
Functional Equivalence and Path Connectivity
of Reducible Hyperbolic Tangent Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Understanding the learning process of artificial neural networks requires clarify-1

ing the structure of the parameter space within which learning takes place. A2

neural network parameter’s functional equivalence class is the set of parameters3

implementing the same input–output function. For many architectures, almost4

all parameters have a simple and well-documented functional equivalence class.5

However, there is also a vanishing minority of reducible parameters, with richer6

functional equivalence classes caused by redundancies among the network’s units.7

In this paper, we give an algorithmic characterisation of unit redundancies and8

reducible functional equivalence classes for a single-hidden-layer hyperbolic tan-9

gent architecture. We show that such functional equivalence classes are piecewise-10

linear path-connected sets, and that for parameters with a majority of redundant11

units, the sets have a diameter of at most 7 linear segments.12

1 Introduction13

Deep learning algorithms construct a parameter for an artificial neural network architecture through14

a local search in the high-dimensional parameter space. This search is guided by the topography of15

some loss landscape. This topography is in turn determined by the relationship between neural net-16

work parameters and neural network input–output functions. Thus, understanding the relationship17

between these parameters and functions is key to understanding deep learning.18

It is well known that neural network parameters often fail to uniquely determine an input–output19

function. For example, exchanging weights between two adjacent hidden units generally preserves20

functional equivalence (Hecht-Nielsen, 1990). For many architectures, almost all parameters have a21

simple class of functionally equivalent parameters. These classes have been characterised for multi-22

layer feed-forward architectures with various nonlinearities (e.g., Sussmann, 1992; Albertini et al.,23

1993; Kůrková and Kainen, 1994; Phuong and Lampert, 2020; Vlačić and Bölcskei, 2021).24

However, all existing work on functional equivalence excludes from consideration certain measure25

zero sets of parameters, for which the functional equivalence classes may be richer. One such family26

of parameters is the so-called reducible parameters. These parameters display certain structural27

redundancies, such that the same function could be implemented with fewer hidden units (Sussmann,28

1992; Vlačić and Bölcskei, 2021), leading to a richer functional equivalence class.29

Reducible parameters may play an important role in deep learning. While randomly selected param-30

eters are reducible with probability zero, learned parameters are not random. Structural redundancy31

has appealing parsimony connotations, and is also related to information singularities in statistical32

learning (Fukumizu, 1996). Moreover, the structure of functional equivalence classes has implica-33

tions for the topography of the loss landscape, and, therefore, for the dynamics of learning.34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

In this paper, we study functional equivalence classes for single-hidden-layer networks with the hy-35

perbolic tangent nonlinearity, building on the foundational work of Sussmann (1992) on reducibility36

in this setting. While this architecture is not immediately relevant to modern deep learning, struc-37

tural redundancy has unresearched implications for functional equivalence in all architectures. A38

comprehensive investigation of this simple case is a first step in this research direction. To this end,39

we offer the following theoretical contributions.40

1. In Section 4, we give a formal algorithm producing a canonical representative parameter41

from any functional equivalence class, by systematically eliminating all sources of struc-42

tural redundancy. This extends prior algorithms that only handle irreducible parameters.43

2. In Section 5, we invert this canonicalisation algorithm to characterise the functional equiv-44

alence class of any parameter as a union of simple parameter manifolds. This characterisa-45

tion extends the well-known result for irreducible parameters.46

3. We show that in the reducible case, the functional equivalence class is a piecewise-linear47

path-connected set—that is, any two functionally equivalent reducible parameters are con-48

nected by a piecewise linear path comprising only equivalent parameters (Theorem 6.1).49

4. We show that if a parameter has a high degree of reducibility (in particular, if the same func-50

tion can be implemented using half of the available hidden units), then the number of linear51

segments required to connect any two equivalent parameters is at most 7 (Theorem 6.3).52

In Section 7, we discuss the implications of these results for an understanding of the structure of the53

parameter space, and outline directions for future work including extensions to modern architectures.54

2 Related Work55

Sussmann (1992) studied functional equivalence in single-hidden-layer hyperbolic tangent networks,56

showing that two irreducible parameters are functionally equivalent if and only if they are related57

by simple operations of exchanging and negating the weights of hidden units. This result was later58

extended to architectures with a broader class of nonlinearities (Albertini et al., 1993; Kůrková and59

Kainen, 1994), to architectures with multiple hidden layers (Fefferman and Markel, 1993; Fefferman,60

1994), and to certain recurrent architectures (Albertini and Sontag, 1992, 1993a,b,c). More recently,61

similar results have been found for ReLU networks (Phuong and Lampert, 2020; Bona-Pellissier62

et al., 2021; Stock and Gribonval, 2022), and Vlačić and Bölcskei (2021, 2022) have generalised63

Sussmann’s results to a very general class of architectures and nonlinearities. However, all of these64

results have come at the expense of excluding from consideration certain measure zero subsets of65

parameters with richer functional equivalence classes.66

A similar line of work has documented the global symmetries of the parameter space—bulk transfor-67

mations of the entire parameter space that preserve all implemented functions. The search for such68

symmetries was launched by Hecht-Nielsen (1990). Chen et al. (1993, also Chen and Hecht-Nielsen,69

1991) showed that in the case of multi-layer hyperbolic tangent networks, all analytic symmetries70

are generated by unit exchanges and negations. Rüger and Ossen (1997) extended this result to addi-71

tional sigmoidal nonlinearities. The analyticity condition excludes discontinuous symmetries acting72

selectively on, say, reducible parameters with richer equivalence classes (Chen et al., 1993).73

Rüger and Ossen (1997) provide a canonicalisation algorithm. Their algorithm negates each hidden74

unit’s weights until the bias is positive, and then sorts each hidden layer’s units into non-descending75

order by bias weight. This algorithm is invariant precisely to the exchanges and negations mentioned76

above, but fails to properly canonicalise equivalent parameters that differ in more complex ways.77

To our knowledge there is only one line of work bearing directly on the topic of the functional78

equivalence classes of reducible parameters. Fukumizu and Amari (2000) and Fukumizu et al.79

(2019) have catalogued methods of adding a single hidden unit to a neural network while preserving80

the network’s function, and Şimşek et al. (2021) have extended this work to consider the addition81

of multiple hidden units. Though derived under a distinct framing, it turns out that the subsets82

of parameter space accessible by such unit additions correspond to functional equivalence classes,83

similar to those we study (though in a slightly different architecture). We note these similarities,84

especially regarding our contributions (2) and (3), in Remarks 5.4 and 5.5 and Remark 6.2.85

2

3 Preliminaries86

We consider a family of fully-connected, feed-forward neural network architectures with a single87

input unit, a single biased output unit, and a single hidden layer of h ∈ N biased hidden units with88

the hyperbolic tangent nonlinearity tanh(z) = (ez − e−z)/(ez + e−z). Such an architecture has a89

parameter spaceWh = R3h+1. Our results generalise directly to networks with multi-dimensional90

inputs and outputs, as detailed in Appendix A.91

The weights and biases of the network’s units are encoded in the parameter vector in the format92

(a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh where for each hidden unit i = 1, . . . , h there is an outgoing93

weight ai ∈ R, an incoming weight bi ∈ R, and a bias ci ∈ R, and d ∈ R is an output unit bias.94

Thus each parameter w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh indexes a mathematical function95

fw : R→ R defined as follows:96

fw(x) = d+

h∑
i=1

ai tanh(bix+ ci).

