Riemer et al., 2018] will converge in the long-run to the proper steady-state distribution
over tasks, only leaving the within task state distribution in need of potential off-policy correction.
This insight may shed light on the success of replay based strategies for continual RL, that have been
largely tested in settings similar to Example 1 in the main text, particularly considering how they
often perform relatively well when it comes to converged final performance.

Definition of Tasks: In Section 2.2 we provide a useful definition of tasks for the purposes of our
paper. It is largely inline with the literature that often considers tasks as an unobserved component of
the state space. For example, in Bayes-Adaptive MDPs unobserved tasks are sampled every episode
from a stationary distribution [Duff, 2002, Ross et al., 2007, Zintgraf et al., 2019]. On the other hand,
Hidden-Mode MDPs formalize MDPs where tasks evolve based on a Markov chain that the agent
can only passively observe and not influence [Choi et al., 2000, Xie et al., 2020]. Finally, Mixed
Observability MDPs (MOMDPs) [Ong et al., 2010] allow for the task space to evolve with transition
dynamics that involve the agent’s behavior. We can even consider decentralized multi-agent settings
with learning agents as a special case of the MOMDP setting [Foerster et al., 2017, Al-Shedivat et al.,
2018, Kim et al., 2021]. All of these task specifications fit squarely within our framework, but also
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Figure 1: Task Structure in Atari Experiments: We depict an arbitrarily selected random path
through the seven Atari games considered in our experiments (each task represented by an hexagonal
region in the figure). In this specific instantiation, Beam Rider (center) was played twice before each
task was visited at least once. Notice how the maximum path length between two tasks must scale at
least with the number of tasks as this number is grown.

we do not actually rely on the task being unobserved to highlight the difficulties associated with high
mixing times and do not need a formal notion of a task space for the results in our paper to hold.

Tasks That Are Not Explicit: Indeed, similar concepts to tasks may emerge naturally based on the
environment structure alone as is common in Factored MDPs [Kearns and Koller, 1999, Boutilier
et al., 2000, Strehl et al., 2007, Osband and Van Roy, 2014, Chitnis et al., 2020, Abdulhai et al., 2021].
Moreover, agents may learn to decompose the problem into sub-tasks or options [Sutton et al., 1999]
on their own. While some work does exist that models task evolution as a truly non-stationary process
[Padakandla et al., 2019, Lecarpentier and Rachelson, 2019, Chandak et al., 2020], as pointed out by
[Khetarpal et al., 2020], these models must be very conservative to allow for this non-stationarity and
are less likely to be able to exploit regularities between tasks and within task evolution structure as a
result.

Illustrating Task Structure in our Experiments: Figure 1 of this appendix represents a simple
instantiation of the seven tasks (Atari games) of our experiments. The seven tasks correspond to
regions as described in Figure 2 of the main text, and are represented here as frame sequences from
the game-play enclosed in hexagonal regions. Each stack of frames has the first frame in the bottom
and the last frame up front. The region’s boundaries are frames from which the arrows depart; note
that these frames connect one region with the next (i.e. the arrows always go from the last frame of
the current task to the first frame of the next task). Taking them together, the arrows define a specific
instantiation of a path through the different regions, which lower bounds the diameter as explained in
Figure 2 of the main text.
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A.2 Comparison To Off-Policy Learning

Off-Policy Model-Based: In particular, our proposed approaches for tackling myopic bias in model-
based RL detailed in Appendix C share similarities with off-policy model-based approaches such as
Dyna [Sutton, 1991] and more modern variants for deep RL like MBPO [Janner et al., 2019]. The
main advantage of our approach is that it is able to perform policy improvement directly over the
limiting distribution and address the pitfall highlighted by Corollary 4 when performing traditional
bootstrapping as these approaches do. Addressing this limitation is important in light of results
demonstrating that approaches like Dyna benefit greatly from longer rollouts [Holland et al., 2018],
which highlights the limitations of traditional bootstrapping. Moreover, we consistently achieve lower
regret than Dyna across all of our experiments despite allowing for a very large range of rollouts in
our hyperparameter search.

Off-Policy Model-Free: A very popular approach to off-policy model-free RL is to leverage im-
portance sampling [Precup, 2000], which attempts to correct data in an off-policy buffer to better
mirror the stationary distribution of the current policy. However, traditional importance sampling
faces concerns related to both scalability and variance for the long-horizon and continuing problems
that we consider in this work [Levine et al., 2020]. More in the spirit of our work are approaches
that consider marginalized importance sampling, where agents use dynamic programming in order to
estimate the ratio between the stationary and behavior distribution from an off-policy buffer. One
group of approaches looking to tackle this problem try to estimate this ratio directly leveraging a
Bellman equation style update [Hallak and Mannor, 2017, Gelada and Bellemare, 2019, Wen et al.,
2020]. These approaches suffer from the same difficulty from Corollary 4 for finding this ratio,
making it difficult to successfully apply these approaches in environments with high mixing times.
Meanwhile, a second group of approaches attempt to find this ratio by leveraging a learned value
function [Nachum et al., 2019a,b, Tang et al., 2019, Nachum and Dai, 2020]. These approaches both
clearly do not address Corollary 4, and generally still need expensive optimizations procedures at
each step while solving only a regularized (i.e. biased) learning problem. See [Levine et al., 2020]
for a comprehensive review of the research highlighted in this paragraph.

