
A Discussion of Model Assumptions

We highlight and discuss several assumptions that we make in our stylized model.

A.1 Assumptions on user decisions

Our primary model for user decisions given by (1) is the standard logit model for discrete choice deci-
sions [Train, 2002] which is also known as the Boltzmann rationality model. In the limit as c ! 0, a
user with representation x and label y select from the set of model-providers argminj2[m] `(fj(x), y)
that achieve the minimum loss; in particular, the user chooses a model-provider from this set with
probability proportional to the model-provider’s market reputation. For c > 0, the specification in
equation (1) captures that users evaluate a model-provider based on a noisy perception of the loss.

While this model implicitly assumes that a user’s choice of platform is fully specified by the platforms’
choices of predictor (i.e. platforms are ex-ante homogeneous), we extend this model in Appendix B.1
to account for uneven market reputations across decisions. These market reputations are modeled as
global weights in the logit model for discrete choice. Given market reputations w1, . . . , wm, users
choose a predictor according to:

P[j⇤(x, y) = j] =
wj · e�`(fj(x),y)/c

Pm
j0=1 wj0 · e�`(fj0 (x),y)/c

. (6)

When the market reputations are all equal (w1 = . . . = wm), equation (6) exactly corresponds to
(1). When the market reputations wj are not equal, equation (6) captures that users place a higher
weight on model-providers with a higher market reputation. This captures that users are more likely
to choose a popular model-provider than a very small model-provider without much reputation.
However, this formalization does assume that market reputations are global across users and that
market reputations surface as tie-breaking weight in the noiseless limit.

Implicit in this model is asymmetric information between the model-providers and users. While
the only information that a model-provider has about users is their representations, a user can make
decisions based on noisy perceptions of their own loss (which can depend on their label). This
captures that, even if users are unlikely to know their own labels, users can experiment with multiple
model-providers to (noisily) determine which one maximizes their utility. The inclusion of market
reputations reflects that users are more likely to experiment with and ultimately choose popular
model-providers than less popular model-providers.

A.2 Assumption of global data representations

Our results assume that all model-providers share the same representations x for each user and
thus improvements in representations x are experienced by all model-providers. This assumption
is motivated by emerging marketplaces where different model-providers utilize the same pretrained
model, but finetune the model in different ways. To simplify this complex training process, we
conceptualize pretraining as learning data representations (e.g., features) and fine-tuning as learning

a predictor from these representations. In this formalization, increasing the scale of the pretrained
model (e.g., by increasing the number of parameters or the amount of data) leads to improvements in
data representations accessible to all of the model-providers during “fine-tuning”.

An interesting direction for future work would be to incorporate heterogeneity or local improvements
in the data representations.

A.3 Assumption on model-provider action space

We make the simplifying assumption that the only action taken by model-providers is to choose a
classifier from a pre-specified class. This formalization does not capture other actions (such as data
collection and price setting) that may be taken by the platform. Incorporating other model-provider
decisions would be an interesting avenue for future work.
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B Additional results for Section 3

B.1 Generalization to unequal market reputations

While we assumed above that users evenly break ties between model-providers, in reality, users might
be more likely to choose model-providers with a higher market reputation (e.g., established, popular
model-providers). This motivates us to incorporate market reputations into user decisions.

Formally, we assign to each model-provider j a market reputation wj , and we replace the logit model
in (1) with a weighted logit variant. When c ! 0, rather than breaking ties uniformly, they are instead
broken proportionally to wj :

P[j⇤(x, y) = j] =

(
0 if j 62 argminj02[m] [y 6= fj0(x)]

wjP
j002[m] wj00 · [j002argminj02[m] [y 6=fj0 (x)]]

if j 2 argminj02[m] [y 6= fj0(x)].

(7)
See Appendix A for further discussion of this model. For simplicity, we assume that market
reputations are normalized to sum to one.

Similarly to Proposition 2, we derive a closed-form formula for the equilibrium social loss, focusing
on the case of binary classification with m = 2 model-providers for analytic tractability. We observe
non-monotonicity as before, but with a more complex functional form.

Proposition 4. Let X be a finite set, let K = 2, and let F = Fbinary

all
. Suppose there are m = 2

model-providers with market reputations wmin and wmax, where wmax � wmin and wmax + wmin = 1.