Two parameters w ∈ Wh, w
′ ∈ Wh′ are functionally equivalent if and only if fw = fw′ as functions97

on R (that is, ∀x ∈ R, fw(x) = fw′(x)). Functional equivalence is of course an equivalence relation98

onWh. Given a parameter w ∈ Wh, the functional equivalence class of w, denoted F[w], is the set99

of all parameters inWh that are functionally equivalent to w:100

F[w] = {w′ ∈ Wh | fw = fw′ }.

For this family of architectures, the functional equivalence class of almost all parameters is a discrete101

set fully characterised by simple unit negation and exchange transformations σi, τi,j : Wh → Wh102

for i, j = 1, . . . , h, where103

σi(a1, b1, c1, . . . , ah, bh, ch, d) = (a1, b1, c1, . . . ,−ai,−bi,−ci, . . . , ah, bh, ch, d)
τi,j(a1, b1, c1, . . . , ah, bh, ch, d) = (a1, b1, c1, . . . , ci−1, aj , bj , cj , ai+1,

. . . , cj−1, ai, bi, ci, aj+1, . . . , ah, bh, ch, d).

More formally, these transformations generate the full functional equivalence class for all so-called104

irreducible parameters (Sussmann, 1992). A parameter w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh is105

reducible if and only if it satisfies any of the following conditions (otherwise, w is irreducible):106

(i) ai = 0 for some i, or107

(ii) bi = 0 for some i, or108

(iii) (bi, ci) = (bj , cj) for some i ̸= j, or109

(iv) (bi, ci) = (−bj ,−cj) for some i ̸= j.110

Sussmann (1992) also showed that in this family of architectures, reducibility corresponds to non-111

minimality: a parameter w ∈ Wh is reducible if and only if w is functionally equivalent to some112

w′ ∈ Wh′ with fewer hidden units h′ < h. We define the rank of w, denoted rank(w), as the113

minimal number of hidden units required to implement fw:114

rank(w) = min {h′ ∈ N | ∃w′ ∈ Wh′ ; fw = fw′ }.

Finally, we make use of the following notions of connectivity for a set of parameters. Given a set115

W ⊆ Wh, define a piecewise linear path inW as a continuous function ρ : [0, 1]→W comprising a116

finite number of linear segments. Two parameters w,w′ ∈ Wh are piecewise-linear path-connected117

in W , denoted w ↭ w′ (with W implicit), if there exists a piecewise linear path in W such that118

ρ(0) = w and ρ(1) = w′. Note that ↭ is an equivalence relation on W . A set W ⊆ Wh is itself119

piecewise-linear path-connected if and only if ↭ is full, that is, all pairs of parameters in W are120

piecewise linear path-connected in W .121

The length of a piecewise linear path is the number of maximal linear segments comprising the path.122

The distance between two piecewise linear path-connected parameters is the length of the shortest123

path connecting them. The diameter of a piecewise linear path-connected set is the largest distance124

between any two parameters in the set.125

3

4 Parameter Canonicalisation126

A parameter canonicalisation algorithm maps each parameter in a functional equivalence class to a127

canonical representative parameter within that class. A canonicalisation algorithm therefore serves128

as a computational test of functional equivalence.129

Prior work has described canonicalisation algorithms for certain irreducible parameters (Rüger and130

Ossen, 1997); but when applied to functionally equivalent reducible parameters, such algorithms131

may fail to produce the same output. We introduce a canonicalisation algorithm that properly canon-132

icalises both reducible and irreducible parameters, based on similar negation and sorting stages,133

combined with a novel reduction stage. This stage effectively removes or ‘zeroes out’ redundant134

units through various operations, isolating a functionally equivalent but irreducible subparameter.135

Algorithm 4.1 (Parameter canonicalisation). Given a parameter spaceWh, proceed:136

1: procedure CANONICALISE(w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh)137

2: ▷ Stage 1: Reduce the parameter, zeroing out redundant hidden units ◁138

3: Z ← {} ▷ keep track of ‘zeroed’ units139

4: while any of the following four conditions hold do140

5: if for some hidden unit i /∈ Z, ai = 0 then ▷ reducibility condition (i)141

6: bi, ci ← 0142

7: Z ← Z ∪ {i}143

8: else if for some hidden unit i /∈ Z, bi = 0 then ▷ —— (ii)144

9: d← d+ ai tanh(ci)145

10: ai, ci ← 0146

11: Z ← Z ∪ {i}147

12: else if for some hidden units i, j /∈ Z, i ̸= j, (bi, ci) = (bj , cj) then ▷ —— (iii)148

13: aj ← aj + ai149

14: ai, bi, ci ← 0150

15: Z ← Z ∪ {i}151

16: else if for some hidden units i, j /∈ Z, i ̸= j, (bi, ci) = (−bj ,−cj) then ▷ —— (iv)152

17: aj ← aj − ai153

18: ai, bi, ci ← 0154

19: Z ← Z ∪ {i}155

20: end if156

21: end while157

22: ▷ Stage 2: Negate the nonzero units to have positive incoming weights ◁158

23: for each hidden unit i /∈ Z do159

24: ai, bi, ci ← sign(bi) · (ai, bi, ci)160

25: end for161

26: ▷ Stage 3: Sort the units by their incoming weights and biases ◁162

27: π ← a permutation sorting i = 1, . . . , h by decreasing bi, breaking ties with decreasing ci163

28: w ← (aπ(1), bπ(1), cπ(1), . . . , aπ(h), bπ(h), cπ(h), d)164

29: ▷ Now, w has been mutated into the canonical equivalent parameter ◁165

30: return w166

31: end procedure167

The following theorem establishes the correctness of Algorithm 4.1.168

Theorem 4.2. Let w,w′ ∈ Wh. Let v = CANONICALISE(w) and v′ = CANONICALISE(w′). Then169

(i) v is functionally equivalent to w; and170

(ii) if w and w′ are functionally equivalent, then v = v′.171

Proof. For (i), observe that fw is maintained by each iteration of the loops in Stages 1 and 2, and172

by the permutation in Stage 3. For (ii), observe that Stage 1 isolates functionally equivalent and173

irreducible subparameters u ∈ Wr and u′ ∈ Wr′ of the input parameters w and w′ (excluding the174

zeroed units). We have fu = fw = fw′ = fu′ , so by the results of Sussmann (1992), r = r′ =175

rank(w), and u and u′ are related by unit negation and exchange transformations. This remains true176

in the presence of the zero units. Stages 2 and 3 are invariant to precisely such transformations by177

construction.178

4

5 Full Functional Equivalence Class179

Algorithm 4.1 produces a consistent output for all parameters within a given functional equivalence180

class. It serves as the basis for the following characterisation of the full functional equivalence class.181

The idea behind the characterisation is to enumerate the various ways for a parameter’s units to be re-182

duced, negated, and sorted throughout Algorithm 4.1. Each such canonicalisation trace corresponds183

to a simple set of parameters that takes exactly this path through the algorithm, as follows.184

