
A Proofs of algorithm correctness theorems542

Here we provide proofs for Theorems 4.1 and 5.1, completing the sketches from the main paper.543

Theorem 4.1 (Algorithm 4.1 correctness). Given w ∈ Wh, compute w′ = COMPRESS(w) ∈ Wr.544

(i) fw′ = fw, and (ii) w′ is incompressible.545

Proof. (i): Following the steps of the algorithm we rearrange the summation defining fw to have the546

form of fw′ . For each x ∈ R
n,547

fw(x) = d+

h
∑

i=1

ai tanh(bix+ ci)

= d+
∑

i/∈I

ai tanh(ci) +
∑

i∈I

ai tanh(bix+ ci) (cf. line 3)

= δ +
∑

i∈I

ai tanh(bix+ ci) (cf. line 4)

= δ +

J
∑

j=1

∑

i∈Πj

ai tanh(bix+ ci) (cf. line 6)

= δ +

J
∑

j=1

∑

i∈Πj

sign(bi) · ai tanh(sign(bi) · bix+ sign(bi) · ci) (tanh odd)

= δ +

J
∑

j=1





∑

i∈Πj

sign(bi) · ai



 tanh(βjx+ γj) (cf. lines 6, 9)

= δ +

J
∑

j=1

αj tanh(βjx+ γj) (cf. line 8)

= δ +

r
∑

j=1

αkj
tanh(βkj

x+ γkj
) (cf. line 12)

= fw′(x). (cf. line 14)

(ii): Each of the reducibility conditions fails to hold for w′ ∈ Wr: (i) no αk is zero, due to line 12;548

(ii) no βk is zero, due chiefly to line 3; (iii), (iv) all ±(βk, γk) are distinct, due chiefly to line 6.549

Theorem 5.1 (Algorithm 5.1 correctness). For w ∈ Wh and ε ∈ R
+, prankε(w) ≤ BOUND(ε, w).550

Proof. Trace the algorithm to construct a parameter u ∈ B̄∞(w; ε) with rank(u) = BOUND(ε, w).551

Construct u = (a
(u)
1 , b

(u)
1 , c

(u)
1 , . . . , a

(u)
h , b

(u)
h , c

(u)
h , d) ∈ Wh as follows.552

1. For i /∈ I , ∥bi∥∞ ≤ ε, so set b
(u)
i = 0, leaving a

(u)
i = ai and c

(u)
i = ci.553

2. For i ∈ Πj , note that ∥sign(bi) · (bi, ci)− vj∥∞ ≤ ε, so set (b
(u)
i , c

(u)
i) = sign(bi) · vj .554

3. For i ∈ Πj , if ∥αj∥∞ ≤ ε · |Πj |, then set a
(u)
i = ai − sign(bi) ·

αj

|Πj |
, else set a

(u)
i = ai.555

By construction, u ∈ B̄∞(w; ε). To see that rank(u) = BOUND(ε, w), run Algorithm 4.2 on556

u: Stage 1 finds the same I , since those b
(u)
i = 0. Stage 2 finds the same Π1, . . . ,ΠJ , since557

sign(b
(u)
i)·(b

(u)
i , c

(u)
i) = sign(bi)·(b

(u)
i , c

(u)
i) = vj (sign(b

(u)
i) = sign(bi) since the first component558

of vj is positive, by line 5 of Algorithm 5.1). Finally, Stage 3 excludes the same αj , since for j such559

that ∥αj∥∞ ≤ ε · |Πj |, these units from u merge into one unit with outgoing weight560

∑

i∈Πj

sign(b
(u)
i) · a

(u)
i =

∑

i∈Πj

sign(bi) ·

(

ai − sign(bi) ·
αj

|Πj |

)

=
∑

i∈Πj

sign(bi) · ai − αj = 0.

14

B Three perspectives on uniform point cover, and related problems561

We show that Problem UPC is one of three equivalent perspectives on the same abstract decision562

problem. Each of the three perspectives suggests distinct connections to existing problems. Figure 3563

shows example instances of the three problems.564

Perspective 1: Uniform point cover. Given some points in the plane, is there a small number of565

new “covering” points so that each (original) point is near a covering point? This is the perspective566

introduced in the main paper as Problem UPC. It emphasises the existence of covering points, which567

are useful in the reduction to Problem PR for the proof of Theorem 6.2.568

Uniform point cover is reminiscent of well-known hard clustering problems such as Planar k-means569

(Mahajan et al., 2012). The k-means problem concerns finding k centroids with a low sum of570

(squared Euclidean) distances between source points and their nearest centroids. In contrast, uniform571

point cover concerns finding covering points with a low maximum (uniform) distance between source572

points and their nearest covering points.573

Problem UPC is more similar to the NP-complete problem of absolute vertex p-centre (Hakimi,574

1964, 1965; Kariv and Hakimi, 1979). This problem concerns finding a set of points on a graph (i.e.,575

vertices or points along edges) with a low maximum (shortest path) distance between vertices and576

their nearest points in the set. Problem UPC is a geometric p-center problem using uniform distances.577

A geometric p-center problem using Euclidean distances was shown to beNP-complete by Supowit578

(1981, §4.3.2; see also Megiddo and Supowit, 1984). Megiddo and Supowit (1984) also showed the579

NP-hardness of an optimisation variant using L1 distance (rectilinear or Manhattan distance).9 We580

prove that Problem UPC is NP-complete using somewhat similar reductions, but many simplifica-581

tions afforded by starting from a more restricted variant of Boolean satisfiability.582

Perspective 2: Uniform point partition. Given some points in the plane, can the points be parti-583

tioned into a small number of groups with small uniform diameter? This perspective, formalised as584

Problem UPP, emphasises the grouping of points, rather than the specific choice of covering points.585

Consider h points x1, . . . , xh ∈ R
2. A (r, ε)-partition of the h points is a partition of {1, . . . , h}586

into r subsets Π1, . . . ,Πr such that the uniform distance between points in any subset is at most ε:587