Suppose that user decisions are given by (7), and that ↵(x) 6= wmin for all x 2 X .
8

At any (mixed)

Nash equilibrium (µ1, µ2), the expected social loss is equal to:

E
f1⇠µ1
f2⇠µ2

[SL(f1, f2)] = E
(x,y)⇠D

2

6664
(↵(x)� wmin) · (wmax � ↵(x))

(1� 2 · wmin)2| {z }
(A)

· [↵(x) > wmin] + ↵(x)|{z}
(B)

· [↵(x) < wmin]

3

7775
.

(8)

The high-level intuition for Proposition 4, like for Proposition 2, is that the equilibrium predictions
go from heterogeneous to homogenous as ↵(x) decreases. Term (A), which is realized for large ↵(x),
captures the equilibrium social loss for heterogeneous predictions. Term (B), which is realized for
small ↵(x), captures the equilibrium social loss for homogeneous predictions. We defer the proof of
Proposition 4 to Appendix D.

The details of Proposition 4 differ from Proposition 2 in several ways. First, the transition point
from heterogeneous to homogeneous predictions occurs at ↵(x) = wmin as opposed to ↵(x) = 1/2.
In particular, the transition point depends on the market reputations rather than only the number of
model-providers. Second, the equilibria have mixed strategies rather than pure strategies, because
pure-strategy equilibria do not necessarily exist when market reputations are unequal (see Lemma 7 in
Appendix D). Third, the social loss at a representation x is no longer equal to zero for heterogeneous
predictions—in particular, term (A) is now positive for all ↵(x) > wmin and increasing in ↵(x).

To better understand the implications of Proposition 4, we revisit Settings 1-3 from Section 3.2,
considering the same three axes of varying representations with the same distributions over (x, y).
In contrast to Section 3.2, we consider 2 competing model-providers with unequal market positions
rather than m competing model providers with equal market positions. Our results, described below,
are depicted in Figure 4.

Setting 1: Varying the per-representation Bayes risks. Consider the same setup as Setting
1 in Section 3.2. Figure 4a depicts the non-monotonicity of the equilibrium social loss in the
per-representation Bayes risk ↵ across different settings of market reputations for 2 competing
model-providers. The discontinuity occurs at the smaller market reputation wmin. Thus, as the market
reputations of the 2 model-providers become closer together, the non-monotonicity occurs at a lower
data representation quality (higher Bayes risk).

8As with Proposition 2, when ↵(x) is equal to wmin for some value of x, there are multiple equilibria.

15



(a) (b) (c)

Figure 4: Equilibrium social loss (y-axis) versus data representation quality (x-axis) given two model-providers
with market reputations [1� wmin, wmin] when representations are varied along different aspects (columns). The
equilibrium social loss is computed via the closed-form formula from Proposition 4. We vary representations
with respect to per-representation Bayes risk (a), noise level (b), and dimension (c). The dashed line indicates
the Bayes risk. The Bayes risk is monotone for all 3 axes of varying representations; on the other hand, the
equilibrium social loss is non-monotone in the per-representation Bayes risk and monotone in noise level and
dimension.

Settings 2-3: Varying the representation noise or representation dimension. Consider the setups
from Settings 2-3 in Section 3.2. Figures 4b-4c depicts that the equilibrium social loss is monotone in
data representation quality (Bayes risk) across different settings of market reputations for 2 competing
model-providers.

Discussion. To interpret these results, observe that for 2 model-providers with equal market reputa-
tions (wmin = 0.5), the equilibrium social loss is always equal to the Bayes risk by Propositions 2-4,
which trivially implies monotonicity. In contrast, Figure 4 shows that for unequal market positions
(wmin < 0.5), the equilibrium social loss is non-monotonic in Bayes risk for Setting 1, though it is
still monotonic in Bayes risk for Settings 2 and 3. (For comparison, recall from Figures 2a-2c that
for m � 2 model-providers with equal market reputations, non-monotonicity was exhibited for all
three settings.) An interesting open question is identify other axes of varying representations, beyond
Setting 1, which lead to non-monotonicity for 2 model-providers with unequal market reputations.