Definition 5.1 (Canonicalisation trace). Let r, h ∈ N, r ≤ h. A canonicalisation trace of order r on185

h units is a tuple (σ, τ), where σ ∈ {−1,+1}h is a sign vector (interpreted as tracking unit negation186

throughout the algorithm); and τ : {1, . . . , h} → {0, 1, . . . , h} is a function with range including187

{1, . . . , r} (interpreted as tracking unit reduction and permutation throughout the algorithm).188

Theorem 5.2. Let w ∈ Wh and v = (α1, β1, γ1, . . . , αh, βh, γh, δ) = CANONICALISE(w). Let189

r = rank(w). Then the functional equivalence class F[w] ⊂ Wh is a union of subsets190

F[w] =
⋃

(σ,τ)∈Γ(h,r)

(
Xδ

τ−1[0] ∩
r⋂

i=1

Y αi,βi,γi

σ,τ−1[i] ∩
h⋂

i=r+1

Zσ,τ−1[i]

)
(1)

where Γ(h, r) denotes the set of all canonicalisation traces of order r on h units and191

Xδ
I =

{
(a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh

∣∣∣∣ ∀i ∈ I, bi = 0 and
d+

∑
i∈I ai tanh(ci) = δ

}
;

Y α,β,γ
σ,I =

{
(a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh

∣∣∣∣ ∀i ∈ I, σi · (bi, ci) = (β, γ)

and
∑

i∈I σiai = α

}
; and

Zσ,I =

{
(a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh

∣∣∣∣ ∀i, j ∈ I, σi · (bi, ci) = σj · (bj , cj)
and

∑
i∈I σiai = 0

}
.

Proof. Suppose w′ = (a′1, b
′
1, c

′
1, . . . , a

′
h, b

′
h, c

′
h, d) ∈ Wh is in the union in (1), and therefore in the192

intersection for some canonicalisation trace (σ, τ) ∈ Γ(h, r). Then fw′ = fv = fw, as follows:193

fw′(x) = d′ +
∑

i∈τ−1[0]

a′i tanh(b
′
ix+ c′i) +

r∑
j=1

∑
i∈τ−1[j]

a′i tanh(b
′
ix+ c′i) +

h∑
j=r+1

∑
i∈τ−1[j]

a′i tanh(b
′
ix+ c′i)

= δ +

r∑
j=1

αj tanh(βjxi + γj) since w′ ∈ Xδ
τ−1[0] ∩

r⋂
j=1

Y
αj ,βj ,γj

σ,τ−1[j] ∩
h⋂

j=r+1

Zσ,τ−1[j].

Now, suppose w′ ∈ F[w]. Construct a canonicalisation trace (σ, τ) ∈ Γ(h, r) following the execu-194

tion of Algorithm 4.1 on w′. Set σi = −1 where sign(b′i) = −1, otherwise +1. Construct τ from195

identity as follows. In each Stage 1 iteration, if the second branch is chosen, remap τ(i) to 0. If196

the third or fourth branch is chosen, for k ∈ τ−1[i] (including i itself), remap τ(k) to j. Finally,197

incorporate the Stage 3 permutation π: simultaneously for k /∈ τ−1[0], remap τ(k) to π(τ(k)).198

Note CANONICALISE(w′) = v by Theorem 4.2. Then w′ ∈ Xδ
τ−1[0] because τ−1[0] contains199

exactly those units incorporated into δ. Moreover, for j = 1, . . . , r, w′ ∈ Y
αj ,βj ,γj

σ,τ−1[j] , because200

τ−1[j] contains exactly those units incorporated into unit j of v, and σ their relative signs (βj > 0).201

Likewise, for j ∈ r + 1, . . . , h, w′ ∈ Zσ,τ−1[j] (which is vacuous if τ−1[j] is empty).202

Remark 5.3. If w ∈ Wh is irreducible, then rank(w) = h. For (σ, τ) ∈ Γ(h, h), τ is a permutation203

(since the range must include {1, . . . , h}). The set of traces therefore corresponds to the set of204

transformations generated by unit negations and transpositions, as in Sussmann (1992).205

Remark 5.4. When rank(w) = h− 1, there are, modulo sign vectors and permutations, essentially206

three canonicalisation traces, corresponding to the three ways of adding an additional unit to a207

(h − 1)-unit network discussed by Fukumizu and Amari (2000) and Fukumizu et al. (2019): to208

introduce a new constant unit or one with zero output, or to split an existing unit in two.209

Remark 5.5. Similarly, in Şimşek et al. (2021, Definitions 3.2 and 3.3), an (r + j)-tuple coupled210

with a permutation play the role of τ in characterising the expansion manifold, akin to the functional211

equivalence class but from the dual perspective of adding units to an irreducible parameter. Şimşek212

et al. (2021) study a setting without a unit negation symmetry, so there is no need for a sign vector.213

5

6 Path Connectivity214

In this section, we show that the reducible functional equivalence class is piecewise linear path-215

connected (Theorem 6.1), and, for parameters with rank at most half of the available number of216

hidden units, has diameter at most 7 linear segments (Theorem 6.3).217

Theorem 6.1. Let w ∈ Wh. If w is reducible, then F[w] is piecewise linear path-connected.218

Proof. It suffices to show that each reducible parameter w ∈ Wh is piecewise linear path-connected219

in F[w] to its canonical representative CANONICALISE(w). The path construction proceeds by220

tracing the parameter’s mutations in the course of execution of Algorithm 4.1. For each iteration of221

the loops in Stages 1 and 2, and for each transposition in the permutation in Stage 3, we construct a222

multi-segment sub-path. To describe these sub-paths, we denote the parameter at the beginning of223

each sub-path asw = (a1, b1, c1, . . . , ah, bh, ch, d), noting that this parameter is mutated throughout224

the algorithm, but is functionally equivalent to the original w at all of these intermediate points.225

1. In each iteration of the Stage 1 loop, the construction depends on the chosen branch, as226

follows. Some examples are illustrated in Figure 1.227

(i) A direct path interpolating bi and ci to zero.228

(ii) A two-segment path, interpolating ai to zero and d to d+ ai tanh(ci), then ci to zero.229

(iii) A two-segment path, interpolating ai to zero and aj to aj + ai, then bi and ci to zero.230

(iv) A two-segment path, interpolating ai to zero and aj to aj − ai, then bi and ci to zero.231

ai

ci

bi

F[w]

w

(i)

ai
ci

d

F[w]

w

(ii)

bj ,cj

ai
aj

bi,ci

F[w]

w

(iii)

−bj ,−cj

ai
aj

bi,ci

F[w]

w

(iv)

Figure 1: Example paths constructed for each of the Stage 1 branches. Other dimensions held fixed.