∀k ∈ {1, . . . , r}, ∀i, j ∈ Πk, ∥xi − xj∥∞ ≤ ε.588

Problem UPP. Uniform point partition, or UPP, is a decision problem. Each instance comprises a589

collection of h ∈ N points x1, . . . , xh ∈ R
2, a uniform diameter ε ∈ R

+, and a number of groups590

r ∈ N. The affirmative instances are those for which there exists an (r, ε)-partition of x1, . . . , xh.591

Perspective 3: Clique partition for unit square graphs. Given a special kind of graph called592

a unit square graph, can the vertices be partitioned into a small number of cliques? The third593

perspective strays from the simple neural network context, but reveals further related work.594

Consider h points in the plane, x1, . . . , xh ∈ R
2, and a diameter ε ∈ R

+. Thus define an undirected595

graph (V,E) with vertices V = {1, . . . , h} and edges E =
{

{i, j} : i ̸= j, ∥xi − xj∥∞ ≤ ε
}

.596

A unit square graph10 is any graph that can be constructed in this way. Unit square graphs are a597

uniform-distance variant of unit disk graphs (based on Euclidean distance; cf. Clark et al., 1990).598

Consider an undirected graph (V,E). A clique partition of size r is a partition of the vertices V into r599

subsets Π1, . . . ,Πr such that each subset is a clique: ∀k ∈ {1, . . . , r}, ∀vi ̸= vj ∈ Πk, {vi, vj} ∈ E.600

Problem usgCP. Clique partition for unit square graphs, or usgCP, is a decision problem. Each601

instance comprises a unit square graph (V,E) and a number of cliques r ∈ N. The affirmative602

instances are those for which there exists a clique partition of size r.603

The clique partition problem is NP-complete in general graphs (Karp, 1972). Cerioli et al. (2004,604

2011) showed that it remains NP-complete when restricted to unit disk graphs, using a reduction605

from a variant of Boolean satisfiability that is somewhat similar to our reduction.606

9The L1-distance variant is equivalent to Problem UPC by a 45
◦ rotation of the plane.

10“Unit square graph” comes from an equivalent definition of these graphs as intersection graphs of unit
squares. To see the equivalence, scale the collection of squares by ε and then consider their centres. The same
idea relates the proximity and intersection models for unit disk graphs (Clark et al., 1990).

15

(a) (b) (c)
ε

x1

x2

x3

x4

x5

x6

x7

x8

x9

ε

y1

y2

y3

y4

2ε

Π1

Π2

Π3

Π4

2ε

x1

x2

x3

x4

x5

x6

x7

x8

x9
v1

v2

v3

v4

v5

v6

v7

v8

v9

Π1

Π2

Π3

Π4

(d) (e) (f)

Figure 3: Example instances for Problem UPC, Problem UPP, and Problem usgCP. (a) Nine
(source) points x1, . . . , x9. (b) A (4, ε)-cover y1, . . . , y4. (c) A (4, 2ε)-partition Π1, . . . ,Π4

(= {1, 3} , {2, 4} , {5, 8} , {6, 7, 9}). (d) The nine points x1, . . . , x9, along with 2ε-width squares.
(e) The corresponding unit square graph with vertices v1, . . . , v9. (f) A partition of the unit square
graph into four cliques Π1, . . . ,Π4. Note: ε represents a radius in Problem UPC, but a diameter in
Problems UPP and usgCP. In these examples, we use ε for the radius and 2ε for the diameter.

Equivalence of the three perspectives. Problems UPC, UPP, and usgCP are equivalent in the sense607

that there is an immediate reduction between any pair of them.608

Theorem B.1 (Equivalence of Problems UPC, UPP, and usgCP). Let h, r ∈ N, ε ∈ R
+, and609

x1, . . . , xh ∈ R
2. The following conditions are equivalent:610

(i) there exists an (r, 1
2ε)-cover of x1, . . . , xh;611

(ii) there exists an (r, ε)-partition of x1, . . . , xh; and612

(iii) the unit square graph on x1, . . . , xh (diameter ε) has a clique partition of size r.613

Proof. (ii⇒ i): Let Π1, . . . ,Πr be an (r, ε)-partition of the points x1, . . . , xh. For each Πj , define614

yj ∈ R
2 as the centroid of the bounding rectangle of the set of points {xi : i ∈ Πj }, that is, yj =615

1
2

(

maxi∈Πj
xi,1 +mini∈Πj

xi,1, maxi∈Πj
xi,2 +mini∈Πj

xi,2

)

. For each i ∈ Πj and p ∈ {1, 2},616

let α = argmaxa∈Πj
xa,p and β = argminb∈Πj

xb,p. Then,617

abs(2xi,p − 2yj,p) = abs

(

2xi,p −

(

max
i∈Πj

xi,p + min
i∈Πj

xi,p

))

≤ abs

(

xi,p −max
i∈Πj

xi,p

)

+ abs

(

xi,p − min
i∈Πj

xi,p

)

(triangle inequality)

= max
i∈Πj

xi,p − min
i∈Πj

xi,p (max
i∈Πj

xi,p ≤ xi,p ≤ min
i∈Πj

xi,p)

= xα,p − xβ,p ≤ ∥xα − xβ∥∞ ≤ ε.

Thus ∥xi − yp∥∞ ≤
1
2ε, and y1, . . . , yk is an (r, 1

2ε)-cover of x1, . . . , xh.618

(i ⇒ iii): Let y1, . . . , yr ∈ R
2 be an (r, 1

2ε)-cover of x1, . . . , xh. Partition {1, . . . , h} into619

Π1, . . . ,Πr by grouping points according to the nearest covering point (break ties arbitrarily).620

Then for i, j ∈ Πk, {i, j} ∈ E of the unit square graph, since ∥xi − xj∥∞ ≤ ∥xi − yk∥∞ +621

∥yk − xj∥∞ ≤
1
2ε+

1
2ε = ε. Thus Π1, . . . ,Πr is a clique partition.622

(iii ⇒ ii): Let Π1, . . . ,Πr be a clique partition. Then for i, j ∈ Πk, {i, j} ∈ E, and so623