B Proposed Algorithms

Estimating The Mixing Time. In this section, we begin by providing pseudo-code for mixing
time estimation as outlined in the main text. For the detailed algorithm please refer Algorithm
1. Regarding the hyperparameters, for all our experiments we considered H = τ× 103. For the
experiments reported in Figure 3 and 5, we report the mean and standard deviation across 3 seeds. For
Figure 4 experiments, in order to remove the task bias, we randomly shuffle the list of environments
we consider and report the mean and standard deviation across 10 seeds.

Mixing Time Independent Algorithms for Efficient Scaling. In the main text we theoretically
argued that the polynomial mixing times impact the learning. In this section we will show the
empirical evidence on some continual gridworld domains to support those arguments. In order to
efficiently learn in the environments with polynomial mixing times, we need to build algorithms
which scale in terms of compute independent of the mixing times. While it is challenging to do so
in complex domains like Atari, it is an achievable target in tabular domains where we can estimate
the steady state distribution of a given policy µπ(s) in a closed form. More precisely, the steady
state equation

∑
s∈S µ

π(s)
∑
a∈A π(a|s)T (s′|s, a) = µπ(s′) ∀s′ ∈ S can be viewed as a system

of equations which can be solved exactly by performing matrix inversion of a S × S matrix. Using
the well known linear algebra libraries, we can calculate the steady state distribution in a closed
form and perform sampling from this distribution directly for learning. Here we propose two such
algorithms which leverage system of equations approach to perform policy improvement with respect
to the average reward based on our current model of the environment. We first propose on-policy
ρ learning which is similar to on-policy q-learning in that optimal actions are considered as we
enter each state based on our current approximation of the average reward per step resulting from
each action. Next we propose off-policy ρ learning, an off-policy version of it where we update the
current policy based on the trajectories collected by some behaviour policy. Please refer to Algorithm
2 and Algorithm 3 for more details.
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Algorithm 1 ε- Return Mixing Time Estimation

Function MixingTimeEstimation(env,ε, π, |Ŝ|max):
// Calculate the asymptotic h-step return of the policy π

sh ← env.reset()

G(π)← 0

InitializeH // Horizon length for ρ(π) calculation
for h in 1, 2, . . .H do

ah ← π(sh)

sh+1, rh ← env.step(ah)

G(π) = G(π) + rh
end
ρ(π) = G(π)/H // Asymptotic h-step return

// Store the reward history for each state
StateRewardHistory← dict()
sh ← env.reset()

for h in 1, 2, . . .H do
ah ← π(sh)

sh+1, rh ← env.step(ah)

sidx ← random.randint(1, h)

if sidx < |Ŝ|max then
StateRewardHistory[sidx]← [ ]

else
for si in StateRewardHistory do

StateRewardHistory[si].append(rh)
end

end
end
// Calculate the mixing time using ρ(π) and StateRewardHistory
tπret(ε)← [ ]

for state in StateRewardHistory do
rewards← StateRewardHistory[state]
tmix ← [ ]

h← 0

G(h, state, π)← 0

for r in rewards do
h← h+ 1

G(h, state, π)← G(h, state, π) + r

ρ(h, state, π)← G(h, state, π)/h

if |ρ(h, state, π)− ρ(π)| < ε then
tmix.append(h)

else
tmix ← [ ]

end
end
tπret(ε).append(min(tmix)) // Add min(tmix) to tπret(ε)

end
return Mean(tπret(ε))
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Algorithm 2 On-Policy ρ-Learning
Function OnPolicyρLearning(env, ε):

Initialize π, T̂ and R̂
st ← env.reset()

while not done do
p ∼ uniform([0, 1])

if p ≥ ε: then
for a ∈ A: do

Solve for µ̂πm(st,a,π) using
∑
s∈S µ̂

π(s)
∑
a∈A π(a|s)T (s′|s, a) = µ̂π(s′)

Solve for ρ̂(πm(st, a, π)) using ρ̂(π) =
∑
s∈S µ̂

π(s)
∑
a∈A π(a|s)R̂(s, a)

at = argmaxa∈A ρ̂(πm(a, st, π))

Update to greedy policy: π = πm(at, st, π)
end

else
Random exploration: at ∼ uniform(a ∈ A)

st+1, rt ← env.step(st, at)

Update T̂ on (st, at, st+1) and R̂ on (st, at, rt)

Update to next state: st = st+1

end
end
return π, T̂ , R̂

C Additional Implementation Details and Tabular Experiments

In this section we begin by discussing additional details for about our experiments in the main text
and then outline our tabular experiments highlighting how approaches that estimate the steady-state
distribution directly can combat myopic bias in the presence of polynomial mixing times.