Since (the original) w is reducible, (the current) w must have gone through at least one iteration in232

Stage 1, and must have at least one blank unit k with ak, bk, ck = 0. From any such parameter w,233

there is a three-segment path in F[w] that implements a blank-exchange manoeuvre transferring the234

weights of another unit i to unit k, and leaving ai, bi, ci = 0: first interpolate bk to bi and ck to235

ci; then interpolate ak to ai and ai to zero; then interpolate bi and ci to zero. Likewise, there is a236

three-segment path that implements a negative blank-exchange manoeuvre, negating the weights as237

they are interpolated into the blank unit. With these manoeuvres noted, proceed:238

2. In each iteration of the Stage 2 loop for which sign(bi) = −1, let k be a blank unit, and239

construct a six-segment path. First, blank-exchange unit i into unit k. Then, negative240

blank-exchange unit k into unit i. The net effect is to negate unit i.241

3. In Stage 3, construct a path for each segment in a decomposition of the permutation π as a242

product of transpositions. Consider the transposition (i, j). If i or j is blank, simply blank-243

exchange them. If neither is blank, let k be a blank unit. Construct a nine-segment path,244

using three blank-exchange manoeuvres, using k as ‘temporary storage’ to implement the245

transposition: first blank-exchange units i and k, then blank-exchange units i (now blank)246

and j, then blank-exchange units j (now blank) and k (containing i’s original weights).247

The resulting parameter is the canonical representative and it can be verified that each segment in248

each sub-path remains in F[w] as required.249

Remark 6.2. Şimşek et al. (2021, Theorem B.4) construct similar paths to show the connectivity of250

their expansion manifold (cf. Remark 5.5). They first connect reduced-form parameters using blank-251

exchange manoeuvres and then show inductively that each unit addition preserves connectivity.252

6

Theorem 6.3. Let w ∈ Wh. If rank(w) ≤ h
2 , then F[w] has diameter at most 7.253

Proof. Let w ∈ Wh with rank(w) = r ≤ h
2 . Let w′ ∈ F[w]. We construct a piecewise linear254

path from w to w′ with 7 segments. By Theorem 6.1, a path exists via the canonical representative255

parameter v = CANONICALISE(w). However, this path has excessive length. We compress the256

length to 7 by exploiting the following opportunities to parallelise segments and ‘cut corners’. These257

optimisation steps are illustrated in Figure 2.258

(a) Let the Stage 1 result from Algorithm 4.1 for w be denoted u. Let the Stage 1 result for w′259

be denoted u′. Instead of following the unit negation and exchange transformations from u260

to v, and then back to u′, we transform u into u′ directly, not (necessarily) via v.261

(b) We connect w to u using two segments, implementing all iterations of Stage 1 in parallel.262

The first segment shifts the outgoing weights from the blank units to the non-blank units and263

the output unit bias. The second segment interpolates the blank units’ incoming weights264

and biases to zero. We apply the same optimisation to connect w and u′.265

(c) We connect u and u′ using two blank-exchange manoeuvres (6 segments), exploiting the266

majority of blank units as ‘temporary storage’. First, we blank-exchange the non-blank267

units of u into blank units of u′, resulting in a parameter ū′ sharing no non-blank units with268

u′. Then, we (negative) blank-exchange those weights into the appropriate non-blank units269

of u′, implementing the unit negation and exchange transformations relating u, ū′, and u′.270

(d) The manoeuvres in (b) and (c) begin and/or end by interpolating incoming weights and271

biases of blank units from and/or to zero, while the outgoing weights are zero. We272

combine adjacent beginning/end segments together, without (necessarily) passing through273

zero. This results in the required seven-segment path, tracing the sequence of parameters274

w,w1, w2, . . . , w6, w′ ∈Wh.275

(a)w

u

v

u′

w′

… …

…

…

…

…

… …

path before optimisation
path after optimisation
path unchanged by optimisation

(b) & (c)w

u
ū′

u′

w′

… …
… …

(d)w

u
ū′

u′

w′

w1

w2

w3 w4

w5

w6

Figure 2: A conceptual illustration of the four path optimisations, producing a seven-segment piece-
wise linear path of equivalent parameters in a high-dimensional parameter space. (a) Follow unit
negation and exchange transformations directly between reduced parameters, not via the canonical
parameter. (b) & (c) Parallelise the reduction steps, and use the majority of blank units to parallelise
the transformations. (d) Combine first/last segments of reduction and blank-exchange manoeuvres.

To describe the constructed path in detail, we introduce the following notation for the components276

of the key parameters w,w′, u, u′, w1, w2, . . . , w6 ∈ Wh:277

w = (aw1 , b
w
1 , c

w
1 , . . . , a

w
h , b

w
h , c

w
h , d

w) u = (au1 , b
u
1 , c

u
1 , . . . , a

u
h, b

u
h, c

u
h, d

u)

w′ = (aw
′

1 , bw
′

1 , cw
′

1 , . . . , aw
′

h , bw
′

h , cw
′

h , dw
′
) u′ = (au

′

1 , b
u′

1 , c
u′

1 , . . . , a
u′

h , b
u′

h , c
u′

h , d
u′
)

wk = (ak1 , b
k
1 , c

k
1 , . . . , a

k
h, b

k
h, c

k
h, d

k) (k = 1, . . . , 6).

Of the h units in u, exactly h − r are blank—those in the set Z from CANONICALISE(w). Denote278

the complement set of r non-blank units U = {1, . . . , h} \ Z. Likewise, define Z ′ and U ′ from u′.279

7

With notation clarified, we can now describe the key points w1, . . . , w6 in detail, while showing that280

the entire path is contained within the functional equivalence class F[w].281

1. The first segment interpolates each outgoing weight from awi to aui , and interpolates the282

output bias from dw to du. That is, w1 = (au1 , b
w
1 , c

w
1 , . . . , a

u
h, b

w
h , c

w
h , d

u).283

To see that this segment is within F[w], observe that since the incoming weights and biases284

are unchanged between the two parameters, ftw1+(1−t)w(x) = tfw1(x)+(1− t)fw(x) for285

x ∈ R and t ∈ [0, 1]. To show that fw = fw1 , we construct a function τ : {1, . . . , h} →286

{0, 1, . . . , h} from identity following each iteration of Stage 1 of CANONICALISE(w):287

when the second branch is chosen, remap τ(i) to 0; and when the third or fourth branch is288

chosen, for k ∈ τ−1[i] (including i itself), remap τ(k) to j. Moreover, we define a sign289

vector σ ∈ {−1,+1}h where σi = −1 if sign(bwi) = −1, otherwise σi = +1. Then:290

fw(x) = dw +
∑k

j=0

∑
i∈τ−1[j] a

w
i tanh(bwi x+ cwi)

= dw +
∑

i∈τ−1[0] a
w
i tanh(cwi) +

∑h
j=1

(∑
i∈τ−1[j] σjσia

w
i

)
tanh(bwj x+ cwj)

= du +
∑h

j=1 a
u
j tanh(b

w
j x+ cwj) = fw1(x).