∥xi − xj∥∞ ≤ ε. Thus Π1, . . . ,Πr is an (r, ε)-partition.624

16

C NP-completeness of uniform point cover625

In this section, we prove that Problem UPC is NP-complete. By Theorem B.1, it suffices to prove626

that Problem UPP is NP-complete. This simplifies the presentation of the proof by abstracting627

away the need to construct specific covering vectors for groups of points. The main part of the628

proof is a reduction from a restricted variant of Boolean satisfiability, which we call Problem xSAT.629

Appendix C.1 introduces Problem xSAT and proves that it is NP-complete. Appendix C.2 proves630

that Problem UPP is NP-complete.631

C.1 Restricted Boolean satisfiability632

Boolean satisfiability is a well-known NP-complete decision problem (Cook, 1971; Levin, 1973).633

We formalise this problem as follows.634

Given n variables, v1, . . . , vn, a Boolean formula (in conjunctive normal form) is conjunction of m635

clauses, c1∧· · ·∧cm, where each clause is a finite disjunction (∨) of literals, and each literal is either636

a variable vi or its negation v̄i (called, respectively, a positive occurrence or negative occurrence of637

the variable vi). A truth assignment is a mapping assigning each of the variables v1, . . . , vn to the638

values “true” or “false.” The formula is satisfiable if there exists a truth assignment such that the639

entire formula evaluates to “true”. That is, each clause contains at least one positive occurrence of a640

variable assigned “true,” or at least one negative occurrence of a variable assigned “false”.641

Problem SAT. Boolean satisfiability, or SAT, is a decision problem. The instances are all Boolean642

formulas in conjunctive normal form. The affirmative instances are all satisfiable formulas.643

We introduce a variant of Problem SAT, namely Problem xSAT. Let φ be a Boolean formulas with644

variables v1, . . . , vn and clauses c1 ∧ · · · ∧ cm. Call φ a restricted Boolean formula if it meets the645

following three additional conditions:646

1. Each variable vi occurs as a literal in either two clauses or in three clauses. Exactly one of647

these occurrences is a negative occurrence (the other one or two are positive occurrences).648

2. Each clause cj contains either two literals or three literals (these may be any combination649

of positive and negative).650

3. The bipartite variable–clause incidence graph of φ is a planar graph.651

The bipartite variable–clause incidence graph is an undirected graph (V,E) with vertices V =652

{v1, . . . , vn, c1, . . . , cm} and edges E = { {vi, cj} : variable vi occurs as a literal in clause cj }.653

These additional restrictions streamline the proof of Theorem 6.1 in Appendix C.2, by reducing the654

complexity of the reduction mapping Boolean formulas to UPP instances.655

Problem xSAT. Restricted Boolean satisfiability, or xSAT, is a decision problem. The instances are656

all restricted Boolean formulas. The affirmative instances are all satisfiable formulas.657

Figure 4 illustrates some instances of Problem xSAT.658

(φ1)

+

+

−

+ −

−

+

+

−

+

(φ2)

−

+

+ −

+

+

−

(φ3)

+

−

+

− +
− +

−

+

+

+−

+

+

−

Figure 4: Three example restricted Boolean formulas in conjunctive normal form are as follows:
φ1 = (v1∨v2)∧(v̄1∨v2)∧(v3∨v4)∧(v̄3∨v4)∧(v̄2∨ v̄4); φ2 = (v̄1∨v2)∧(v1∨v2∨ v̄3)∧(v̄2∨v3);
and φ3 = (v̄1 ∨ v̄3 ∨ v4) ∧ (v1 ∨ v̄2 ∨ v5) ∧ (v3 ∨ v̄4 ∨ v6) ∧ (v2 ∨ v̄5) ∧ (v5 ∨ v6) ∧ (v4 ∨ v̄6). The
bipartite variable–clause incidence graphs of the three formulas are depicted above (circles indicate
variable vertices, squares indicate clause vertices, positive and negative occurrences (edges) are
marked accordingly. Formula φ1 is unsatisfiable whereas formulas φ2 and φ3 are each satisfiable.

17

Theorem C.1. Problem xSAT is NP-complete.659

Proof. xSAT ∈ NP as since SAT ∈ NP . To show SAT→ xSAT much of the work is already done:660

1. Cook (1971) reduced SAT to 3-SAT, a variant with at most three literals per clause.661

2. Lichtenstein (1982) extended this reduction to planar 3-SAT, a variant with at most three662

literals per clause and a planar bipartite clause–variable incidence graph (in fact the pla-663

narity condition studied by Lichtenstein is even stronger).664

3. Cerioli et al. (2004, 2011) extended the reduction to planar 3-SAT3̄—a variant of planar665

3-SAT with at most three occurrences per variable. Cerioli et al. (2004, 2011) used similar666

techniques to Tovey (1984), Jansen and Müller (1995), and Berman et al. (2003), who667

studied variants of SAT with bounded occurrences per variable, but no planarity restriction.668

It remains to efficiently construct from an instance φ of planar 3-SAT3̄ an equisatisfiable formula669

φ′ having additionally (a) at least two occurrences per variable, (b) at least two variables per clause,670

and (c) exactly one negative occurrence per variable. This can be achieved by removing variables,671

literals, and clauses and negating occurrences in φ (noting that such operations do not affect the672

conditions on φ) as follows. First, establish (a) and (b)11 by exhaustively applying the following673

(polynomial-time) operations.674

(i) If a variable always occurs with one sign (including never or once), remove the variable675

and all incident clauses. The resulting (sub)formula is equisatisfiable: extend a satisfying676

assignment by satisfying the removed clauses with the removed variable.677

(ii) If a clause contains a single literal, this variable is determined in a satisfying assignment.678

Remove the variable and clause along with any other clauses in which the variable occurs679

with that sign. For other occurrences, retain the clause but remove the literal.11 If the re-680

sulting formula is unsatisfiable, then the additional variable won’t help, and if the resulting681

formula is satisfiable, then so is the original with the appropriate setting of the variable to682

satisfy the singleton clause.683

Only a polynomial number of operations are possible as each removes one variable. Moreover,684

thanks to (i), each variable with two occurrences now has one negative occurrence (as required).685