C.1 Additional Details for Mixing Time Experiments

Compute: Since our mixing time analysis is based on pretrained policies, our experiments are not
GPU heavy. However, to get the accurate mixing time estimates we run the experiments for a large
number of asymptotic stepsH = 1000τ (at least on the order of a million steps) and the experiments
take long time to run. For small τ values the experiments took significantly less than 24hrs but for
larger values of τ the experiments took more than 48hrs. Our experiments were deployed on a cluster
of Intel x86 machines requesting 1 GPU (either K40, K80, RTX800 or V100s) and 1 CPU for each
experiment. RAM was allocated as appropriate for each experiment with larger values ofH requiring
more than 100GB.

For tabular experiments, since all the baselines and our proposed methods are tabular methods,
training these do not need huge compute. However, for steady state approximation using exact
method we have provided an option of using a pytorch based system of equations solver in the
codebase to leverage the fast GPU computations for larger matrices. All the relevant libraries and
frameworks used to run the experiments are detailed in the code README file.

C.2 Tabular Experiments

To augment the scalable MDP use cases for deep continual RL highlighted in example 1 in the main
text, we consider three grid world based examples with regions of size d× d in this section to outline
some of the key ways that scaling often contributes to polynomial mixing times in practice. We then
empirically analyze the scaling behavior of Algorithms 2 and 3 on these environment classes using
accumulated lifelong regret per step and contrast this performance against relevant baselines. We
perform a grid search over learning rate, exploration parameter ε and batchsize B and pick the best
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Algorithm 3 Off-Policy ρ-Learning
Function OffPolicyρLearning(env, ε, B):

Initialize π, T̂ and R̂
st ← env.reset()

while not done do
p ∼ uniform([0, 1])

if if p ≥ ε then
Sample an action: at ∼ π(st)

else
Random exploration: at ∼ uniform(a ∈ A)

end
st+1, rt ← env.step(st, at)

Update T̂ on (st, at, st+1) and R̂ on (st, at, rt)

Update to next state: st = st+1

for i ∈ [0, ..., B − 1] do
si ∼ uniform(s ∈ S)

for a ∈ A: do
Solve for µ̂πm(st,a,π) using

∑
s∈S µ̂

π(s)
∑
a∈A π(a|s)T (s′|s, a) = µ̂π(s′)

Solve for ρ̂(πm(st, a, π)) using ρ̂(π) =
∑
s∈S µ̂

π(s)
∑
a∈A π(a|s)R̂(s, a)

ai = argmaxa∈A ρ̂(πm(a, si, π))

Update to greedy policy: π = πm(ai, si, π)
end

end
end
return π, T̂ , R̂

Grid Length d Steps On-Policy Q-Learning On-Policy ρ-Learning Off-Policy Q-Learning Dyna Q-Learning Model-based n-step TD Off-Policy ρ-Learning

5
10k 0.113±0.028 0.054±0.003 0.100±0.058 0.097±0.046 0.135±0.029 0.041±0.003

100k 0.081±0.028 0.048±0.004 0.077±0.028 0.101±0.011 0.117±0.024 0.036±0.003

25
10k 0.062±0.037 0.033±0.004 0.058±0.039 0.061±0.038 0.060±0.037 0.057±0.015

100k 0.057±0.040 0.016±0.002 0.056±0.042 0.060±0.038 0.059±0.037 0.019±0.002

Table 1: Accumulated lifelong regret per step obtained by an agent in a scalable MDP featuring
spatial scaling (Example C.1).

hyperparameters for all models (including the baselines). For each experiment we report the mean
and the standard deviation across 10 seeds.

Example C.1 (Spatial dimensions, d): In this episodic task, the agent is placed at an arbitrary
location in a d × d grid world and must reach a goal in an arbitrary location that is fixed across
episodes. The agent is only rewarded upon reaching the goal location, which implies that the expected
diameter of π∗ is E[Dπ∗ ] ∈ Ω(d). Since |S| = d2 for this class, we have E[Dπ∗ ] ∈ Ω(|S| 12 ).

Results for d = 5, 25 are shown in Table 1. Our proposed algorithms consistently outperform baseline
models in terms of lifelong regret.