B.2 Additional example for Section 3.3

For similar reasons to Proposition 2, Proposition 3 implies that the equilibrium social loss can be
non-monotonic in the representation quality (i.e., the Bayes risk). As a concrete example, consider
the following generalization of Setting 1 in Section 3.1: let there be a population with a single value
of x where ↵0(x) = 1 � 2↵, ↵1(x) = ↵, and ↵2(x) = ↵ for ↵ < 1/4. In this case, we see that
c � 1/2 for any ↵ < 1/4. By Proposition 3, the equilibrium social loss is nonzero is ↵ < 1/(2m),
but is zero if ↵ > 1/m, whereas the Bayes risk is equal to 2↵, which shows non-monotonicity as
desired. We expect that other setups similar to those in Section 3.1 will also lead to non-monotonicity
for multi-class tasks.

C Additional Details of Simulations

Hyperparameters. We introduce a temperature parameter ⌧ within our loss function, defining the
loss `(fw,b(x), y) to be | sigmoid((hw, xi+ b)/⌧)� 1|. This reparameterizes, but does not change,
the model family.

When we run the best-response dynamics, we always initialize the model parameters as mean-zero
Gaussians with standard deviation �. When we reinitialize model parameters, we again initialize
them as mean-zero Gaussians with standard deviation �. For Section 4.2, we set I = 5000, ⌧ = 0.1,
✏ = 0.001, ⌘ = 0.1, � = 1.0, and ⇢ = ⇢0 = 1.0. For Section 4.3 and Section 4.4, we set I = 2000,
� = 0.5, ⌧ = 1.0, ✏ = 0.001, and ⌘ with the following learning rate schedule to expedite convergence:
⌘ = 1.0 if the risk E(x,y)⇠D[`(fwj ,bj (x), y)] is at least 0.5, ⌘ = 5.0 if the risk is in [0.4, 0.5), ⌘ = 15
if the risk is in [0.3, 0.4), and ⌘ = 20 if the risk is less than 0.3. We set ⇢ = ⇢0 = 0.3 for Section 4.3
and we set ⇢ = 0.7 and ⇢0 = 1 for Section 4.3.
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For Section 4.3 and Section 4.4, we ran over several trials for each data point and the error bars show
two standard errors from the mean. For binary classification, the number of trials was 20 for m = 3
and m = 4 and 8 for m = 5, m = 6, and m = 8. For 10-class classification, the number of trials
was 40 for m = 3 and m = 4 and 8 for m = 5, m = 6, and m = 8.

In addition to computing the equilibria, we also approximate the optimal Bayes risk. For Section
4.2, we run gradient descent for 10, 000 iterations with learning rate equal to one and parameters
initialized to independent Gaussians with zero mean and standard deviation 1.0. For Section 4.3, we
run gradient descent for 50, 000 iterations with learning rate equal to 0.1 and parameters initialized
to independent Gaussians with zero mean and standard deviation 0.005. For Section 4.4, we run
gradient descent for 70, 000 iterations with learning rate equal to 0.1 and parameters initialized to
independent Gaussians with zero mean and standard deviation 0.005.

Generation of the synthetic dataset. In Setting 1 (Figures 2a, 4a, and 2d), we consider a zero-
dimensional population where Y | X is distributed as a Bernoulli with probability ↵. In Figure 2d,
the meaning of a zero-dimensional representation is that the only parameter is the bias.

In Setting 2 (Figures 2b, 4b, and 2e), we consider a one-dimensional population given by a mixture
of Gaussians. In particular, the Gaussian X | Y = 0 is distributed as N(�µ,�2) and the Gaussian
X | Y = 1 is distributed as N(µ,�2). The mean µ is taken to be 1. The distribution of the labels is
given by P[Y = 1] = 0.4 and P[Y = 1] = 0.6.

In Setting 3 (Figures 2c, 4c, and 2f), let Dbase = 4. The distribution over (Xall, Y ) consists of Dbase
subpopulations. We define the distribution of (Xall, Y ) as follows: each subpopulation 1  i  Dbase
has a different mean vector µi 2 RDbase and is distributed as Xall ⇠ Y = 0 ⇠ N(�µi,�2), let
Xall ⇠ Y = 1 ⇠ N(µi,�2), and let P[Y = 0] = P[Y = 1] = 1/2.We define (µi)d = 0 for
1  d  i� 1 and (µi)d = 1 for i  d  Dbase, and we let � = 1. If the representation dimension is
D, then we define X to consist of the first D coordinates of Xall. When D = 0, the model-provider
is not given representations and thus must assign all users to the same output. (Our setup captures
that the dimension D must be at least i to see any nontrivial features about subpopulation i.) The
distribution across the 4 subpopulations is 0.7, 0.15, 0.1, and 0.05.