For variables with three occurrences, one or two are negative. Establish (c) by negating all three686

occurrences for those that have two negative occurrences (so that the two become positive and the687

one becomes negative as required). The result is equisatisfiable because satisfying assignments688

can be translated by negating the truth value assigned to this variable. Carrying out this negation689

operation for the necessary variables takes polynomial time and completes the reduction.690

C.2 Complexity of uniform point partition691

Theorem 6.1 is a corollary of Theorem B.1 and the following two results.692

Theorem C.2. UPP ∈ NP .693

Proof. An (r, ε)-partition of the points acts as a certificate. Such a partition can be verified in poly-694

nomial time by computing the pairwise uniform distances within each group.695

Theorem C.3. xSAT→ UPP.696

Proof. This proof is more substantial. We describe the reduction algorithm in detail, and then for-697

mally prove its efficiency and correctness, over the remainder of this section (pages 18–24).698

Reduction overview. Given an xSAT instance, the idea is to build a UPP instance with a collection699

of points mirroring the structure of the bipartite variable–clause incidence graph of the restricted700

Boolean formula. To each variable vertex, clause vertex, and edge corresponds a collection of701

points. The points for each variable vertex can be partitioned in one of two configurations, based702

on the value of the variable in a truth assignment. Each determines the available groupings of the703

incident edge’s points so as to propagate these assignments to the clauses. The maximum number of704

groups is set so that there are enough to include the points of each clause vertex if and only if some705

variable satisfies that clause in the assignment.706

11If a clause contains no literals, whether initially or due to the removal of a literal through operation (ii),
then the formula is unsatisfiable. Return any unsatisfiable instance of xSAT, such as φ1 of Figure 4.

18

Reduction step 1: Lay out the graph on a grid. Due to the restrictions on the xSAT instance,707

the bipartite variable–clause incidence graph is planar with maximum degree three. Therefore there708

exists a graph layout where (1) the vertices are positioned at integer coordinates, and (2) the edges709

comprise horizontal and vertical segments between adjacent pairs of integer coordinates (Valiant,710

1981, §IV). Moreover, such a (planar, rectilinear, integer) grid layout can be constructed in polyno-711

mial time (see, e.g., Valiant, 1981; Liu et al., 1998; there is no requirement to produce an “optimal”712

layout—just a polynomial-time computable layout). Figure 5 shows three examples.713

Reduction step 2: Divide the layout into tiles. The grid layout serves as a blueprint for a UPP714

instance: it governs how the points corresponding to each variable vertex, clause vertex, and edge715

are arranged in the plane. The idea is to conceptually divide the plane into unit square tiles, with716

one tile for each coordinate of the integer grid occupied by a vertex or edge in the grid layout. The717

tile divisions for the running examples are shown in Figure 5.718

Due to the restrictions on xSAT instances, any tile division uses just forty distinct tile types (just719

nine up to rotation and reflection). There are straight edge segments and corner edge segments,720

plus clause and variable vertices with two or three edges in any direction, and for variable vertices,721

exactly one direction corresponds to a negative occurrence. Figure 6 enumerates these types.722

(φ1) (φ2) (φ3)

+

+

−

+ −

−

+

+

−

+

−
+

+

−

+

+−

+ −

+ − +− +

−+

+ +− ++

−

+

+

−

+ −

−

+

+

−

+

−

+

+

−

+

+−

+ −

+ − +− +

−+

+ +− ++

−

Figure 5: Top: Example planar, rectilinear, integer grid layouts of the bipartite variable–clause
incidence graphs from Figure 4. Note: these layouts are computed by hand—those produced by
standard algorithms may be larger. Bottom: Division of the same grid layouts into tiles.

+− +

−

+

− +

−

+

− +− +

− +

−

+

− +

− + − +

−

−

++

+

−+

+

+

−

−

++

+

−+

+

+

−

−+

+

+

−

+

++

−

−

+

+

+

−

+

+

+

−

Figure 6: Just forty tile types suffice to construct any tile division of a grid layout. Up to rotation
and reflection, just nine distinct types (for example, those highlighted) suffice.

Reduction step 3: Populate the instance with points. The points of the UPP instance are of two723

kinds (described in more detail below): (1) boundary points between neighbouring pairs of tiles;724

and (2) interior points within each tile in a specific arrangement depending on the tile type. The725

boundary points can be grouped with interior points of one or the other neighbouring tile. In this726

way, boundary points couple the choice of how to partition the interior points of neighbouring tiles,727

creating the global constraint that corresponds to satisfiability.728

19

Reduction step 3a: Boundary points between neighbouring tiles. There is one boundary point729

at the midpoint of the boundary between each pair of neighbouring tiles. A pair of neighbouring730

tiles is one for which there is an edge crossing the boundary. It is not sufficient for the tiles to be731

adjacent. Figure 7 clarifies this distinction using the running examples.732

boundary pt.

no boundary pt.

(φ1) (φ2) (φ3)

Figure 7: Example of the placement of boundary points between neighbouring tiles. Boundary
points are not placed between adjacent tiles if no edge crosses this tile boundary.

Reduction step 3b: Interior points for variable tiles. Table 1 shows arrangements of interior733

points for each type of variable tile (up to rotation and reflection). Due to the restrictions on the734

xSAT instance, each variable tile has one negative boundary point and one or two positive boundary735

point(s) (corresponding to the variable occurrences). With a given number of groups, the choice of736

which boundary point(s) to include corresponds to the value of the variable in a truth assignment.737

Lemma C.4. Consider an interior and boundary point arrangement from Table 1 (first 4 rows), or a738

rectilinear rotation or reflection of such an arrangement. Let r ∈ {2, 3} be the allocated number of739

groups, and let ε ∈ R
+ be the scale.740

(i) There is no (k, ε)-partition of the interior points if k < r.741

(ii) For any (r, ε)-partition of the interior points, the negative boundary point is within uniform742

distance ε of all points in some group, if and only if (neither of) the positive boundary743

point(s) are within uniform distance ε of all points in any group.744

Proof. It suffices to consider the arrangements in Table 1 (first 4 rows) because the uniform dis-745

tance is invariant to rectilinear rotation and reflection. The claims are then verified by exhaustive746

consideration of all possible partitions of the interior points into at most r groups.747

