
Published as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL: ACCURATE IMAGE
RESTORATION WITH ATTENTION RETRACTABLE
TRANSFORMER

Jiale Zhang1, Yulun Zhang2∗, Jinjin Gu3,4, Yongbing Zhang5, Linghe Kong1∗, Xin Yuan6

1Shanghai Jiao Tong University, 2ETH Zürich, 3Shanghai AI Laboratory,
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APPENDIX

Summary. This appendix provides some vital analyses and additional experimental results. Firstly,
we present more experimental results about the ablation study in Sec. 1. Secondly, we give detailed
discussion and verification about the differences between our method and the related works in Sec. 2.
Thirdly, we provide the comparative results on two other tasks: real image denoising in Sec. 3 and
Gaussian grayscale image denoising on Sec. 4. Lastly, we provide more quantitative and visual
comparisons about our method in Sec. 5.
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Figure 1: Left: PSNR (dB) comparison of our ART using all dense attention block (DAB), using all
sparse attention block (SAB), and using alternating DAB and SAB. Middle: PSNR (dB) comparison
of our ART using large interval size in sparse attention block which is (8, 8, 8, 8, 8, 8) for six residual
groups, using medium interval size which is (8, 8, 6, 6, 4, 4), and using small interval size which is
(4, 4, 4, 4, 4, 4). Right: PSNR (dB) comparison of SwinIR, ART-S, and ART. Note that all the PSNR
results are obtained by testing on another benchmark dataset Manga109 under ×2 SR.
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Figure 2: PSNR (dB) comparison of our ART using 3 pairs of alternating dense attention block
(DAB) and sparse attention block (SAB), and using 3 successive SABs following 3 successive CABs.
The former is with (“w/”) alternating and the latter is without (“w/o”) alternating. The left figure
shows the testing results on Urban100 and the right one shows the testing results on Manga109.
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1 SUPPLEMENTARY ABLATION STUDY

We provide additional experimental results for ablation study. We train our models for (×2) image
super-resolution (SR) based on DIV2K Timofte et al. (2017) and Flicke2K Lim et al. (2017) datasets.

Design Choices for DAB and SAB. We set two different experiment conditions about the application
of dense attention block (DAB) and sparse attention block (SAB). The first one is using 3 successive
SABs following 3 successive CABs in each residual group module. The second one is using 3 pairs
of alternating DAB and SAB. We keep else experiment setting the same and train these two models
for 500k iterations. Fig. 2 shows the PSNR results on Urban100 and Manga109. We can see that the
model with alternating DAB and SAB structure achieves better performance. It is mainly because
that the alternating application of these two blocks enables residual group module to obtain local
and global receptive field simultaneously. While, successive DABs and SABs structure has limited
ability to capture wider receptive fields and thus shows poor performance. Besides, we provide more
results to compare models with different blocks. As shown in Fig. 1(Left), the evaluation results on
Manga109 also validate that the simultaneous usage of DAB and SAB is necessary.

Impact of Interval Size. We provide more comparisons about the models with different interval size
settings. In detail, we evaluate the corresponding models that have been introduced in Ablation study
of the main paper on Manga109. The results are shown in Fig. 1(Middle). As we can see, smaller
intervals in our model bring more performance gains.

Comparisons of Variant Models. We provide a new version of our model for fair comparisons and
name it ART-S. Different from ART, the MLP ratio in ART-S is set to 2 and the interval size is set to 8.
We aim to keep the same computation cost with SwinIR in training phase. It is known that the input
training image size is 64×64 and the window size of SwinIR is 8. Therefore, our sparse attention
module will not introduce additional computational cost by extracting the same 8×8 tokens with
SwinIR. In practice, our ART-S has the same Mult-Adds with SwinIR (e.g., 51.3G) when training for
(×2) image SR. We show PSNR comparison on Manga109 datasets as the training iterations increase
in Fig. 1(Right). It further demonstrates that our ART-S outperforms SwinIR. Compared with SwinIR,
our ART-S does not introduce additional computational cost in training phase but achieves better
performance. It is validated to be new promising Transformer-based network.

2 DISCUSSION OF RELATED WORKS

As the core component of Transformer, self-attention module plays an important role in modeling
long-range dependencies. Since our proposed method achieves promising performance, the sparse
attention has been validated to be effective in dealing with low-level vision tasks. To demonstrate the
differences, we compare our method to the usage of sparse attention in related works. Specially, we
consider CrossFormer Wang et al. (2022a) as a representative work. We give detailed analysis and
comparisons in the following parts.