Example C.2 (Number of Bottlenecks, N ): Consider N grid world regions {Ri}Ni=1, implying
|S| = Nd2. Each has an arbitrary starting location when entering from the previous region and an
arbitrary goal location serving as a bottleneck transporting the agent to the next region. The agent is
only rewarded when it reaches the goal location of its current region, which implies that E[Dπ∗

Ri ] ∈
Ω(d) for all i. We consider three possibilities for how regions are connected. Cycle Transitions: the
regions are accessed in a strict order with no repeats. We know that E[Dπ∗ ] ∈ Ω(d×N), so if N
is scaled with d fixed, E[Dπ∗ ] ∈ Ω(|S|). Random Transitions: the regions are accessed randomly
with repeats. We again know that E[Dπ∗ ] ∈ Ω(d × N), so again E[Dπ∗ ] ∈ Ω(|S|). Curricular
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No. of Rooms N Task type Steps On-Policy Q-Learning On-Policy ρ-Learning Off-Policy Q-Learning Dyna Q-Learning Model-based n-step TD Off-Policy ρ-Learning

4

Random 10k 0.367±0.138 0.162±0.040 0.396±0.230 0.300±0.124 0.274±0.032 0.180±0.038

100k 0.279±0.059 0.152±0.038 0.242±0.090 0.222±0.049 0.201±0.032 0.153±0.040

Cycles 10k 0.271±0.115 0.074±0.030 0.287±0.161 0.171±0.070 0.229±0.075 0.099±0.033

100k 0.165±0.056 0.063±0.029 0.120±0.045 0.120±0.045 0.130±0.042 0.065±0.029

16

Random 10k 0.365±0.230 0.138±0.014 0.348±0.178 0.410±0.087 0.355±0.105 0.292±0.030

100k 0.303±0.092 0.091±0.009 0.321±0.095 0.187±0.017 0.334±0.030 0.106±0.010

Cycles 10k 0.338±0.162 0.100±0.026 0.303±0.152 0.364±0.084 0.412±0.114 0.287±0.041

100k 0.243±0.067 0.062±0.017 0.363±0.122 0.144±0.028 0.181±0.04 0.083±0.017

2
Curricular 10k 0.452±0.128 0.343±0.071 0.379±0.0.095 0.400±0.086 0.408±0.096 0.354±0.080

100k 0.424±0.109 0.340±0.067 0.362±0.098 0.366±0.092 0.384±0.087 0.340±0.070

3
Curricular 10k 0.359±0.157 0.281±0.043 0.389±0.234 0.322±0.091 0.331±0.118 0.260±0.055

100k 0.306±0.097 0.259±0.073 0.306±0.097 0.300±0.076 0.285±0.076 0.250±0.063

4
Curricular 10k 0.283±0.059 0.180±0.056 0.311±0.094 0.246±0.042 0.286±0.074 0.195±0.071

100k 0.245±0.069 0.161±0.053 0.207±0.037 0.210±0.045 0.209±0.055 0.183±0.076

Table 2: Accumulated lifelong regret per step obtained by an agent in a scalable MDP featuring
bottleneck scaling (Example C.2). The values shown are for the three room transition variants across
different N values with each room of size d = 5.

Exponent x Steps On-Policy Q-Learning On-Policy ρ-Learning Off-Policy Q-Learning Dyna Q-Learning Model-based n-step TD Off-Policy ρ-Learning

2
10k 0.245±0.016 0.125±0.008 0.286±0.024 0.240±0.018 0.279±0.025 0.216±0.010

100k 0.243±0.013 0.062±0.002 0.233±0.020 0.124±0.012 0.201±0.012 0.070±0.002

3
10k 0.233±0.024 0.089±0.005 0.253±0.024 0.262±0.012 0.262±0.012 0.252±0.016

100k 0.197±0.019 0.049±0.003 0.194±0.022 0.121±0.011 0.168±0.013 0.072±0.003

4
10k 0.220±0.036 0.066±0.007 0.243±0.046 0.269±0.085 0.243±0.051 0.236±0.034

100k 0.185±0.014 0.047±0.003 0.168±0.014 0.140±0.012 0.163±0.015 0.089±0.007

Table 3: Accumulated lifelong regret per step obtained by an agent in a scalable MDP featuring cycle
length scaling (Example C.3). The values shown are for the cyclic room transitions with N = 16
rooms.

Transitions: the regions are accessed in a curricular fashion i.e. R1,R1,R2,R1,R2,R3, etc. We
know E[Dπ∗ ] ∈ Ω(d×N !), so if N is scaled and d is fixed, E[Dπ∗ ] ∈ Ω(|S|N−1).

Results for N = 4, 16 and d = 5 are shown in Table 2. Our models consistently outperform baselines
for both cyclic and random transitions regardless of the number of rooms. The curricular transition
case is challenging since the diameter scales exponentially with N , making the diameter substantially
higher. The corresponding convergence rates of all methods (Table 2) are lower as expected by regret
bounds [Jaksch et al., 2010]. Nevertheless, our proposed models still outperform the baselines.

Example C.3 (Cycle length, τ ): N grid world regions with cyclic transitions for which the agent
is expected to transition between regions after every τ environment steps. We use cyclic transitions
to highlight similarities to typical settings in continual RL [Khetarpal et al., 2020]. Here, room
transitions are passive: the agents’ current policy has no direct effect on the room transitions which
purely depend on τ . τ ≥ 2d as otherwise some regions would be impossible to solve, so we can
assume a form τ = cdx ∀c ≥ 2, x ≥ 1. This implies that as we scale x keeping c, d, and N constant,
E[Dπ∗ ] ∈ Ω(|S|x/2).