The partitions indicated in the table are used while constructing a partition of the whole instance748

given a satisfying assignment. Conversely, no other partitions of the interior points using r groups749

are possible, except in the fourth row, where other partitions are possible, but, as suffices for the750

reduction, there are no partitions including both positive and negative boundary points.751

Reduction step 3c: Interior points for edge tiles. Table 1 shows arrangements of interior points752

for each type of edge tile (up to rotation and reflection). Once the partition of a variable tile includes753

either the positive boundary point(s) or the negative boundary point, the role of an edge tile is754

to propagate this choice to the incident clause. These simple point arrangements ensure that the755

opposite boundary point can be included in a partition of the interior points if and only if the prior756

boundary point is not (that is, if and only if it was included by the partition of the interior points of757

the variable tile or, inductively, the previous edge tile).758

Lemma C.5. Consider an interior and boundary point arrangement from Table 1 (last 2 rows), or a759

rectilinear rotation or reflection of such an arrangement. Let ε ∈ R
+ be the scale.760

(i) There is no (k, ε)-partition of the interior points if k < 2.761

(ii) For any (2, ε)-partition of the interior points, either boundary point is within uniform dis-762

tance ε of all points in some group, if and only if the other boundary point is not within763

uniform distance ε of all points in any group.764

Proof. Special case of Lemma C.4.765

The partitions indicated in Table 1 are the only possible (2, ε)-partitions of the interior points.766

20

Type h r Arrangement Possible partitions

+− 3 2

ε

+

− 3 2

ε

++

− 5 3

ε

−++ 5 3

ε

3 2

ε

3 2

ε

Table 1: Arrangement of interior points for variable tiles (first 4 rows) or edge tiles (last 2 rows). h
represents the number of interior points (coloured), with nearby boundary points also shown (black).
r represents the number of groups allocated to the tile during the reduction.

21

Reduction step 3d: Interior points for clause tiles. Table 2 shows arrangements of interior points767

for each type of clause tile. The arrangements are such that the interior points of the clause tile can768

be partitioned if and only if one of the boundary points is not included (that is, it must be included769

by a neighbouring variable or edge tile, indicating the clause will be satisfied by the corresponding770

literal).771

Lemma C.6. Consider an interior and boundary point arrangement from Table 2, or a rectilinear772

rotation or reflection of such an arrangement. Let r ∈ {2, 3} be the allocated number of groups,773

and let ε ∈ R
+ be the scale.774

(i) There is no (k, ε)-partition of the interior points if k < r.775

(ii) For any (r, ε)-partition of the interior points, there is at least one boundary point that is776

not within uniform distance ε of all points in any group.777

Proof. Following Lemma C.4, the conditions can be checked exhaustively.778

Table 2 shows the only possible (r, ε)-partitions of the interior points, except in the third row, where779

a reflected version of the first example partition is also possible.780

Type h r Arrangement Possible partitions

3 2

ε

3 2

ε

4 3

ε

Table 2: Arrangement of interior points for clause tiles. The number h represents the number of
interior points (coloured). The boundary points are also shown (black). The number r represents the
number of groups allocated to the tile during the reduction.

Reduction step 4: Set the number of groups. For the number of groups, total the allocations for781

the interior points of each tile (r in Tables 1 and 2). That is, set r for the UPP instance to thrice782

the number of 3-occurrence variables and 3-literal clauses plus twice the number of edge segments,783

2-occurrence variables, and 2-literal clauses.784

Reduction step 5: Set the uniform diameter. The reduction works at any (polynomial-time com-785

putable) scale. For concreteness, set the diameter to 1/4, giving each tile unit width.786

22

Formal summary of the reduction. Given an instance of xSAT, that is, a restricted Boolean for-787

mula φ with variables v1, . . . , vn and clauses c1∧· · ·∧cm, construct an instance of UPP as described788

in detail in the above steps. Namely, use the points x1, . . . , xh ∈ R
2 as described in Reduction step 3789

(the interior points from all tiles and the boundary points between neighbouring tiles); a number of790

groups r as described in Reduction step 4 (the total allocated groups from all of the tiles); and a791

uniform diameter ε = 1/4 as described in Reduction step 5.792

Table 3 shows the full UPP instances for the running examples (cf. Figures 4, 5 and 7).793

Formula n k Source points

φ1 65 32

ε

φ2 28 14

ε

φ3 68 34

ε

Table 3: Full examples of the reduction from xSAT to UPP, based on xSAT instances described in
Figure 4. Exercise: is there an (r, ε)-partition in each case?

23

Correctness of the reduction. Step 1 (grid layout) runs in polynomial time (Liu et al., 1998), and794

the remaining steps run in linear or constant time. It remains to show that the constructed instance795

of UPP is equivalent to the original xSAT instance. That is, we must show that φ is satisfiable if and796

only if there exists an (r, ε)-partition of the points x1, . . . , xh.797

(⇒): Suppose φ is satisfiable. Let θ be a satisfying truth assignment. Produce an (r, ε)-partition of798

x1, . . . , xh as follows.799

1. Partition the interior points of each variable tile as in Table 1. Include the positive boundary800

point(s) if the variable is assigned “true” in θ, or include the negative boundary point if it801

is assigned “false”.802

2. For each variable tile, follow the included boundary point(s) through zero or more edge803

tiles to the incident clause’s tile, partitioning the interior points of each edge tile according804

to Table 1 such that the boundary point in the direction of the clause tile is included.805

3. Since θ is a satisfying assignment, every clause tile is reached in this way at least once, and806

thus has at least one of its boundary points included in the groups described so far. For807

each clause tile, partition the interior points according to Table 2, including the remaining808

boundary points (if any).809

4. For each clause tile, follow the remaining boundary points through zero or more edges back810

to a variable tile, partitioning the interior points of each edge tile according to Table 1 such811

that the boundary point in the direction of the variable tile is included.812

The final step includes exactly the boundary points of variable tiles that were not included in the first813

step. Thus, all interior and boundary points are included in some group. The number of groups is814

exactly in accordance with the allocated number of groups per tile, for a total of r.815