2.1 COMPARISONS WITH CROSSFORMER

Inspired by recent local window self-attention scheme proposed by Swin Transformer Liu et al. (2021),
CrossFormer proposed Cross-scale Embedding Layer (CEL) and Long Short Distance Attention
(LSDA) for high-level vision tasks. In our paper, we proposed sparse attention modules for low-level
vision tasks, e.g., image SR, denoising and image compression artifact reduction. We compare these
two methods as follows.

Different Tasks. Different tasks have different requirements. The purpose of our method is to
recover as more high-frequency information of original images as possible. Meanwhile, we directly
forward the low-frequency information of LR images to the final HR outputs. Take image denoising
as an example. We want to learn the real noise and remove it while retaining original image details.
However, the purpose of CrossFormer is to make dense prediction. By contrast, the sparse attention
modules in our network focus on pixel-level information while the long-distance attention modules in
CrossFormer focus on the semantic-level information.

Different Model Architectures. CrossFormer has a pyramid structure, like most ViT backbones.
The downsampling become a basic operation to reduce the computational cost. As the layer in Cross-
Former becomes deeper, the interval of sparse tokens becomes smaller and the channel dimension
becomes larger. This pyramid structure enables the whole model to focus on the semantic-level
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Method scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CrossFormer ×2 38.20 0.9613 34.04 0.9228 32.32 0.9017 32.91 0.9358 39.28 0.9785
ART-S ×2 38.39 0.9622 34.33 0.9253 32.49 0.9038 33.70 0.9415 39.88 0.9800

Table 1: Quantitative comparison (PSNR (dB)/SSIM) of CrossFormer and ART-S under ×2 SR task
with training 300k iterations, while the total training iterations are 500k

Method MIRNet Uformer-S Uformer-B Restormer ART (ours) ART+ (ours)
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SIDD 39.72 0.959 39.77 0.959 39.89 0.960 40.02 0.960 39.96 0.960 39.99 0.960
DND 39.88 0.956 39.96 0.956 40.04 0.956 40.03 0.956 40.05 0.956 40.08 0.956
Params 31.79M 20.63M 50.88M 26.13M 25.70M 25.70M

Table 2: Quantitative comparison (PSNR (dB)/SSIM) with state-of-the-art methods for real image
denoising. Best and second best results are colored with red and blue.

information. By contrast, our method does not use downsampling. We keep the size of feature map
unchanged. It enables our model to focus on pixel-level information. Besides, we use long-distance
residual connection to reserve low-frequency information.

Different Roles of Sparse Attention. CrossFormer uses long-distance attention to build interactions
of multi-scale features. Our method uses sparse attention to build interactions of equal-scale features
as we does not use cross-scale embedding layer. Compared with the extracted tokens in CrossFormer,
the tokens from our sparse attention can represent the real pixel in original feature map. The
interactions of tokens in our module achieve the real spatial sparsity. By contrast, the sparsity of
long-distance attention in CrossFormer is temporary as the feature map gradually shrinks.

2.2 EXPERIMENTAL VERIFICATION

Furthermore, we provide comparative experiments to demonstrate that the model design of Cross-
Former with CEL and LSDA is not suitable for low-level vision tasks. We want to validate that our
model design is better. Detailed introductions are provided and experimental results are shown in
Tab. 1 and Fig. 3(Left).

Experimental Settings. In detail, we use SwinIR Liang et al. (2021) as backbone and use the core
components of CrossFormer to replace the modules in SwinIR. We change the pyramid structure of
CrossFormer to make a fair comparison. Meanwhile, we set the related parameters of CrossFormer
and ART the same. In detail, we set the window size and the interval size to 8. The number of
Transformer blocks in each residual group are 6. We also use 6 successive residual groups. The MLP
ratio is 2. We train these two models under super-resolution ×2 task. We use DIV2K Timofte et al.
(2017) and Flickr2K Lim et al. (2017) as training data, Set5 Bevilacqua et al. (2012), Set14 Zeyde
et al. (2010), B100 Martin et al. (2001), Urban100 Huang et al. (2015), and Manga109 Matsui et al.
(2017) as testing data, which are consistent with SwinIR.

Convergence Analyses. We train these two models for close to 300k iterations. In Fig. 3(Left),
we show the validation curves of CrossFormer and our ART-S with validation dataset as Set5. We
can see that the convergence of our ART-S is faster than CrossFormer. This result shows that better
performance is achieved by our ART-S. Therefore, the CrossFormer is validated to be not suitable for
low-level vision task.