In each case, we draw 10,000 samples and take the resulting empirical distribution to be D.

Generation of the CIFAR-10 task. We consider a binary classification task consisting of the first
10,000 images in the training set of CIFAR-10. The class 0 is defined to be {airplane, bird, automobile,
ship, horse, truck} and class 1 is defined to be {cat, deer, dog, frog}. To generate representations,
we use the pretrained models from the Pytorch torchvision.models package; these models were
pretrained on ImageNet.

Compute details. We run our simulations on a single A100 GPU.

D Additional Results and Proofs for Section 3

In Appendix D.1, we show a decomposition lemma and prove existence of equilibrium (Proposition
1). We prove the results from Section 3.1 in Appendix D.2, prove the results from Section 3.3 in
Appendix D.3, and prove the results from Section B.1 in Appendix D.4.

D.1 Decomposition lemma and existence of equilibrium

We first show that we can decompose model-provider actions into independent decisions about each
representation x. To formalize this, let D be the data distribution, and let Dx be the conditional
distribution over (X,Y ) | X = x where (X,Y ) ⇠ D. Let (Fmulti-class

all )x :=
�
f0, f1, . . . , fK�1

 
be

the class of K functions from a single representation x to {0, 1, . . . ,K � 1}, where f i(x) = i.
Lemma 5. Let X be a finite set of representations, let F = Fmulti-class

all
, and let D be the distribution

over (X,Y ). For each x 2 X , let Dx be the conditional distribution over (X,Y ) | X = x where

(X,Y ) ⇠ D, and let (Fmulti-class

all
)x :=

�
f0, f1, . . . , fK�1

 
be the class of the K functions from

a single representation x to {0, 1}, where f i(x) = i. Suppose that user decisions are noiseless

(i.e., c ! 0, so user decisions are given by (3)). A market outcome f1, . . . , fm is a pure-strategy

equilibrium if and only if for every x 2 X , the market outcome (ff1(x), . . . , ffm(x)) is a pure-strategy

equilibrium for (Fmulti-class

all
)x with data distribution Dx.
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The intuition is that since Fmulti-class
all is all possible functions, model-providers make independent

decisions for each data representation.

Proof. Let DR be the marginal distribution of X with respect to the distribution (X,Y ) ⇠ D. First,
we write model-provider j’s utility as:

u(fj ; f�j) = E
(x,y)⇠D

[P[j⇤(x, y) = j]] = E
x0⇠DR


E

(x,y)⇠Dx0
[P[j⇤(x, y) = j]]

�
, (9)

where f�j denotes the predictors chosen by the other model-providers. The key intuition for the proof
will be that the predictions [f1(x00), . . . , fm(x00)] affect E(x,y)⇠Dx0 [P[j⇤(x, y) = j]] if and only if
x0 = x00.

First we show that if f1, . . . , fm is a pure-strategy equilibrium, then (ff1(x
0), . . . , ffm(x0)) is a pure-

strategy equilibrium for (Fmulti-class
all )x

0
with data distribution Dx0 . Assume for sake of contradiction

that (ff1(x
0), . . . , ffm(x0)) is not an equilibrium. Then there exists j0 2 [m] such that model-provider

j0 would achieve higher utility if they switched from ffj0 (x
0) to f l for some l 6= fj0(x0). Let f 0

j0 be
the predictor given by f 0

j0(x) = fj0(x) if x 6= x0 and f 0
j0(x

0) = l. By equation (9), this would mean
that u(f 0

j0 ; f�j0) is strictly higher than u(fj0 ; f�j0) which is a contradiction.