Note that this example bears strong similarity to Example 1 discussed in the main text and can be
seen as the grid world analog of that setting. Results for x = 2, 3 and 4 keeping d = 5 and N = 16
fixed are shown in Table 3. As expected, our proposed methods achieve better sample efficiency.

D Detailed Proofs For Key Results

In this section, we provide detailed proofs for all of the propositions and theorems in our paper
following the order that they are presented in the main text. For each proof we first remind readers of
the main result and provide a proof sketch before detailing how each step is achieved.

D.0 Formal Description of MDP Scaling

In this section, we formalize a scalable family of MDPs Cσ , using a scaling function, σ. We consider
MDPs with state space S parametrized by an n-dimensional vector q ∈ Rn. In general, q can contain
spatial components determining spatial properties of S (e.g. spatial dimensions of a grid world), as
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well as non-spatial components that determine qualitative features (e.g. number of ‘cherry’ states in a
rewarded sequence of target states in a grid world). As a continuous parametrization of the MDP, q
serves as a useful target for formalizing scaling. We formulate scaling using the following definition:

Definition: A scaling function is a continuous deformation σ : Rn × R → Rn parametrized by a
scalar ν ∈ R that takes any q0 to qν = σ(q0, ν), with σ(·, 0) as the identity map.

We denote by Σ the set of all scaling functions on q. Thus, each σ ∈ Σ induces Cσ = {Mν}, a
ν-parametrized abstract class of MDPs along a smooth path in q-space. We consider scaling functions
that scale up the MDP:

Definition: An expansive scaling function is a scaling function for which ∂qν,i/∂ν ≥ 0 for all
i = 1, . . . , n, and ∂qν,i/∂ν > 0 for at least one i.

Thus, the MDP will never decrease in size along a path in q-space taken through an expansive scaling
function. An important example of expansive scaling functions is:

Definition: A proportional scaling function is an expansive scaling function taking the form
σ(q, ν) = q + ν∆q, where ∆q ∈ Rn and ∆qi is the linear rate of grow of qν,i with ν.

We focus on proportional scaling functions in our definition of scalable MDPs stated again in D.3.

D.1 Proof of Proposition 1

Proposition 1 If all MDPsM within the subclass of MDPs C have tπ
∗

ret , tπ
∗

ces, t
π∗

mix, Dπ∗ , or D∗ ∈
Ω(|S|k) for some k > 0 we can say that C has a polynomial mixing time.

Proposition 1 is thus reliant on the following definition of a polynomial mixing time:

Definition 2: A set or family of MDPs C has a polynomial mixing time if the environment mixing
dynamics contributes a Ω(|S|k) multiplicative increase for some k > 0 to the intrinsic lower bound
on regret as |S| → ∞ ∀M ∈ C.

Proof Sketch: It holds directly from Jaksch et al. [2010] Theorem 5 that following Assumption 1
from the main text yields a lower bound on regret for RL algorithms Regret(H) ∈ Ω(

√
D∗|S||A|H),

which implies that if D∗ ∈ Ω(|S|k) for some k > 0, there must be a polynomial mixing time. We
then begin by noting how this regret bound holds equally for Dπ∗ . We proceed to demonstrate that if
tπ
∗

mix is polynomial in |S|, the same must be true for Dπ∗ . We then establish the relationship between
tπ
∗

ret and tπ
∗

mix and go on to establish the relationship between tπ
∗

ces and tπ
∗

mix. As such, it is demonstrated
that if any of these metrics have a polynomial dependence, the regret bound must as well.

Analysis for Dπ∗ : As discussed extensively in [Osband and Van Roy, 2016], the common approach
to proving regret bounds in RL and bandit settings it to develop a counter-example for which you
can demonstrate that it is impossible for an algorithm to get below a certain regret as a function
of the problem parameters. This is the approach taken by Jaksch et al. [2010] to establish the
Regret(H) ∈ Ω(

√
D∗|S||A|H) bound. However, a careful analysis of their proof reveals that for

the problem they consider D∗ = Dπ∗ . As such the proof of Theorem 5 in [Jaksch et al., 2010] can
equally be used to establish that Regret(H) ∈ Ω(

√
Dπ∗ |S||A|H). Note that since by definition

Ω(
√
Dπ∗ |S||A|H) ⊆ Ω(

√
D∗|S||A|H), the more general result is for D∗. Moreover, if this were

not the case it would invalidate the lower bound presented by [Kearns and Singh, 2002] in terms of
tπ
∗

ret . As such, it is clear that we cannot simply ignore the size of the problem from the perspective of
the optimal policy π∗ when conducting regret analysis.