(⇐): Suppose there is an (r, ε)-partition of the points. Observe the following:816

• Since the interior points of each tile are separated from the tile boundaries by at least ε, no817

group can include interior points from two separate tiles.818

• It follows that the interior points of each tile must be partitioned into their allocated number819

of groups. If one tile were to use more groups, some other tile would not get its allocation820

of groups, and it would be impossible to include all of its interior points in the partition (by821

Lemmas C.4(i), C.5(i), and C.6(i)).822

• Since the boundary points have no allocated groups, each boundary point must be included823

in a group with interior points from one of its neighbouring tiles.824

Now, consider each clause tile. By Lemma C.6(ii), there must be at least one boundary point that is825

included with the interior points of one of its neighbouring tiles. Pick one such direction for each826

clause and use this to construct a satisfying assignment for φ as follows.827

In each direction, follow the sequence of zero or more edge tiles back to a variable tile. By828

Lemma C.5(ii), each boundary point along the sequence of edges must be included with the inte-829

rior points of the next edge tile in the sequence. In turn, the boundary point at the variable tile must830

be included with the interior points of the variable tile. If this is a positive boundary point, set this831

variable to “true” in a truth assignment θ, and if it is a negative boundary point, set the variable to832

“false”.833

This uniquely defines the truth assignment θ for all variables reached in this way at least once. If a834

variable is reached this way from two separate clauses, it must be through its two positive boundary835

points, since by Lemma C.4(ii), it is impossible for the partition to have both a negative and a836

positive boundary point included with the interior points of the variable tile. Since some variables837

may not be reached at all in this way, θ is not completely defined. Complete the definition of θ by838

assigning arbitrary truth values to such variables.839

The truth assignment θ is a satisfying assignment for φ. Each clause is satisfied by at least one literal,840

corresponding to the variable tile that was reached through one of the clause tile’s boundary points841

not grouped with the clause tile’s interior points in the partition.842

This concludes the proof of Theorem C.3.843

24

D Problem variations and their computational complexity844

In this section we discuss several minor variations of Problem UPC.845

Uniform vector partition is hard. Consider a generalisation of Problem UPC beyond the plane,846

as follows. Let p ∈ N
+. Given h source vectors x1, . . . , xh ∈ R

p, define an (r, ε)-cover, a list of r847

covering vectors y1, . . . , yr ∈ R
p such that the uniform distance between each source vector and its848

nearest covering vector is at most ε (that is, ∀i ∈ {1, . . . , h}, ∃j ∈ {1, . . . , r}, ∥xi − yj∥∞ ≤ ε).849

Problem UVC
p. Let p ∈ N

+. Uniform vector cover in R
p, or UVCp, is a decision problem. Each850

instance comprises a collection of h ∈ N source points x1, . . . , xh ∈ R
p, a uniform radius ε ∈ R

+,851

and a number of covering points r ∈ N. The affirmative instances are those for which there exists852

an (r, ε)-cover of x1, . . . , xh.853

Theorem D.1. If p ≥ 2, then UVC
p is NP-complete.854

Proof. (UPC → UVCp): Let p ≥ 2. Embed the source points from the UPC instance into the first855

two dimensions of Rp (leaving the remaining components zero). If there is an (r, ε)-cover of the856

2-dimensional points, embed it similarly to derive a p-dimensional (r, ε)-cover. Conversely, if there857

is a p-dimensional (r, ε)-cover, truncate it to the first two dimensions to derive an (r, ε)-cover.858

(UVCp ∈ NP): Use an (r, 2ε)-partition (suitably generalised to p dimensions) as a polynomial-time859

verifiable certificate. Such a certificate is appropriate along the lines of the proof of Theorem B.1.860

(An arbitrary (r, ε)-cover is unsuitable as a certificate along the lines of Footnote 8.)861

Remark D.2. By a p-dimensional generalisation of Theorem B.1, p-dimensional generalisations of862

Problem UPP and Problem usgCP are also NP-complete for p ≥ 2.863

Uniform scalar partition is easy. On the other hand, UVC1, which could be called uniform864

scalar cover, is in P . A minimal cover can be constructed using a greedy algorithm with runtime865

O(h log h). An (r, ε)-cover exists if and only if there are at most r scalars in the result.866

Algorithm D.1 (Optimal uniform scalar cover). Proceed:867

1: procedure UNIFORMSCALARCOVER(h ∈ N, ε ∈ R
+, x1, . . . , xh ∈ R)868

2: x′

1, . . . , x
′

h ← x1, . . . , xh, sorted in non-decreasing order.869

3: j ← 0870

4: for i = 1, . . . , h do871

5: if j = 0 or x′

i > yj + ε then872

6: j ← j + 1873

7: yj ← x′

i + ε874

8: end if875

9: end for876

10: return y1, . . . , yj877

11: end procedure878

Theorem D.3 (Algorithm D.1 correctness). Let h ∈ N, ε ∈ R
+, and x1, . . . , xh ∈ R. Let879

y1, . . . , yr = UNIFORMSCALARCOVER(h, ε, x1, . . . , xh). Then (i) y1, . . . , yr is an (r, ε)-cover880

of x1, . . . , xh; and (ii) no (k, ε)-cover exists for k < r.881

Proof. (i): After each iteration i = 1, . . . , h, if the if branch was entered, then ∥x′

i − yj∥∞ =882

∥x′

i − (x′

i + ε)∥
∞

= ε. If not, that is, if x′

i ≤ yj + ε, let k be the last iteration in which j was883

increased. Then x′

i ≥ x′

k = yj − ε. In summary, yj − ε ≤ x′

i ≤ yj + ε, as required.884

(ii): For j = 1, . . . , r, let ξj = x′

i from the iteration in which yj was defined. Then for j ̸= k,885

∥ξj − ξk∥∞ ≥ 2ε. No covering scalar could be within distance ε of any two of these source scalars.886

Thus at least r covering scalars are required to cover ξ1, . . . , ξr, and, in turn, x1, . . . , xh.887