2. The second segment completes the reduction and begins the first blank-exchange ma-291

noeuvre to store the nonzero units in Z ′. For i ∈ U ∩ U ′, pick distinct ‘storage’ units292

j ∈ Z ∩Z ′. There are enough, as r ≤ h
2 by assumption thus |U ∩ U ′| = |U | − |Z ∩ U ′| =293

r − |Z ∩ U ′| ≤ (h − r) − |Z ∩ U ′| = |Z ′| − |Z ∩ U ′| = |Z ′ ∩ Z|. Interpolate unit j’s294

incoming weight from bwj to bwi and interpolate its bias from cwj to cwi . Meanwhile, for all295

other j ∈ Z, interpolate the incoming weight and bias to zero. This segment is within F[w]296

as for j ∈ Z, a1j = auj = 0 by definition of Z.297

3. The third segment shifts the outgoing weights from the units in U∩U ′ to the units in Z∩Z ′298

prepared in step (2). For i ∈ U ∩U ′, pick the same storage unit j as in step (2). Interpolate299

unit j’s outgoing weight from auj = 0 to aui and interpolate unit i’s outgoing weight from300

aui to zero. This segment is within F[w] as b2i = b2j and c2i = c2j by step (2).301

4. The fourth segment completes the first blank-exchange manoeuvre and begins the second,302

to form the units of u′. For i ∈ U ′, interpolate unit i’s incoming weight from b3i to bu
′

i and303

interpolate its bias from c3i to cu
′

i . This segment is within F[w] because for i ∈ U ′ ∩ Z,304

a3i = aui = 0 by definition of Z, and for i ∈ U ′ ∩ U , a3i = 0 by step (3).305

5. The fifth segment shifts the outgoing weights from the selected units in Z ′ to the units in306

U ′ prepared in step (4). We simply interpolate each unit i’s outgoing weight to au
′

i .307

To see that the segment is within F[w], note that u and u′ are related by some unit negation308

and exchange transformations. Therefore, there is a correspondence between their sets of309

nonzero units, such that corresponding units have the same (or negated) incoming weights310

and biases. Due to steps (2)–(4) there are r ‘storage’ units in w4 with the weights of the311

units of u, and the correspondence extends to these storage units. Since the storage units312

are disjoint with U ′, this fifth segment has the effect of interpolating the outgoing weight313

of each of the storage units j ∈ Z ′ in w4 from aui to zero (where i is as in step (3)), while314

interpolating the outgoing weight of its corresponding unit k ∈ U ′ from zero to±aui = au
′

k315

(where the sign depends on the unit negation transformations relating u and u′).316

6. The sixth segment completes the second blank-exchange manoeuvre and begins to reverse317

the reduction. For i ∈ Z ′, interpolate unit i’s incoming weight from b5i to bw
′

i , and interpo-318

late its bias from c5i to cw
′

i . This segment is within F[w] as for i ∈ Z ′, a5i = au
′

i = 0 by319

definition of Z ′.320

7. The seventh segment, of course, interpolates from w6 to w′. To see that this segment is321

within F[w], note that by steps (5) and (6), w6 = (au
′

1 , b
w′

1 , cw
′

1 , . . . , au
′

h , b
w′

h , cw
′

h , du
′
)322

(noting du = du
′

since the output unit’s bias is preserved by unit transformations). So the323

situation is the reverse of step (1), and a similar proof applies.324

8

7 Discussion325

In this paper, we have investigated the functional equivalence class for reducible neural network326

parameters, and its connectivity properties. These reducible functional equivalence classes are a327

complex union of manifolds, displaying the following rich qualitative structure.328

• There is a central discrete array of reduced-form parameters, with a maximal number of329

blank units spread throughout an irreducible subnetwork. These reduced-form parameters330

are related by unit negation and exchange transformations, like for irreducible parameters.331

• Unlike in the irreducible case, these reduced-form parameters are connected by a network332

of piecewise linear paths. Namely, these are (negative) blank-exchange manoeuvres, and,333

when there are multiple blank units, simultaneous parallel blank-exchange manoeuvres.334

• Various manifolds branch away from this central network, tracing in reverse the various335

reduction operations (optionally in parallel). Dually, these manifolds trace methods for336

adding units (cf., Fukumizu and Amari, 2000; Fukumizu et al., 2019; Şimşek et al., 2021).337

Theorem 6.3 establishes that with a majority of blank units, the diameter of this parameter network338

becomes a small constant number of linear segments. With fewer blank units it will sometimes339

require more blank-exchange manoeuvres to traverse the central network. Future work could inves-340

tigate the trade-offs between shortest path length and rank for different unit permutations.341

Towards modern architectures. We have studied single-hidden-layer hyperbolic tangent net-342

works, but structural redundancies arising from zero, constant, or proportional units (reducibility343

conditions (i)–(iii)) are a generic feature of feed-forward network components. Unit negation sym-344

metries are characteristic of odd nonlinearities; other nonlinearities will exhibit similar redundancies345

due to their own affine symmetries. In more complex architectures there will be additional sources346

of redundancy, such as interactions between layers or specialised computational structures.347

We call for future work to seek out, catalogue, and thoroughly investigate such sources of redun-348

dancy, rather than assuming their irrelevance as part of measure zero subset of the parameter space.349

Our results serve as a starting point for future work in this direction. The results of Vlačić and350

Bölcskei (2021), significantly generalising Sussmann (1992), would be a useful complement.351

Functional equivalence and deep learning. Functionally equivalent parameters have equal loss.352

Continuous directions and piecewise linear paths within reducible functional equivalence classes353

(Theorems 5.2, 6.1, and 6.3) therefore imply flat directions and equal-loss paths in the loss landscape.354

More broadly, the set of low- or zero-loss parameters is a union of functional equivalence classes,355

including, possibly (or necessarily, given sufficient overparameterisation), reducible ones.356

Understanding reducible functional equivalence classes may be key to understanding these topics.357

Of special interest is the connection to theoretical work involving unit pruning (Kuditipudi et al.,358

2019) and permutation symmetries (Brea et al., 2019). Of course, having the same loss does not359

imply functional equivalence—indeed, Garipov et al. (2018) observe functional non-equivalence in360

low-loss paths. The exact relevance of reducible parameters to these topics remains to be clarified.361

If the loss landscape is smooth, the comments above hold approximately for irreducible parameters362

that are merely near some reducible parameter. Future work should develop techniques to mea-363

sure proximity to low-rank parameters, and empirically investigate the prevalence of approximate364

reducibility among parameters encountered during learning.365

8 Conclusion366

While reducible parameters comprise a measure zero subset of the parameter space, their functional367

equivalence classes may still be key to understanding the structure of the parameter space and, in368

turn, the loss landscape on which deep learning takes place. We have taken the first step towards369

understanding functional equivalence beyond irreducible parameters, by investigating the setting370

of single-hidden-layer hyperbolic tangent networks. Due to structural redundancy, reducible func-371

tional equivalence classes are much richer than their irreducible counterparts. By accounting for372

various kinds of structural redundancy, we offer a characterisation of reducible functional equiva-373

lence classes and an investigation of their piecewise linear connectivity properties.374

9

References375

Francesca Albertini and Eduardo D. Sontag. For neural networks, function determines form. Tech-376

nical Report SYCON-92-03, Rutgers Center for Systems and Control, 1992. Expanded version377

of Albertini and Sontag (1993a). Cited on page 2.378

Francesca Albertini and Eduardo D. Sontag. For neural networks, function determines form. Neural379

Networks, 6(7):975–990, 1993a. Access via Crossref. Cited on pages 2 and 10.380

Francesca Albertini and Eduardo D. Sontag. Identifiability of discrete-time neural networks. In381