Analysis for tπ
∗

mix: It is well known that in bounded degree transitive graphs the mixing time tmix ∈
O(D3) where D is the graph diameter [Levin and Peres, 2017]. Note, however, that it is widely
conjectured to be at most tmix ∈ O(D2) [Levin and Peres, 2017]. Taking the more general case, this
implies then that for any policy π and MDPM, Dπ ∈ Ω((tπmix)1/3). Therefore, if tπ

∗

mix ∈ Ω(|S|k) for
some k > 0, then the regret must be in Regret(H) ∈ Ω(

√
|S|k/3|S||A|H). Therefore, Definition 2

is satisfied.

Analysis for tπ
∗

ret : It was established in Lemma 1 of [Kearns and Singh, 2002] that tπmix ∈ Ω(tπret) for
any policy π. So this then implies that tπ

∗

mix ∈ Ω(tπ
∗

ret ). Therefore, we can follow the result from the
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last paragraph to see that if tπ
∗

ret ∈ Ω(|S|k) for some k > 0, it must also be true that Definition 2 is
satisfied.

Analysis for tπ
∗

ces: It has been established that 7tmix ≥ tces for any finite chain [Levin and Peres, 2017].
Therefor, tπ

∗

mix ∈ Ω(tπ
∗

ces). So by extension of our results presented above, if tπ
∗

ces ∈ Ω(|S|k) for some
k > 0, Definition 2 must hold.

D.2 Proof of Proposition 2

Proposition 2: Any scalable MDPs Cσ exhibits a polynomial mixing time if there exists a scalable
regionRν such that Eµπ∗ [tπ

∗

Rν ] ∈ Ω(|S|k) for some k > 0.

Proof Sketch: We first present the bottleneck ratio of a region. We then demonstrate the relationship
connecting the bottleneck ratio to the residence time. We conclude by establishing the connection
between the bottleneck ratio and the mixing time of the optimal policy. This then allows us to connect
the residence time of the optimal policy to its mixing time, which allows us to establish a polynomial
mixing time leveraging the result from Proposition 1.

We begin by defining an edge measure (or ergodic flow) as ξπ(s′|s) := µπ(s)Tπ(s′|s) [Levin and
Peres, 2017]. For reasoning about regions of state spaceR, we can further define an edge measure
as ξπ(S \ R|R) =

∑
s′∈S\R

∑
s∈R ξ

π(s′|s) and steady-state probability µπ(R) =
∑
s∈R µ

π(s).
This can then be used to define the bottleneck ratio of the setR [Levin and Peres, 2017]:

fπ(R) :=
ξπ(S \ R|R)

µπ(R)
=

1

Eµπ [tπR]
(1)

With the last equality we note the relationship between the bottleneck ratio of a region R
and the expected residence time Eµπ [tπR], which is the expected probability of being in R di-
vided by the expected probability of exiting R. We can finally now define the bottleneck ra-
tio of the entire Markov chain Tπ(s′|s) (also called the conductance or Cheeger constant) as
fπ∗ := minR⊂S:µπ(R)≤1/2 fπ(R) [Levin and Peres, 2017]. Importantly the bottleneck ratio can
be used to both upper bound and lower bound on the mixing time [Levin and Peres, 2017]. For
our purposes, we will primarily utilize the fact that tπmix(1/4) ≥ 1/4fπ∗ as stated in Theorem 7.4 of
[Levin and Peres, 2017]. We can then consider the context of π∗:

tπ
∗

mix(1/4) ≥ 1

4fπ∗∗
= max
R⊂S:µπ∗ (R)≤1/2

1

4fπ∗(R)

= max
R⊂S:µπ∗ (R)≤1/2

Eµπ∗ [tπ
∗

R ]

4

(2)

This in turn implies the following result for the conventional mixing time tπ
∗

mix(1/4):

tπ
∗

mix(1/4) ∈ Ω(Eµπ∗ [tπ
∗

R ]) ∀R ⊂ S : µπ
∗
(R) ≤ 1/2 (3)

This result is nearly what we are looking for. However, we would like to express the mixing time
at an arbitrary precision ε in terms of the residence time rather than only considering ε = 1/4. To
achieve this we note that the proof of Theorem 7.4 in [Levin and Peres, 2017] can easily be extended
for arbitrary ε with ε = 1/4 only being used as a convention in the literature. Taking the results
presented after equation 7.10 in [Levin and Peres, 2017] and rearranging them with our notation, we
find that:

tπ
∗

mix(ε) ≥ 1− ε− µπ∗(R)

fπ∗∗
(4)

9



As a result as long as we restrict µπ
∗
(R) ≤ 1 − ε − δ for some 0 < δ < 1 − ε we can conclude

that tπ
∗

mix(ε) ≥ δtπ
∗

R . This implies that we can state the following asymptotic result as long as the
inequality on the density is strict, leading to some effective positive δ:

tπ
∗

mix(ε) ∈ Ω(Eµπ∗ [tπ
∗

R ]) ∀R ⊂ S : µπ
∗
(R) < 1− ε (5)

Therefore, if any scalable region Rν exists where µπ
∗
(Rν) < 1− ε and Eµπ∗ [tπ

∗

Rν ] ∈ Ω(|S|k) for
some k > 0, we also know that tπ

∗

mix(ε) ∈ Ω(|S|k) and thus a polynomial mixing time is ensured
following Proposition 1. Moreover, we can finalize our proof of Proposition 2 by noting that
any arbitrarily large scalable region of density greater than the bound i.e. µπ

∗
(Rν) ≥ 1 − ε that

scales polynomially must also contain a scalable sub-regionR′ν ⊂ Rν of arbitrarily small density
µπ
∗
(R′ν) < 1− ε that scales at least at the same rate. As such, there is no need to provide an upper

bound for the steady-state region probability density in Proposition 2.