Clique partition on ‘square penny’ graphs is hard. Cerioli et al. (2004, 2011) showed that888

clique partition isNP-complete in a restricted variant of of unit disk graphs called penny graphs. A889

penny graph is a unit disk graph in which the Euclidean distance between source points is at least ε,890

evoking the contact relationships among non-overlapping circular coins.891

Our reduction (Appendix C) happens to produce a set of source points for a unit square graph892

satisfying a uniform distance version of this condition. Therefore, our proof shows that clique893

partition remains NP-complete in this special family of graphs as well.894

25

E A characterisation of the class of bounded-rank parameters895

We offer a characterisation of the subset of parameter space with parameters of a given maximum896

rank. These are the subsets to which detecting proximity is proved NP-complete in Theorem 6.2.897

Let h, r ∈ N with r < h. The bounded rank region of rank r is the subset of parameters of rank at898

most r, Br = {w ∈ Wh : rank(w) ≤ r } ⊆ Wh. The key to characterising bounded rank regions899

is that for each parameter in Br, at least h− r units would be removed during lossless compression.900

Considering the various possible ways in which units can be removed in the course of Algorithm 4.1901

leads to a characterisation of the bounded rank region as a union of linear subspaces.902

To this end, let H = {1, . . . , h}, and define a compression trace on h units as a 4-tuple (Ī ,Π, K̄, σ)903

where Ī ⊆ H is a subset of units (conceptually, those to be removed in Stage 1), Π = Π1, . . . ,ΠJ is904

a partition of H \ Ī (the remaining units) into J groups (to be merged in Stage 2), K̄ ⊂ {1, . . . , J}905

(merged units removed in Stage 3), and σ ∈ {−1,+1}h is a sign vector (unit orientations for906

purposes of merging). The length of the compression trace (Ī ,Π, K̄, σ) on h units is J −
∣

∣K̄
∣

∣

907

(representing the number of units remaining). A compression trace of length r thus captures the908

notion of a “way in which h− r units can be removed in the course of Algorithm 4.1”.909

Theorem E.1. Let h ∈ N. The bounded rank region Br ⊂ Wh is a union of linear subspaces910

Br =
⋃

(Ī,Π,K̄,σ)∈Ξ(h,r)





⋂

i∈Ī

S
(1)
i ∩

J
⋂

j=1

S
(2)
Πj ,σ
∩

⋂

k∈K̄

S
(3)
Πk,σ



 (1)

where Ξ(h, r) denotes the set of all compression traces on h units with length r;911

S
(1)
i = { (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh : bi = 0 };

S
(2)
Π,σ = { (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh : ∀i, j ∈ Π, σibi = σjbj ∧ σici = σjcj }; and

S
(3)
Π,σ =

{

(a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh :
∑

i∈Π σiai = 0
}

.

Proof. (⊇): Suppose w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh is in the union in (1), and there-912

fore in the intersection for some compression trace (Ī ,Π, K̄, σ). The constraints imposed on w by913

membership in this intersection imply that the network is compressible:914

1. For i ∈ Ī , since w ∈ S
(1)
i , bi = 0, so unit i can be removed.915

2. For j = 1, . . . , J , since w ∈ S
(2)
Πj ,σ

, the units in Πj can be merged together.916

3. For k ∈ K̄, since w ∈ S
(3)
Πk,σ

, merged unit k has outgoing weight 0 and can be removed.917

It follows that there is a parameter with J −
∣

∣K̄
∣

∣ units that is functionally equivalent to w. Therefore918

rank(w) ≤ J −
∣

∣K̄
∣

∣ = r and w ∈ Br.919

(⊆): Conversely, suppose w ∈ Br. Construct a compression trace following COMPRESS(w). First,920

set σi = sign(bi) where bi ̸= 0 (if bi = 0, set σi = ±1 arbitrarily, this has no effect). Then:921

1. Set Ī = {1, . . . , h} \ I where I is computed on line 3. It follows that for i ∈ Ī , w ∈ S
(1)
i .922

2. Set Π to the partition computed on line 6. It follows that for j = 1, . . . , J , w ∈ S
(2)
Πj ,σ

.923

3. Set K̄ = { j ∈ {1, . . . , J} : αj = 0 } (cf. lines 8,12). Thus for k ∈ K̄, w ∈ S
(3)
Πk,σ

.924

By construction w is in
⋂

i∈Ī S
(1)
i ∩

⋂J
j=1 S

(2)
Πj ,σ
∩
⋂

k∈K̄ S
(3)
Πk,σ

. However, the compression trace925

(Ī ,Π, K̄, σ) has length rank(w) ≤ r. If rank(w) < r, remove constraints on r − rank(w) units by926

some combination of the following operations: (1) remove one unit from Ī (add it as singleton group927

to Π), (2) remove one unit from a non-singleton group in Π (add it back to Π as a singleton group),928

and/or (3) remove one merged unit from K̄. None of these operations add nontrivial constraints on929

w, so it’s still the case that w is in the intersection for the modified compression trace. However,930

now the length of the compression trace is r, so it follows that w is in the union as required.931

26

F Some additional properties of the proximate rank932

We document some additional basic properties of the proximate rank.933

Variation with uniform radius. Fix w ∈ Wh. Then 0 ≤ prankε(w) ≤ rank(w), depending on934

ε. The following proposition demonstrates some basic properties of this relationship.935

Proposition F.1. Let h ∈ N. Fix w ∈ Wh and consider prankε(w) as a function of ε. Then,936

(i) prankε(w) is antitone in ε: if ε ≥ ε′ then prankε(w) ≤ prankε′(w); and937

(ii) prankε(w) is right-continuous in ε: limδ→0+ prankε+δ(w) = prankε(w).938

Proof. For (i), put u ∈ B̄∞(w; ε′) such that rank(u) = prankε′(w). Then u ∈ B̄∞(w; ε), so939

prankε′(w) = rank(u) ≥ prankε(w). Then for (ii), since prankε(w) ≤ rank(w) the limit exists940

by the monotone convergence theorem. Proceed to bound prankε(w) above and below by r =941

limδ→0+ prankε+δ(w). For the lower bound, for δ ∈ R
+, prankε+δ(w) ≤ prankε(w) by (i), so942

r = limδ→0+ prankε+δ(w) ≤ prankε(w).943

For the upper bound, since the proximate rank is a natural number, the limit is achieved for some944

positive δ. That is, ∃∆ ∈ R
+ such that prankε+∆(w) = r. Then for k = 1, 2, . . . put uk ∈945