Quantitative Comparisons. Table 1 shows the PSNR/SSIM of CrossFormer and our ART-S. We can
see that CrossFormer achieves poor performance in solving image SR. The long-distance attention
modules in CrossFormer focus on cross-scale features and learn more semantic-level information.
However, the multi-scale features are not necessary in restoring HR images. By contrast, the sparse
attention modules in our network focus on pixel-level information so that our method can achieve
better performance.

3 EXPERIMENTS ON REAL IMAGE DENOISING

We conduct experiments on another image restoration task to show the superiority of our method.
In practice, we employ our method to solve Real Image Denoising problems. We give detailed
introduction as follows.
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Figure 3: Convergence Analyses on ×2 SR. Left: comparisons of CrossFormer and ART-S with
training 300k iterations. Right: comparisons of SwinIR and ART with training 500k iterations.

Figure 4: Screenshot of the testing result of our ART in the DND testing website.

Experimental Settings. To make a fair comparison, we utilize the model architecture of
Restormer Zamir et al. (2022) to train our ART. We use the proposed dense and sparse atten-
tion blocks to replace the Transformer blocks in Restormer. We keep other model components the
same with Restormer. We also provide the implementation details. We use a 4-level symmetric
encoder-decoder with the number of Transformer blocks as [4, 6, 6, 8], from level-1 to level-4. The
blocks number in refinement stage is 4. The number of attention heads is [1, 2, 4, 8] and the MLP
expansion ratio is 4 (2.66 in Restormer). We set the interval size in four successive encoders as (32,
16, 8, 4). For the dense attention block, we set the window size to 8.

We train our model under the same training conditions with Restormer. We use AdamW optimizer
with β1=0.9 and β2=0.99. The initial learning rate is 3×10−4. According to the cosine anneal-
ing Loshchilov & Hutter (2017), it gradually decreases to 1×10−6. The model is trained within 300K
iterations. Note that the progressive learning proposed by Restormer is also employed. We train ART
on 320 high-resolution images from SIDD Abdelhamed et al. (2018) datasets. The testing datasets
include SIDD test set and DND dataset Plotz & Roth (2017).

Quantitative Comparisons. We compare our ART with state-of-the-art methods including MIR-
Net Zamir et al. (2020), Uformer Wang et al. (2022b), and Restormer. In Tab. 2, we can see that our
proposed method has comparable performance with existing state-of-the-art models Uformer-B and
Restormer. Higher performance is achieved by ART+ using self-ensemble. Besides, the parameter of
our ART is smaller than all compared models except Uformer-S. It indicates that our method can also
have promising performance in Real Image Denoising.

Further Analysis. In fact, our ART model has not been extended to larger model. If our ART has
the same model size with Uformer (50.88M), the performance gains will be higher. To confirm the
validity of our results, We also show the online test results of ART on the DND Plotz & Roth (2017)
in Fig. 4. In conclusion, our proposed method shows strong ability to restore high-quality images in
real image denoising.

4 EXPERIMENTS ON GAUSSIAN GRAYSCALE IMAGE DENOISING

We also employ our method to solve Gaussian grayscale image denoising task. The training datasets
are same with the task of Gaussion color image denoising. We use Set12 Zhang et al. (2017a),
BSD68 Martin et al. (2001), and Urban100 Huang et al. (2015) to perform evaluations. We compare
our method to recent leading methods quantitatively and visually. We give more details as follows.
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Dataset σ BM3D DnCNN IRCNN FFDNet RNAN RDN DRUNet SwinIR Restormer ART ART+

Set12
15 32.37 32.86 32.76 32.75 N/A N/A 33.25 33.36 33.42 33.42 33.44
25 29.97 30.44 30.37 30.43 N/A N/A 30.94 31.01 31.08 31.10 31.12
50 26.72 27.18 27.12 27.32 27.70 27.60 27.90 27.91 28.00 28.02 28.05

BSD68
15 31.08 31.73 31.63 31.63 N/A N/A 31.91 31.97 31.96 31.97 32.00
25 28.57 29.23 29.15 29.19 N/A N/A 29.48 29.50 29.52 29.53 29.56
50 25.60 26.23 26.19 26.29 26.48 26.41 26.59 26.58 26.62 26.60 26.65

Urban100
15 32.35 32.64 32.46 32.40 N/A N/A 33.44 33.70 33.79 33.89 33.98
25 29.70 29.95 29.80 29.90 N/A N/A 31.11 31.30 31.46 31.68 31.78
50 25.95 26.26 26.22 26.50 27.65 27.40 27.96 27.98 28.29 28.56 28.67

Table 3: PSNR (dB) comparisons for Gaussian grayscale image denoising on three benchmark
datasets. The best and second best results are in red and blue.