Next, we show that if (ff1(x
0), . . . , ffm(x0)) is a pure-strategy equilibrium for (Fbinary

all )x
0

with data
distribution Dx0 for all x0 2 X then f1, . . . , fm is a pure-strategy equilibrium. Assume for sake
of contradiction that there exists j0 such that u(f 0

j0 ; f�j0) > u(fj ; f�j0). By equation (9), there
must exist x0 such that E(x,y)⇠Dx0 [P[j⇤(x, y) = j0]] is higher for f 0

j0 than fj0 . This means that
(ff1(x

0), . . . , ffm(x0)) is not an equilibrium (since f l would be a better response for model-provider
j0) which is a contradiction.

We next prove Proposition 1, showing that a pure-strategy equilibrium exists by applying the proof
technique of Lemma 3.7 of Ben-Porat and Tennenholtz [2019].

Proof of Proposition 1. By Lemma 5, it suffices to show that there exists a pure-strategy equilibrium
whenever there is a single data representation X = {x}. In this case, the function class Fmulti-class

all
consists of K predictors

�
f0, f1 . . . , fK�1

 
given by f i(x) = i. For each class i, let P[Y = i |

X] = pi.

For the special case of K = 2 (binary classification), the game between model-providers is thus a
2-action game with symmetric utility functions. Thus, it must possess a (possibly asymmetric) pure
Nash equilibrium [Cheng et al., 2004].

For the general case of K � 2, we can no longer apply the result in [Cheng et al., 2004] since there
can be more than 2 actions. We instead show that the game is a potential game, following a similar
argument to Ben-Porat and Tennenholtz [2019]. We define the potential function �(·) as follows. For
each i 2 {0, 1, . . . ,K � 1}, we define the function Gi :

�
f0, f1 . . . , fK�1

 m ! R�0 to be:

Gi(f1, . . . , fm) :=

(
1
m if |

�
j 2 [m] | fj = f i

 
| = 0

P|{j2[m]|fj=fi}|
l=1

1
l if |

�
j 2 [m] | fj = f i

 
| � 1.

We let

�(f1, . . . , fm) :=
KX

i=1

pi ·Gi(f1, . . . , fm).

We show that � is a potential function for this game. Suppose that model-provider j switches from
fj := f i to f 0

j = f i0 for i0 6= i. For each i 2 {0, 1, . . . ,K � 1}, let Ni = |
�
j 2 [m] | fj = f i

 
| be

the number of model-providers who choose f i on the original outcome [f1, . . . , fm]. We observe
that:

u(fj ; f�j)� u(f 0
j ; f�j) =

8
>>><

>>>:

pi · 1
Ni

� pi0 · 1
Ni0+1 if Ni > 1, Ni0 > 0

pi ·
�
1� 1

m

�
� pi0 · 1

Ni0+1 if Ni = 1, Ni0 > 0

pi · 1
Ni

� pi0 ·
�
1� 1

m

�
if Ni > 1, Ni0 = 0

pi ·
�
1� 1

m

�
� pi0 ·

�
1� 1

m

�
if Ni = 1, Ni0 = 0
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Moreover, we see that:

�(f1, . . . , fm)� �(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm)

=
KX

i00=1

pi00 ·Gi00(f1, . . . , fm)�
KX

i00=1

pi00 ·Gi00(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm)

= pi ·
�
Gi(f1, . . . , fm)�Gi(f1, f2, . . . , fj�1, f

0
j , fj+1, . . . , fm)

�

+ pi0
�
Gi0(f1, . . . , fm)�Gi0(f1, f2, . . . , fj�1, f

0
j , fj+1, . . . , fm)

�
.

If Ni > 1, then:

Gi(f1, . . . , fm)�Gi(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm) =

1

N i

and if Ni = 1, then

Gi(f1, . . . , fm)�Gi(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm) = 1� 1

m
.

Similarly, if Ni0 > 0, then:

Gi0(f1, . . . , fm)�Gi0(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm) = � 1

N i0 + 1

and if Ni0 = 0, then

Gi0(f1, . . . , fm)�Gi(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm) = �

✓
1� 1

m

◆
.

Altogether, this implies that:

�(f1, . . . , fm)� �(f1, f2, . . . , fj�1, f
0
j , fj+1, . . . , fm) = u(fj ; f�j)� u(f 0

j ; f�j),

which shows that � is a potential function of the game. Since pure strategy equilibria exist in potential
games [Rosenthal, 1973, Monderer and Shapley, 1996], a pure strategy equilibrium must exist in the
game.