D.3 Proof of Theorem 1

Theorem 1: (Mixing Time Scaling): Any scalable MDP Cσ has a polynomial mixing time.

Theorem 1 uses the following definitions of scalable MDP and polynomial mixing time.

Definition 1: A scalable MDP is a family of MDPs Cσ = {Mν} arising from a proportional scaling
function σ satisfying the property that there exists an initial scalable regionR0 with finite interior,
µπ
∗
(∂R0) < µπ

∗
(R0), that scales so that µπ

∗
(∂Rν) < µπ

∗
(Rν) as ν →∞ and thus |S| → ∞.

Definition 2: A set or family of MDPs C has a polynomial mixing time if the environment mixing
dynamics contributes a Ω(|S|k) multiplicative increase for some k > 0 to the intrinsic lower bound
on regret as |S| → ∞ ∀M ∈ C.

Proof Sketch: We begin by further analyzing the bottleneck ratio and residence time introduced
in Proposition 2 by connecting it to the relative densities of a region and its boundary. We then
consider how, under the conditions we consider, a proportionally scaled region must grow faster than
its boundary and the region to boundary ratio is lower bounded by the respective increase in their
sizes as ν increases. Finally, we establish that the scaling of some regions of any scalable MDP
undergoing proportional scaling is polynomially larger than the scaling of its boundary and prove
polynomial mixing through the use of Proposition 1.

We begin by further analyzing the ergodic flow of any policy π in regionR and boundary ∂R:

ξπ(S \ R|R) =
∑

s′∈S\R

∑
s∈R

µπ(s)Tπ(s′|s)

=
∑

s′∈S\R

∑
s∈∂R

µπ(s)Tπ(s′|s) ≤ µπ(∂R)
(6)

As such, we can use this result to provide a lower bound for the expected residence time:

Eµπ [tπR] =
µπ(R)

ξπ(S \ R|R)
≥ µπ(R)

µπ(∂R)
(7)

This in turn implies the following relation to the mixing time by subbing in equation 5:

tπ
∗

mix(ε) ∈ Ω(Eµπ∗ [tπ
∗

R ]) ∈ Ω

(
µπ
∗
(R)

µπ∗(∂R)

)
∀R ⊂ S : µπ

∗
(R) < 1− ε (8)

From this analysis it is clear that we can characterize polynomial mixing times by understanding
how the probability mass on any scalable region and the mass on its boundary scale with the state
space. Formally, for some scaling function σ with scaling parameter ν giving a state space Sν , we
would like to understand how the mass on a scalable regionRν and its boundary, ∂Rν , µπ

∗
(Rν) and

10



µπ
∗
(∂Rν), respectively, scale with |Sν |. Without loss of generality, we set a reference MDP at ν = 0

and denote some region in it asR0. We suppress the dependence of π∗ and µπ
∗

on ν in our notation
for clarity. We now derive the main result. By the definition of a scalable MDP, the bulk-to-boundary
mass ratio of a region can not decrease as ν scales up the state space. Thus,

µπ
∗
(Rν)

µπ∗(∂Rν)
≥ µπ

∗
(R0)

µπ∗(∂R0)
. (9)

Since mass on a scaled region and its boundary cannot increase with ν, µπ
∗
(Rν) ≤ µπ

∗
(R0) and

µπ
∗
(∂Rν) ≤ µπ∗(∂R0). Thus,

µπ
∗
(Rν)

µπ∗(∂Rν)
≥ µπ

∗
(R0)

µπ∗(∂R0)
·

1− µπ
∗

(Rν)
µπ∗ (R0)

1− µπ∗ (∂Rν)
µπ∗ (∂R0)

µπ
∗
(Rν)

µπ∗(∂Rν)
≥ µπ

∗
(Rν)− µπ∗(R0)

µπ∗(∂Rν)− µπ∗(∂R0)
. (10)

To demonstrate the scaling of the right hand side, we can approximate the numerator and denominator.
For sufficiently largeR, the variation of the size of and mass on the region and its boundary vary in
an approximately continuous way with ν so we can employ the inverse function theorem to expand
the mass on a region in its size, |Rν |, and the same with its boundary, |∂Rν |. To first order around
ν = 0, we have