B̄∞(w; ε+∆/k) with rank(uk) = r. Since B̄∞(w; ε+∆) is compact the sequence u1, u2, . . .946

has an accumulation point—call it u. Now, since u1, u2, . . . ∈ Br (parameters of rank at most r,947

Appendix E), a closed set (by Theorem E.1), the accumulation point u ∈ Br. Thus, rank(u) ≤ r.948

Finally, u ∈
⋂

∞

k=1 B̄∞(w; ε+∆/k) = B̄∞(w; ε), so r ≥ rank(u) ≥ prankε(w).949

A similar proof implies that prankε(w) achieves its upper bound rank(w) for small enough ε > 0.950

The lower bound 0 is also achieved; for example for ε ≥ ∥w∥
∞

= ∥w − 0∥
∞

.951

Variation with functionally equivalent parameters. The rank of w ∈ Wh is defined in terms of952

fw, so functionally equivalent parameters have the same rank. This is not necessarily the case for the953

proximate rank—consider Example F.2. Similar counterexamples hold if a non-uniform metric is954

used. This is a consequence of the fundamental observation that functionally equivalent parameters955

may have rather different parametric neighbourhoods.956

Example F.2. Let ε ∈ R
+. Consider the neural network parameters w,w′ ∈ W2 with w =957

(2ε, 2ε, 0, 0, 0, 0, 0) and w′ = (2ε, 2ε, 0, 5ε, 0, 0, 0). Then for x ∈ R,958

fw(x) = 0 + 2ε tanh(2εx+ 0) + 0 tanh(0x+ 0)

= 0 + 2ε tanh(2εx+ 0) + 0 tanh(5εx+ 0) = fw′(x),

but prankε(w) = rank(ε, ε, 0;−ε, ε, 0; 0) = 0 ̸= 1 = prankε(w
′).959

However, functionally equivalent incompressible parameters have the same proximate rank.960

Proposition F.3. Let h ∈ N. Consider a permutation π ∈ Sh and a sign vector σ ∈ {−1,+1}h.961

Define Tπ,σ :Wh →Wh such that962

Tπ,σ(a1, b1, c1, . . . , ah, bh, ch, d) = (σ1aπ(1), σ1bπ(1), σ1cπ(1), . . . , σhaπ(h), σhbπ(h), σhcπ(h), d).

Then for w ∈ Wh, ε ∈ R
+, prankε(w) = prankε(Tπ,σ(w

′)).963

Proof. Tπ,σ :Wh →Wh is an isometry with respect to the uniform distance, so964

B̄∞(Tπ,σ(w); ε) =
{

Tπ,σ(u) : u ∈ B̄∞(w; ε)
}

.

Moreover, Tπ,σ is a symmetry of the parameter–function map (Chen et al., 1993), so it preserves the965

implemented function and therefore the rank of the parameters in the neighbourhood.966

Corollary F.4. Let h ∈ N. Consider two incompressible (minimal) parameters w,w′ ∈ Wh and a967

uniform radius ε ∈ R
+. If fw = fw′ then prankε(w) = prankε(w

′).968

Proof. Since w,w′ are functionally equivalent and incompressible (minimal), they are related by a969

permutation transformation and a negation transformation (Sussmann, 1992).970

27

G Hyperbolic tangent networks with multi-dimensional inputs and outputs971

In the main paper we consider single-hidden-layer hyperbolic tangent networks with a single input972

unit and a single output unit. Our algorithms and results generalise to an architecture with multiple973

input units and multiple output units, with some minor changes.974

Consider a family of fully-connected, feed-forward neural network architectures with n ∈ N
+ input975

units, m ∈ N
+ biased linear output units, and a single hidden layer of h ∈ N biased hidden units976

with the hyperbolic tangent nonlinearity. The weights and biases of the network are encoded in a977

parameter vector in the format w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ W
n,m
h = R

(n+m+1)h+m, where978

for each hidden unit i = 1, . . . , h there is an outgoing weight vector ai ∈ R
m, an incoming weight979

vector bi ∈ R
n, and a bias ci ∈ R; and d ∈ R

m is a vector of output unit biases. Thus each parameter980

w ∈ Wn,m
h indexes a function fw : Rn → R

m such that fw(x) = d+
∑h

i=1 ai tanh(bi · x+ ci).981

The above notation is deliberately chosen to parallel the case n = m = 1 considered in the main982

paper. This makes the generalisation of our results to the case n,m ≥ 1 straightforward. First, re-983

place all mentions of the scalar incoming and outgoing weights with incoming and outgoing weight984

vectors. It remains to note the following additional changes.985

1. The algorithms and proofs commonly refer to the sign of an incoming weight. For b ∈ R
n

986

define sign(b) ∈ {−1, 0,+1} as the sign of the first nonzero component of b, or zero if987

b = 0. Use this generalised sign function throghout when n > 1.988

2. Sorting the (signed) incoming weight and bias pairs of the hidden units is a key part of989

Algorithms 4.1 and 4.2. For pairs of the form (b, c) ∈ R
n × R, lexicographically sort by990

the components of b and then by c.991

3. The reducibility conditions were proven by Sussmann (1992) in the case n ≥ 1 and m = 1.992

The conditions also hold for m ≥ 1 (see Fukumizu, 1996; or Anonymous, 2023, §A).993

4. The construction of the centre of a bounding rectangle in the proof of Theorem 6.2 stright-994

forwardly generalises to the construction of the centre of a bounding right cuboid.995

For Theorem 6.2, the proof that UPC→ PR requires no generalisation, because it suffices to construct996

instances of Problem PR with n = m = 1. To see directly that Problem PR remains hard in networks997

with n input units, compare with UVCn+1 (Problem UVCp discussed in Appendix D; n + 1 for n998

incoming weights plus one bias for each hidden unit).999

28