Method Parameters (M) Mult-Adds (G) PSNR on Urban100 (dB)
SwinIR Liang et al. (2021) 11.50 201 27.98
Restormer Zamir et al. (2022) 26.11 39 28.29
ART (ours) 20.82 44 28.56

Table 4: Model size comparisons. PSNR scores are reported by testing on Gaussian gray image
denoising (σ=50). Input size is 1×128×128 for Mult-Adds calculation.

Experimental Settings. We also utilize the model architecture of Restormer Zamir et al. (2022) to
train our ART. We use U-net structure to design our model and train it on the codebase of Restormer.
The training settings have been introduced in Sec. 3. We declare some differences here. We adjust
some parameters in ART. We set the window size to 16 and the initial interval size to 8. As the
stage grows, the interval size is reduced by half. To make fair comparisons, we keep the same layers
number in encoder-decoder module and MLP expansion ratio with Restormer, which are [4,6,6,8]
and 2.66, respectively.

Quantitative Comparisons. We compare our ART with state-of-the-art methods including
BM3D Dabov et al. (2007), IRCNN Zhang et al. (2017b), FFDNet Zhang et al. (2018a),
DnCNN Zhang et al. (2017a), RNAN Zhang et al. (2019), RDN Zhang et al. (2020), DRUNet Zhang
et al. (2021a), SwinIR Liang et al. (2021), and Restormer Zamir et al. (2022). From Table 3, we
can see that our proposed ART achieves better performance than existing state-of-the-art methods,
including CNN-based and Transformer-based networks. Specifically, our ART yields 0.58 dB and
0.27 dB performance gain over SwinIR and Restormer, respectively, on Urban100 with noise level
σ=50. Higher performance is achieved by ART+ using self-ensemble. It is worth mentioning that our
ART has comparable Mult-Adds with Restormer but 1.25× fewer parameters. It indicates that our
method can also have impressive performance in Gaussian grayscale mage Denoising.

Model Size Comparisons. Table 4 provides comparisons of parameters number and Mult-Adds.
We mainly compare our ART to recent leading Transformer-based methods including SwinIR and
Restormer. We calculate the Mult-Adds assuming that the input size is 1×128×128. We find that our
ART enjoys very low Mult-Adds when compared to SwinIR. Compared to Restormer, our method
has comparable Mult-Adds but less model parameters. It is seen that our ART can achieve the best
performance among them. It indicates that our method owns promising computational and memory
efficiency while obtaining promising performance.

Visual Comparisons. We also provide numerous visual comparisons with recent state-of-the-art
methods on Gaussian grayscale image denoising with noise level σ=50. We show these visual
results in Fig. 8-10. As we can see, our proposed ART can obtain visually pleasing results when
compared to other methods. Especially, compared to SwinIR and Restormer, our ART can restore
more high-frequency components. It indicates that our ART with a U-Net structure can also achieve
promising denoising results. In conclusion, our method share a similar model architecture with
Restormer and owns comparable computational cost and less model parameters. However, our ART
can outperform Restormer both quantitatively and visually.

5 ADDITIONAL EXPERIMENTAL RESULTS

We provide more quantitative and visual comparisons about our proposed model as follows.

Quantitative Comparisons. Table 5 shows quantitative comparisons for ×2, ×3, and ×4 image
super-resolution (SR). All the results are provided by publicly available data. We compare our ART
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with 16 state-of-art methods: EDSR Lim et al. (2017), SRMDNF Zhang et al. (2018b), D-DBPN Haris
et al. (2018), RDN Zhang et al. (2020), RCAN Zhang et al. (2018c), SAN Dai et al. (2019), SRFBN Li
et al. (2019), HAN Niu et al. (2020), IGNN Zhou et al. (2020), CSNLN Mei et al. (2020), RFANet Liu
et al. (2020), NLSA Mei et al. (2021), CRAN Zhang et al. (2021b), DFSA Magid et al. (2021),
IPT Chen et al. (2021), and SwinIR Liang et al. (2021). Symbol “+” means that results are produced
with self-ensemble Lim et al. (2017) in test phase. Note that DFSA Magid et al. (2021) only provides
self-ensemble scores. As we can see, our ART achieves the best performance on all the benchmark
datasets across all scale factors. ART+ gains even better results using self-ensemble. Besides, ART-S
has comparable mode size with SwinIR and also performs outstandingly. It is mainly because our
proposed models have stronger representation ability than SwinIR.