Proceedings of the European Control Conference 1993, volume 2, pages 460–465. European382

Control Association, 1993b. Access via Francesca Albertini. Cited on page 2.383

Francesca Albertini and Eduardo D. Sontag. Uniqueness of weights for recurrent nets. In Systems384

and Networks: Mathematical Theory and Applications: Proceedings of the International Sympo-385

sium MTNS 1993, volume II, pages 599–602. Akademie Verlag, 1993c. Access via Francesca386

Albertini or via Eduardo D. Sontag. See also extended version, access via Eduardo D. Sontag.387

Cited on page 2.388

Francesca Albertini, Eduardo D. Sontag, and Vincent Maillot. Uniqueness of weights for neural389

networks. In Artificial Neural Networks for Speech and Vision, pages 113–125. Chapman & Hall,390

London, 1993. Proceedings of a workshop held at Rutgers University in 1992. Access via Eduardo391

D. Sontag. Cited on pages 1 and 2.392

Joachim Bona-Pellissier, François Bachoc, and François Malgouyres. Parameter identifiability of a393

deep feedforward ReLU neural network. 2021. Preprint arXiv:2112.12982 [math.ST]. Cited on394

page 2.395

Johanni Brea, Berfin Şimşek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep396

networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-397

scape. 2019. Preprint arXiv:1907.02911 [cs.LG]. Cited on page 9.398

An Mei Chen and Robert Hecht-Nielsen. On the geometry of feedforward neural network weight399

spaces. In Second International Conference on Artificial Neural Networks, pages 1–4. IET, 1991.400

Access via IEEE Xplore. Cited on page 2.401

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural402

network error surfaces. Neural Computation, 5(6):910–927, 1993. Access via Crossref. Cited on403

page 2.404

Charles Fefferman. Reconstructing a neural net from its output. Revista Matemática Iberoameri-405

cana, 10(3):507–555, 1994. Access via Crossref. Cited on page 2.406

Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. In Advances407

in Neural Information Processing Systems 6, pages 335–342. Morgan Kaufmann, 1993. Access408

via NeurIPS. Cited on page 2.409

Kenji Fukumizu. A regularity condition of the information matrix of a multilayer perceptron net-410

work. Neural Networks, 9(5):871–879, 1996. Access via Crossref. Cited on pages 1 and 12.411

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of412

multilayer perceptrons. Neural Networks, 13(3):317–327, 2000. Access via Crossref. Cited on413

pages 2, 5, and 9.414

Kenji Fukumizu, Shoichiro Yamaguchi, Yoh-ichi Mototake, and Mirai Tanaka. Semi-flat minima415

and saddle points by embedding neural networks to overparameterization. In Advances in Neural416

Information Processing Systems 32, pages 13868–13876. Curran Associates, 2019. Access via417

NeurIPS. Cited on pages 2, 5, and 9.418

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and Andrew G. Wilson. Loss419

surfaces, mode connectivity, and fast ensembling of DNNs. In Advances in Neural Information420

Processing Systems 31, pages 8789–8798. Curran Associates, 2018. Access via NeurIPS. Cited421

on page 9.422

10

https://doi.org/10.1016/S0893-6080(09)80007-5
https://www.math.unipd.it/~albertin/8.pdf
https://www.math.unipd.it/~albertin/10.pdf
https://www.math.unipd.it/~albertin/10.pdf
https://www.math.unipd.it/~albertin/10.pdf
http://www.sontaglab.org/FTPDIR/93mtns-nn.pdf
http://sontaglab.org/FTPDIR/93mtns-nn-extended.pdf
http://www.sontaglab.org/FTPDIR/92caip.pdf
http://www.sontaglab.org/FTPDIR/92caip.pdf
http://www.sontaglab.org/FTPDIR/92caip.pdf
https://arxiv.org/abs/2112.12982
https://arxiv.org/abs/1907.02911
https://ieeexplore.ieee.org/abstract/document/140273
https://doi.org/10.1162/neco.1993.5.6.910
https://doi.org/10.4171/RMI/160
https://proceedings.neurips.cc/paper/1993/hash/e49b8b4053df9505e1f48c3a701c0682-Abstract.html
https://doi.org/10.1016/0893-6080(95)00119-0
https://doi.org/10.1016/S0893-6080(00)00009-5
https://proceedings.neurips.cc/paper/2019/hash/a4ee59dd868ba016ed2de90d330acb6a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html

Egbert Harzheim. Ordered Sets. Springer, 2005. Access via Crossref. Cited on page 12.423

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Ad-424

vanced Neural Computers, pages 129–135. North-Holland, Amsterdam, 1990. Access via Cross-425

ref. Cited on pages 1 and 2.426

Věra Kůrková and Paul C. Kainen. Functionally equivalent feedforward neural networks. Neural427

Computation, 6(3):543–558, 1994. Access via Crossref. Cited on pages 1 and 2.428

Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, and Sanjeev429

Arora. Explaining landscape connectivity of low-cost solutions for multilayer nets. In Advances in430

Neural Information Processing Systems 32, pages 14601–14610. Curran Associates, 2019. Access431

via NeurIPS. Cited on page 9.432

Mary Phuong and Christoph H. Lampert. Functional vs. parametric equivalence of ReLU networks.433

In 8th International Conference on Learning Representations. OpenReview, 2020. Access via434

OpenReview. Cited on pages 1 and 2.435

Stefan M. Rüger and Arnfried Ossen. The metric structure of weight space. Neural Processing436

Letters, 5(2):1–9, 1997. Access via Crossref. Cited on pages 2 and 4.437

Berfin Şimşek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerst-438

ner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks:439

Symmetries and invariances. In Proceedings of the 38th International Conference on Machine440

Learning, pages 9722–9732. PMLR, 2021. Access via PMLR. Cited on pages 2, 5, 6, and 9.441

Pierre Stock and Rémi Gribonval. An embedding of ReLU networks and an analysis of their identi-442

fiability. Constructive Approximation, 2022. Access via Crossref. Cited on page 2.443

Héctor J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a given input-444

output map. Neural Networks, 5(4):589–593, 1992. Access via Crossref. Cited on pages 1, 2, 3,445

4, 5, 9, 12, 13, 14, and 15.446

Verner Vlačić and Helmut Bölcskei. Affine symmetries and neural network identifiability. Advances447

in Mathematics, 376:107485, 2021. Access via Crossref. Cited on pages 1, 2, and 9.448

Verner Vlačić and Helmut Bölcskei. Neural network identifiability for a family of sigmoidal non-449

linearities. Constructive Approximation, 55(1):173–224, 2022. Access via Crossref. Cited on450

page 2.451

11

https://doi.org/10.1007/b104891
https://doi.org/10.1016/B978-0-444-88400-8.50019-4
https://doi.org/10.1016/B978-0-444-88400-8.50019-4
https://doi.org/10.1016/B978-0-444-88400-8.50019-4
https://doi.org/10.1162/neco.1994.6.3.543
https://proceedings.neurips.cc/paper/2019/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://openreview.net/forum?id=Bylx-TNKvH
https://doi.org/10.1023/A:1009657318698
https://proceedings.mlr.press/v139/simsek21a.html
https://doi.org/10.1007/s00365-022-09578-1
https://doi.org/10.1016/S0893-6080(05)80037-1
https://doi.org/10.1016/j.aim.2020.107485
https://doi.org/10.1007/s00365-021-09544-3