µπ
∗
(Rν) ≈ µπ

∗
(R0) +

∂µπ
∗

∂|Rν |

∣∣∣∣
ν=0

∆|R| , (11)

µπ
∗
(∂Rν) ≈ µπ

∗
(∂R0) +

∂µπ
∗

∂|∂Rν |

∣∣∣∣
ν=0

∆|∂R| , (12)

for deviations, ∆|R| := |Rν | − |R0| and ∆|∂R| := |∂Rν | − |∂R0| (note that the notation ∂/∂|∂R|
is the partial derivative with respect to the size of the region’s boundary, ∂R). Then, arranging the
terms:

µπ
∗
(Rν)− µπ∗(R0)

µπ∗(∂Rν)− µπ∗(∂R0)
≈

∂µπ
∗

∂|Rν |
∣∣
ν=0

∆|R|
∂µπ∗

∂|∂Rν |
∣∣
ν=0

∆|∂R|
. (13)

Subbing into equation 10 above we get:

µπ
∗
(Rν)

µπ∗(∂Rν)
≥

∂µπ
∗

∂|Rν |
∣∣
ν=0

∆|R|
∂µπ∗

∂|∂Rν |
∣∣
ν=0

∆|∂R|
. (14)

Noting that the derivatives are of equal sign (less than or equal to zero) following Definition 1, we
can now state the following scaling dependence:

µπ
∗
(Rν)

µπ∗(∂Rν)
∈ Ω

(
∆|R|

∆|∂R|

)
∀Rν ⊂ Sν . (15)

To further analyze this situation, let’s consider the case where the scalable MDP is proportionally
scaled among n′ ≤ n of its n continuous parameters and n′′ ≤ n′ of these parameters result in scaling
of a particular region Rν . To provide a scaling dependence to ∆|R|

∆|∂R| , we utilize the relationship
between the scaling of |Rν | and the scaling of the n′′ ≤ n′ intrinsic dimensions controlling its size.
As in the main text, we consider the important example of proportional scaling such that the scaling
of these n′′ dimensions inherits the scaling behaviour of an n′′-dimensional hyper-sphere with radius
ν. As such the state space scaling follows |Rν | ∈ Θ(νn

′′
). Moreover, the volume-to-surface area

ratio follows ∆|R|/∆|∂R| ∈ Θ(ν) in the case of the proportional scaling of Definition 1.2 This
then implies that ∆|R|/∆|∂R| ∈ Θ(|Sν |1/n

′
), since |Sν | ∈ Θ(νn

′
) where the initial size |S0| can

be omitted from asymptotic notation. Finally, we can substitute this expression into equation 15:

µπ
∗
(Rν)

µπ∗(∂Rν)
∈ Ω

(
∆|R|

∆|∂R|

)
∈ Ω

(
|Sν |1/n

′
)
∈ Ω

(
|Sν |1/n

)
∀Rν ⊂ Sν (16)

2This can be seen as using an n-dimensional generalization of Galileo’s famous square-cube law.
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We can then plug this result into equation 17, yielding a lower bound for tπ
∗

mix(ε):

tπ
∗

mix(ε) ∈ Ω

(
µπ
∗
(Rν)

µπ∗(∂Rν)

)
∈ Ω

(
∆|R|

∆|∂R|

)
∈ Ω

(
|Sν |1/n

)
∀Rν ⊂ Sν : µπ

∗
(Rν) < 1− ε (17)

As we noted in our proof of Proposition 2, any arbitrarily large scalable region of density greater than
the bound i.e. µπ

∗
(Rν) ≥ 1 − ε that scales polynomially must also contain a scalable sub-region

R′ν ⊂ Rν of arbitrarily small density µπ
∗
(R′ν) < 1 − ε that scales at least at the same rate. As

such, there is no need to provide an upper bound for the steady-state region probability density in
Theorem 1. If a scalable MDP is defined, it must be that such a region exists. As we know that
n ≥ n′ ≥ n′′ ≥ 1, there must exist a scalable region Rν that has a residence time scaling with
Ω(|Sν |1/n) that meets our definition of a polynomial with exponent k > 0 for any scalable MDP
with a finite description in terms of n continuous variables. The existence of a polynomial mixing
time is then proven using Proposition 1.

E Broader Impact Statement

Our work focuses on highlighting the existence of polynomial mixing times as MDPs are scaled up
and the resulting myopic bias for common approaches to RL in this setting. Approaches that suffer
from myopic bias during learning may suffer from various sources of optimization instability that
could potentially be harmful to society if experienced by agents deployed to manage high impact
services and applications. For example, a myopic agent may only optimize its behavior for the short
term future, even if this will result in catastrophic effects for society in the long-term. As such,
addressing myopic bias resulting from polynomial mixing times is a key step towards developing
reliable and trustworthy RL agents. Our work takes a first step towards this goal by outlining the
foundational theory underlying the issue and we hope that future work can use these insights towards
developing agents that can robustly learn to tackle large-scale real-world problems.
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