Convergence Analyses. We provide the validation curve comparisons of our ART and SwinIR in
Fig. 3(Right). We keep the training settings the same and the total training iterations are 500k. We
report the validation results on Set5 based on the ×2 SR task. As we can see, our ART achieves
better performance than SwinIR. It further reveals that our proposed method has stronger global
representation ability by using sparse attention. Thus, it outperforms other Transformer-based
methods mainly using dense attention.

Visual Comparisons. We provide more visual comparisons. Figures 5 and 6 show some challenging
examples for (×4) image super-resolution (SR). As we can see, most of previous state-of-the-art SR
methods suffer from heavy blurring artifacts and have difficulty in recovering high-frequency details.
Taking “image 008” and “image 076” as an example, all the compared methods have heavy blurring
artifacts. While, our ART is able to alleviate blurring artifacts to some degree while recovering more
details. Besides, in “image 047” and “image 059”, our ART can reconstruct more detailed lines.
However, all the compared methods are hard to deal with heavy blurring and thus fail to recover crisp
lines. These comparisons indicate that previous leading SR methods have limited ability to restore
high-quality images when handling some challenging cases. On the other hand, our proposed ART
can obtain visually pleasing results and recover more high-frequency details.

Figure 7 shows visual comparisons of some challenging examples for color image denoising with
noise level 50. As we can see, some previous denoising methods have difficulty in removing
heavy noise corruption. While, our proposed ART can reserve detailed textures and high-frequency
components after denoising. For example, in “image 008” and “image 060”, all the compared
methods suffer from heavy noise corruption. However, our ART can remove these noise corruption
to some degree and restore clean and crisp images.

Figures 8-10 show visual comparisons of some challenging examples for grayscale image denoising
with noise level 50. Results are obtained by testing on Urban100. We make comparisons with recent
leading CNN-based and Transformer-based methods. As we can see, our ART can achieve better
visual results.
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Method Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
EDSR Lim et al. (2017) ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
D-DBPN Haris et al. (2018) ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
SRMDNF Zhang et al. (2018b) ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
RDN Zhang et al. (2020) ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
RCAN Zhang et al. (2018c) ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN Dai et al. (2019) ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
SRFBN Li et al. (2019) ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
HAN Niu et al. (2020) ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IGNN Zhou et al. (2020) ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
CSNLN Mei et al. (2020) ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
RFANet Liu et al. (2020) ×2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
NLSA Mei et al. (2021) ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
CRAN Zhang et al. (2021b) ×2 38.31 0.9617 34.22 0.9232 32.44 0.9029 33.43 0.9394 39.75 0.9793
DFSA+ Magid et al. (2021) ×2 38.38 0.9620 34.33 0.9232 32.50 0.9036 33.66 0.9412 39.98 0.9798
IPT Chen et al. (2021) ×2 38.37 N/A 34.43 N/A 32.48 N/A 33.76 N/A N/A N/A
SwinIR Liang et al. (2021) ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
ART-S (ours) ×2 38.48 0.9625 34.50 0.9258 32.53 0.9043 34.02 0.9437 40.11 0.9804
ART (ours) ×2 38.56 0.9629 34.59 0.9267 32.58 0.9048 34.30 0.9452 40.24 0.9808
ART+ (ours) ×2 38.59 0.9630 34.68 0.9269 32.60 0.9050 34.41 0.9457 40.33 0.9810