A Generalising to multi-dimensional inputs and outputs452

In this appendix, we consider a slightly more general family of architectures than that introduced453

in Section 3. Namely, we consider a family of fully-connected, feed-forward neural network archi-454

tectures with n ∈ N+ input units, m ∈ N+ biased linear output units, and a single hidden layer of455

h ∈ N biased hidden units with the hyperbolic tangent nonlinearity. With minor modifications, de-456

scribed in the remainder of this appendix, all definitions, algorithms, theorems, and proofs directly457

generalise from the case n = m = 1 to arbitrary n and m.458

Multi-dimensional architecture. Let n ∈ N+, m ∈ N+, and h ∈ N. Define the generalised pa-459

rameter spaceWn,m
h = R(n+m+1)h+m. The weights and biases of the network’s units are encoded460

in the parameter vector in the format (a1, b1, c1, . . . , ah, bh, ch, d) = w ∈ Wn,m
h where for each461

hidden unit i = 1, . . . , h there is an outgoing weight vector ai ∈ Rm, an incoming weight vector462

bi ∈ Rn, and a bias ci ∈ R; and d ∈ Rm is an output unit bias vector containing one bias value for463

each output unit. This time, w indexes a multi-dimensional mathematical function fw : Rn → Rm464

defined as follows:465

fw(x) = d+

h∑
i=1

ai tanh(bi · x+ ci). (2)

Note that we use the same tuple notation and ordering (a1, b1, c1, . . . , ah, bh, ch, d) but now the ai,466

the bi, and d all denote multi-component vectors. Accordingly, in Equation (2), bi and x are now467

multiplied using the inner (dot) product, rather than scalar multiplication, since they are both vectors468

in Rn. Moreover, ai ∈ Rm as a vector is to be multiplied by the scalar tanh(bi ·x+ ci). That is, the469

sum is over vectors of contributions to output units from each hidden unit.470

To generalise the results of the main paper to this setting the first change necessary is to replace all471

mentions of scalar weights with these vectors of weights, and other similar changes such as reading472

the literal zero as vector zero where appropriate.473

Signing and sorting incoming weight vectors. The lexicographic order on Rn, denoted ⪯, is a474

relation such that for u, v ∈ Rn, u ⪯ v if and only if u = v or, in the first index i = 1, . . . , n where475

u and v differ, ui < vi. From this definition we follow the usual conventions in defining ≺, ≻, and476

⪰. Finally, define the lexicographic sign of v ∈ Rn, denoted signlex(v), as follows:477

signlex(v) =


+1 (v ≻ 0),

0 (v = 0),

−1 (v ≺ 0).

The parameter canonicalisation algorithm and some of the other theorems and proofs make repeated478

use of the signs of incoming weight vectors. The lexicographic sign satisfies the requisite properties479

of the scalar sign function in these uses and so the second change necessary to generalising the480

results is to replace uses of sign(·) with uses of signlex(·).481

This lexicographic order relation is of course also a total order (see, e.g., Harzheim, 2005, Theorem482

4.1.11). Therefore, it allows one to sort a list of vectors. Sorting units by decreasing incoming483

weights is a key step in Stage 3 of Algorithm 4.1, and so the third change necessary is to use484

decreasing lexicographic order (⪰) in this stage.485

Generalising Sussmann’s equivalence theorem. The proofs in the main paper rely on the re-486

sults of Sussmann (1992) on the equivalence between reducibility and non-minimality, and the fact487

that irreducible functionally equivalent parameters are related by unit negation and exchange trans-488

formations. Sussmann (1992) studied a setting with multiple input units but only a single output489

unit. Lemmas A.1 and A.2 generalise these results to the multi-output setting.1 The final necessary490

change to generalise the results in the main paper is to replace all references to Sussmann’s results491

with references to Lemma A.1 or Lemma A.2.492

1The proofs reduce the multi-output case to the single-output case, so they still rely on the results of Suss-
mann (1992). A generalisation similar to Lemma A.1 is given by Fukumizu (1996).

12

The definitions of unit negation and exchange transformations, reducibility, and non-minimality all493

generalise to arbitrary n and m with the above-mentioned changes. These definitions are repeated494

here for convenience.495

A unit negation transformation is a function σi :Wn,m
h →Wn.m

h for i = 1, . . . , h, where496

σi(a1, b1, c1, . . . , ah, bh, ch, d) = (a1, b1, c1, . . . ,−ai,−bi,−ci, . . . , ah, bh, ch, d).

A unit exchange transformation is a function τi,j :Wn,m
h →Wn,m

h for i, j = 1, . . . , h, where497

τi,j(a1, b1, c1, . . . , ah, bh, ch, d) = (a1, b1, c1, . . . , ci−1, aj , bj , cj , ai+1,

. . . , cj−1, ai, bi, ci, aj+1, . . . , ah, bh, ch, d).

A parameter w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wn,m
h is reducible if and only if it satisfies any of498

the following conditions (otherwise, w is irreducible):499

(i) ai = 0 for some i,500

(ii) bi = 0 for some i,501

(iii) (bi, ci) = (bj , cj) for some i ̸= j, or502

(iv) (bi, ci) = (−bj ,−cj) for some i ̸= j.503

A parameter w ∈ Wn,m
h is non-minimal if and only if w is functionally equivalent to some w′ ∈504

Wn,m
h′ with fewer hidden units h′ < h.505

Lemma A.1. For w ∈ Wn,m
h , w is reducible if and only if w is non-minimal.506

Proof. (⇒): A smaller functionally equivalent parameter can be constructed as follows.507

(i) If ai = 0 for some i, then hidden unit i fails to contribute to the function. Construct a508

functionally equivalent parameter w′ ∈ Wn,m
h−1 with hidden unit i omitted:509

w′ = (a1, b1, c1, . . . , ai−1, bi−1, ci−1, ai+1, bi+1, ci+1, . . . , ah, bh, ch, d).

(ii) If bi = 0 for some i, then hidden unit i contributes only a constant to the function. Construct510

a functionally equivalent parameter w′ ∈ Wn,m
h−1 with hidden unit i omitted and the output511

unit bias vector changed to compensate:512

w′ = (a1, b1, c1, . . . , ai−1, bi−1, ci−1, ai+1, bi+1, ci+1, . . . , ah, bh, ch, d+ ai tanh(ci)).

(iii) If (bi, ci) = (bj , cj) for some i ̸= j, then hidden units i and j contribute proportionately.513

They can be combined into a single unit (say, j) with the same incoming weights and bias,514

and a combined outgoing weight vector. Construct a functionally equivalent parameter515

w′ ∈ Wn,m
h−1 accordingly:516

w′ = (a1, b1, c1, . . . , ci−1, ai+1, . . . , cj−1, aj + ai, bj , cj , aj+1, . . . , ah, bh, ch, d).

