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ImageNet ResNet50
(Vanilla-Trained)

ViT
(Vanilla-Trained)

CLIP
(Vanilla-Trained)

Canon. Acc Rand Rot.
(C8) Acc Rand Rot.

(C8) Acc Rand Rot.
(C8)

None 75.2 50.1 80.4 59.6 77.1 67.0
PRLC* 63.1 59.2 63.7 60.5 72.1 69.6

Ours 66.3 (+3.2) 63.5 (+4.3) 73.6 (+9.9) 71.9 (+11.4) 75.4 (+3.3) 74.0 (+4.4)
Oracle 75.2 71.5 80.4 78.1 77.1 75.3

PRLC R50
Aligner

PRLC ViT
Aligner Ours

Acc (↑) Acc @ 45◦ (↑) Err (↓) Acc Acc @ 45◦ Err Acc Acc @ 45◦ Err
37.9 55.4 63.1 31.8 56.4 65.6 37.0 (-0.9) 78.9 (+22.5) 45.3 (-17.8)

Table 3: FMC generalizes better to ImageNet and outperforms PRLC’s canonicalizers. We find
that Foundation Model Canonicalization outperforms PRLC, without any training, on both upright
inputs and randomly rotated inputs. We compare against just upright images in the Acc columns.
Oracle refers to a system where the exact angle to upright is known, and thus only measures the
change in accuracy due to loss of information due to rotating, cropping, and re-rotating. Rand
Rot. (C8) applies a random C8 transform to the input before passing it to the aligner / model.
Best non-oracle rows on rotated performance are bolded. For PRLC, the canonicalizers were the
best performing ones from other datasets (STL10 for both ResNet50 and ViT). Thus, they were not
trained specifically for ImageNet.

6 ADDITIONAL RESULTS AND FIGURES
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Figure 7: FMC generalizes better across datasets when mixing up aligners and downstream
models. PRLC performance on pose estimation drops significantly when using a canonicalizer
trained from a different dataset compared to FMC, which applies one technique across all settings.
This result highlights the generalizability across datasets of an unsupervised approach.

A EXPERIMENTAL SETUP

A.1 EXPERIMENTAL SETUP - 3D

For 3D, we first look at the CO3D (Reizenstein et al., 2021) dataset to measure how our FMC’s
energy function correlates to 3D viewpoint quality. We compare the ranking of viewpoint frames
by FMC energy compared to that of the probability of the ground truth label. We then look at
Objaverse-LVIS (Deitke et al., 2022) to measure the effect of combining FMC with Zero123 (Liu
et al., 2023) as the transformation generation function to simulate new 3D viewpoints from a single
image. For Zero123 experiments, we rank the viewpoints by the probability of the ground truth label
and then measure the difference in accuracy between the original Objaverse renders and that of the
energy minimizing Zero123 render for the respective ranking bins.
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Figure 8: Accuracy vs. C8 angle on CLIP. Like on ResNet50, we find that using FMC leads to
invariant predictions over angles, outperforming PRLC. The contrast is particularly clear for CLIP
on CIFAR10 and CIFAR100, where our accuracy over angle is consistently above PRLC.
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(b) CIFAR100.

ViT R50 CLIP
Downstream Model

0.95

0.96

0.97

0.98

0.99

1.00

R
el

a
ti
v
e 

A
cc

u
ra

cy

Model Transfer for STL10

ViT Aligner

R50 Aligner

Our Aligner

(c) STL10.

Figure 9: Transferring canonicalizers across models. We measure the effects of transferring canoni-
calizers across different downstream models by plotting the relative accuracy over the naive model.
We find that FMC outperforms the PRLC aligners, particularly when transferring to CLIP on CI-
FAR10 and CIFAR100. These results show the ability of FMC to generalize across downstream
models. All ViT and R50 models and aligners are PRLC-trained versions.

The model we use for both experiments is the fine-tuned version of CLIP from OVSEG (Liang
et al., 2023) which is designed to work on background removed images, as Zero123 operates on
such images. Please see the Appendix for more details on experimental setup.

A.2 EXPERIMENTAL SETUP – COLOR

We define the color shift transformation using the popular von Kries model (KRIES, 1905) where an
illuminant vector with the RGB values L = [LR,LG,LB] ∈ R3 is multiplied element-wise with every
pixel in the image. We then generate this illuminant vector L by sampling in the log-chrominance
space (Barron & Tsai, 2017). Specifically,

Lu, Lv ∼ U [−1, 1] (6)

[LR, LG, LB ] = [
exp(−Lu)

z
,
1

z
,
exp(−Lv)

z
] (7)

where z =
√
exp(−Lu)2 + exp(−L2

v) + 1 is a normalizing constant and Lu, Lv are the log-chroma
values sampled from the uniform distribution with range [−1, 1]. Intuitively, the log-chroma space
defines the R/G and B/G ratios in log-space. A range of [−1, 1] corresponds roughly to a 7×
change in the ratio between the minimum and maximum points of the range.

A.3 HYPERPARAMETERS FOR THE ENERGY FUNCTIONS

All hyperparameters were found using Bayesian Optimization with the same kernel and acquisition
function mentioned in Section 4 and performed using the Bayesian Optimization Toolbox (Nogueira,
2014) for 300 time steps. Each energy hyperparameter was tuned on a small training or validation
set by recording logits and finding the combination of energy functions that maximized accuracy.
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For experiments on ImageNet, CIFAR10, CIFAR100, and STL10, we only used the classification
energy for computational efficiency. This setting can be reduced to a single free parameter, which
we denote αlogit. The coefficient for mean logit is thus αlogit and the coefficient for max logit is
(1− αlogit).

Specifically, the αlogit coefficients we found were: 0.59 for CIFAR10, CIFAR100, and ImageNet,
0.73 for STL10,and 0.64 for our method applied with PRLC’s classifiers. For segmentation, the
αlogit is 0.74 with a diffusion energy factor of 0.94 and a segmentation energy factor of 1.12. For
ImageNet, we also found it helpful to include the mean of top-5 logits with a factor of 0.08.

For diffusion energy, we subsample the time steps to range from 500 to 1000 with a stride of 20.
This is primarily for computational efficiency.

A.4 3D

For our CO3D experiments, we take 10 random videos from each class, and sample 50 random
frames from each video. We crop and preprocess the view following the pipeline in (Liu et al.,
2023). Like Appendix A.3, we tune the energy hyperparameter with Bayesian Optimization using
a 10% subset of the data. The metric optimized is the difference in mean accuracy of the best five
ranks and the worst five ranks. We sort the frames by energy and bin them by their respective video
frame ranks, and then compute the accuracy of each rank over the videos. The αlogit coefficient
found was 1.31.

For Objaverse-LVIS (Deitke et al., 2022), we render 400 objects at 36 views, corresponding to the
upper hemisphere of azimuth and elevation angles at an interval of 30 degrees. This generates the
test set of images with different viewpoints to evaluate on. Then, to evaluate FMC, we start at each
Objaverse render, simulate Zero123 (Liu et al., 2023) generated images at azimuth circles of an
interval of 30 degrees at elevation angles of [-60, -30, 0, 30, 60], taking the minimum energy (best)
Zero123 generation as the canonical form. Like for CO3D, we rank the frames, sort and bin them,
and compute the accuracy for each rank. However, to isolate the effects of Zero123 on FMC, we
rank both the baseline and FMC curves by the probability of the ground truth mask as a proxy for
the true ranking of viewpoint. We use the same Bayesian Optimization setting as CO3D. The αlogit
coefficient found was 0.79.
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