Bicubic ×3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556
EDSR Lim et al. (2017) ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
SRMDNF Zhang et al. (2018b) ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN Zhang et al. (2020) ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
RCAN Zhang et al. (2018c) ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN Dai et al. (2019) ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
SRFBN Li et al. (2019) ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
HAN Niu et al. (2020) ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
IGNN Zhou et al. (2020) ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
CSNLN Mei et al. (2020) ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
RFANet Liu et al. (2020) ×3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
NLSA Mei et al. (2021) ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
CRAN Zhang et al. (2021b) ×3 34.80 0.9304 30.73 0.8498 29.38 0.8124 29.33 0.8745 34.84 0.9515
DFSA+ Magid et al. (2021) ×3 34.92 0.9312 30.83 0.8507 29.42 0.8128 29.44 0.8761 35.07 0.9525
IPT Chen et al. (2021) ×3 34.81 N/A 30.85 N/A 29.38 N/A 29.49 N/A N/A N/A
SwinIR Liang et al. (2021) ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
ART-S (ours) ×3 34.98 0.9318 30.94 0.8530 29.45 0.8146 29.86 0.8830 35.22 0.9539
ART (ours) ×3 35.07 0.9325 31.02 0.8541 29.51 0.8159 30.10 0.8871 35.39 0.9548
ART+ (ours) ×3 35.11 0.9327 31.05 0.8545 29.53 0.8162 30.22 0.8883 35.51 0.9552

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
EDSR Lim et al. (2017) ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
D-DBPN Haris et al. (2018) ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
SRMDNF Zhang et al. (2018b) ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
RDN Zhang et al. (2020) ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
RCAN Zhang et al. (2018c) ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN Dai et al. (2019) ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
SRFBN Li et al. (2019) ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
HAN Niu et al. (2020) ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IGNN Zhou et al. (2020) ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
CSNLN Mei et al. (2020) ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
RFANet Liu et al. (2020) ×4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.9187
NLSA Mei et al. (2021) ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
CRAN Zhang et al. (2021b) ×4 32.72 0.9012 29.01 0.7918 27.86 0.7460 27.13 0.8167 31.75 0.9219
DFSA+ Magid et al. (2021) ×4 32.79 0.9019 29.06 0.7922 27.87 0.7458 27.17 0.8163 31.88 0.9266
IPT Chen et al. (2021) ×4 32.64 N/A 29.01 N/A 27.82 N/A 27.26 N/A N/A N/A
SwinIR Liang et al. (2021) ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
ART-S (ours) ×4 32.86 0.9029 29.09 0.7942 27.91 0.7489 27.54 0.8261 32.13 0.9263
ART (ours) ×4 33.04 0.9051 29.16 0.7958 27.97 0.7510 27.77 0.8321 32.31 0.9283
ART+ (ours) ×4 33.07 0.9055 29.20 0.7964 27.99 0.7513 27.89 0.8339 32.45 0.9291

Table 5: PSNR (dB)/SSIM comparisons for image super-resolution on five benchmark datasets. We
color best and second best results in red and blue.
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Urban100: img 002

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 008

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 024

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 047

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 059

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 061

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 076

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Figure 5: Visual comparison (×4) with image SR networks on Urban100 dataset.
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Urban100: img 077

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Urban100: img 083

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Manga109: ARMS

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Manga109: MoeruOnisan

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Manga109: SonokiDeABC

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Manga109: UltraEleven

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Manga109: YumeiroCoo.

HQ Bicubic RCAN SRFBN SAN

IGNN CSNLN RFANet SwinIR ART (ours)

Figure 6: Visual comparison (×4) with image SR networks on Urban100 and Manga109 dataset.
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Urban100: img 008

HQ Noisy (σ=50) CBM3D IRCNN FFDNet

DnCNN RNAN RDN SwinIR ART (ours)

Urban100: img 039

HQ Noisy (σ=50) CBM3D IRCNN FFDNet

DnCNN RNAN RDN SwinIR ART (ours)

Urban100: img 060

HQ Noisy (σ=50) CBM3D IRCNN FFDNet

DnCNN RNAN RDN SwinIR ART (ours)

Urban100: img 074

HQ Noisy (σ=50) CBM3D IRCNN FFDNet

DnCNN RNAN RDN SwinIR ART (ours)

Figure 7: Visual comparison (σ=50) for Gaussian color image denoising on Urban100 dataset.
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Urban100: img 002

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 006

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 008

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 012

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 014

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 028

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 031

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Figure 8: Visual comparison (σ=50) for Gaussian grayscale image denoising on Urban100 dataset.
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Urban100: img 033

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 034

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 036

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 047

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 057

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 060

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 074

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Figure 9: Visual comparison (σ=50) for Gaussian grayscale image denoising on Urban100 dataset.

13



Published as a conference paper at ICLR 2023

Urban100: img 076

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 080

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 085

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 086

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 088

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 091

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Urban100: img 097

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer ART (ours)

Figure 10: Visual comparison (σ=50) for Gaussian grayscale image denoising on Urban100 dataset.
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