(iv) If (bi, ci) = −(bj , cj) for some i ̸= j, then hidden units i and j contribute in negative517

proportion. Due to the odd property of tanh they can be combined into a single unit518

(say, j) with incoming weight and bias vectors (bj , cj) and a combined outgoing weight519

vector. Construct a new parameter w′ ∈ Wn,m
h−1 accordingly:520

w′ = (a1, b1, c1, . . . , ci−1, ai+1, . . . , cj−1, aj − ai, bj , cj , aj+1, . . . , ah, bh, ch, d).

In all cases, the new parameter w′ ∈ Wn,m
h−1 has fw′ = fw, so w is non-minimal.521

(⇐): We reduce to the single-output case and apply the result of Sussmann (1992) to show that w522

satisfies at least one of the reducibility conditions.523

To reduce to the single-output case, we introduce some notation. From the function fw : Rn → Rm524

define a series of component functions f (1)w , f
(2)
w , . . . , f

(m)
w : Rn → R such that for x ∈ Rn,525

fw(x) =
(
f (1)w (x), f (2)w (x), . . . , f (m)

w (x)
)
.

13

f
(1)
w

1

2

m

...
...

...

f
(2)
w

1

2

m

...
...

... · · ·

f
(m)
w

1

2

m

...
...

...

Figure 3: The connection graphs of the component functions of fw. Included units and weights are
solid. The hidden units of each network share the same incoming weights (and biases, not shown).

Each of these component functions is a simple neural network function in an architecture with526

n input units and 1 output unit, corresponding to a subgraph of the connection graph of the original527

neural network, as illustrated in Figure 3.528

Denote the corresponding (overlapping) subvectors of w ∈ Wn,m
h as w(1), . . . , w(m) ∈ Wn,1

h . That529

is, for µ = 1, . . . ,m,530

w(µ) = (a1,µ, b1, c1, . . . , ah,µ, bh, ch, dµ) ∈ Wn,1
h .

Now, let w′ = (a′1, b
′
1, c

′
1, . . . , a

′
h, b

′
h, c

′
h, d

′) ∈ Wh′ such that fw′ = fw where h′ is the smallest531

number of hidden units required to implement fw (h′ < h by assumption of non-minimality). Apply532

the same decomposition to fw′ to define f (1)w′ , . . . , f
(m)
w′ , and to define w′

(1), . . . , w
′
(m) ∈ W

n,1
h′ .533

Apply the results of Sussmann (1992) as follows. Since fw = fw′ , f (µ)w = f
(µ)
w′ for µ = 1, . . . ,m. It534

follows that for each w(µ), w′
(µ) is a functionally equivalent parameter using fewer units. Therefore,535

the reducibility conditions (in the special case of m = 1) must hold for each w(µ) (Sussmann, 1992).536

Since conditions (ii–iv) only depend on incoming weights and biases, if any of these conditions hold537

for any w(µ), then they must also hold for w itself (which shares the same incoming weights and538

biases), and the proof is complete. It remains only to consider the case in which conditions (ii–iv)539

fail to hold for any w(µ), and to show that condition (i) holds for w itself in this case.540

We must introduce yet further notation. For i = 1, . . . , h denote by φi : Rn → R the function541

φi(x) = tanh(bix + ci). Similarly for j = 1, . . . , h′ denote by ψj : Rn → R the function542

ψj(x) = tanh(b′jx + c′j). Then, since we have ruled out reducibility conditions (ii–iv) for w, no543

φi is constant (ii) and no two are proportional (iii, iv). The same holds for the ψj—conditions (i–544

iv) do not hold for w′
(µ), since h′ was assumed to be minimal. Yet, for µ = 1, . . . ,m, the linear545

combination of functions546

dµ +

h∑
i=1

ai,µφi − d′µ −
h′∑
j=1

a′j,µψj = f (µ)w − f (µ)w′ = 0

yields the zero function. This linear combination remains when excluding those terms with ai,µ = 0547

or a′j,µ = 0. Applying the same reasoning as that in Sussmann (1992), due to the independence548

property of the hyperbolic tangent function (Sussmann, 1992, Lemma 3.1) the remaining terms549

must be in bijection, such that550

φi = ±ψj (3)
for some j with a′j,µ ̸= 0 for each i with ai,µ ̸= 0.551

To complete the proof, note that these relationships (3) between the units of w and w′ are indepen-552

dent of µ. However, the relationships are “exclusive” in the sense that no two φi can be proportional553

to the same ψj , else they would also be proportional to each other (ruled out above). Since there are554

only h′ units ψ1, . . . , ψh′ , it follows that there must be one hidden unit i (actually at least h − h′555

many units) for which ai,µ = 0 for all µ = 1, . . . ,m (allowing φi to avoid any such relationship).556

That is, ai = (ai,1, . . . , ai,m) = 0, satisfying condition (i) for w as required.557

14

Lemma A.2. Let w ∈ Wn,m
h be irreducible, and let w′ ∈ Wn,m

h . If w and w′ are functionally558

equivalent then there exists a compositional chain of unit negation and exchange transformations,559

collectively a transformation T :Wn,m
h →Wn,m

h , such that w′ = T (w).560

Proof. Once again, we reduce to the case m = 1 and appeal to Sussmann (1992).561

Supposew′ ∈ F[w]. Introduce the same decomposition of the two neural networks as in the proof of562

Lemma A.1, namely, the component functions f (1)w , . . . , f
(m)
w , f

(1)
w′ , . . . , f

(m)
w′ implemented by the563

parameter subvectors w(1), . . . , w(m), w
′
(1), . . . , w

′
(m) ∈ W

n,1
h (cf. Figure 3).564

For µ = 1, . . . ,m, since fw = fw′ , we have that f (µ)w = f
(µ)
w′ . Now, w(µ) and w′

(µ) are not565

necessarily irreducible, but if they are reducible then it is only by condition (i), since w(µ) and w′
(µ)566

have the incoming weights and biases ofw andw′ respectively (w is irreducible by assumption; w′ is567

irreducible because, with the same number of units as w, it is necessarily minimal, and irreducibility568

follows by Lemma A.1). Remove such units with zero outgoing weight from w(µ) and w′
(µ) to569

produce new, functionally equivalent irreducible parameters u(µ), u′(µ) ∈ W
n,1
rank(w(µ))

. Now by570

Sussmann (1992, Theorem 2.1) there exists a chain of unit negation and exchange transformations571

Tµ such that u(µ) = Tµ(u
′
(µ)).572

For each µ, Tµ implies a relationship between the units of w(µ) and w′
(µ) with nonzero outgoing573

weights, including possible negations and permutations of these units. This same relationship must574

hold between those units of w and w′ since they share incoming weights and biases with w(µ)575

and w′
(µ), and (since w is irreducible, conditions (ii–iv)) these incoming weights are nonzero and576

the incoming weight and bias vectors are absolutely distinct between units of the same parameter.577

Moreover, all units are involved in some such relationship because no unit of w or w′ can have zero578

outgoing weight vector by reducibility condition (i).579

So, one can construct from these implied relationships a composition of unit negation and exchange580

transformations relating w and w′ as required.581

15

	Introduction
	Related Work
	Preliminaries
	Parameter Canonicalisation
	Full Functional Equivalence Class
	Path Connectivity
	Discussion
	Conclusion
	Generalising to multi-dimensional inputs and outputs