D.2 Proofs for Section 3.1

We next prove Proposition 2. The high-level intuition of the proof is as follows. By Lemma 5, we can
focus on one data representation x at a time. Let y⇤ = argmaxy P[y | x] be the Bayes optimal label
of x. The proof boils down to characterizing when the market outcome, fj(x) = y⇤ for j 2 [m], is
an equilibrium, and the equilibrium social loss is determined by whether this market outcome is an
equilibrium or not.

Proof of Proposition 2. Let DR be the marginal distribution of X with respect to the distribution
(X,Y ) ⇠ D. Let f1, . . . , fm be a pure-strategy equilibrium. The social loss is equal to:

SL(f1, . . . , fm) = E[`(fj⇤(x,y)(x), y)]

= E
x0⇠DR


E

(x,y)⇠D
[`(fj⇤(x,y)(x), y) | x = x0]

�

= E
x0⇠DR


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
,

where Dx0 denotes the conditional distribution (X,Y ) | X = x0 where (X,Y ) ⇠ D. Thus, to
analyze the overall social loss, we can separately analyze the social loss on each distribution Dx0

and then average across distributions. It suffices to show that EDx0 [`(fj⇤(x,y)(x), y)] = ↵(x0) if
↵(x0) < 1/m and zero if ↵(x0) > 1/m.

To compute the social loss on Dx0 , we first apply Lemma 5. This means that (f1(x0), . . . , fm(x0)) is
pure-strategy equilibrium with Dx0 . We characterize the equilibrium structure for Dx0 and use this
characterization to compute the equilibrium social loss.
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Equilibrium structure for Dx0 . For notational convenience, let yi := fi(x0) denote the label chosen
by model-provider i and let let y⇤ = argmaxy P[y | x0] be the Bayes optimal label for x0. We also
abuse notation slightly and let u(y1; y�j) be model-provider 1’s utility if they choose the label y1 for
x0 and the other model-provider’s choose y�j .

We first show that all model-providers choosing y⇤ is an equilibrium if and only if ↵(x0)  1/m.
Let’s fix yj = y⇤ for all j � 2 and look at model-provider 1’s utility. We see that u(y⇤; y�j) = 1/m
and u(1� y⇤; y�j) = ↵(x0). This means that y⇤ is a best-response (i.e., y⇤ 2 argmaxy u(y; y�j))
if and only if ↵(x0)  1/m.

We next show that if ↵(x0) < 1/m, then the market outcome yi = y⇤ for all i 2 [m] is the only
pure-strategy equilibrium. Let y1, . . . , ym be a pure-strategy equilibrium. It suffices to show that
y⇤ is the unique best response to y�j ; that is, that {y⇤} = argmaxy u(y; y�j). To show this, let m0

denote the size of the set {2  i  m | yi = y⇤}. First, if m0 = 0, then we have that

u(y⇤; y�j) = 1� ↵(x0) > 1/m = u(1� y⇤; y�j),

where 1 � ↵(x0) > 1/m follows from the fact that 1 � ↵(x0) � 1/2 � 1/m along with our
assumption that ↵(x0) 6= 1/m. This demonstrates that y⇤ is indeed the unique best response. If
m0 = m� 1, then we have that:

u(y⇤; y�j) = 1/m > ↵(x0) = u(1� y⇤; y�j),

as desired. Finally, if 1  m0  m� 2, then:

u(y⇤; y�j) =
1� ↵(x0)

m0 + 1
� 1� ↵(x0)

m� 1
>

1

m
> ↵(x0) >

↵(x0)

m�m0 = u(1� y⇤; y�j),

as desired.

Finally, we show that all model-providers choosing 1�y⇤ is never an equilibrium. Let’s fix yj = 1�y⇤

and look at model-provider 1’s utility. We see that:

u(y⇤; y�j) = 1� ↵(x0) >
↵(x0)

m
= u(1� y⇤; y�j),

which shows that y⇤ is the unique best response as desired.

Characterization of equilibrium social loss. It follows from (4) that the equilibrium social loss
E(x,y)⇠Dx0 [`(fj⇤(x,y)(x), y)] is ↵(x0) if all of the model-providers choose yi = y⇤, it is zero if a
nonzero number of model-providers choose y⇤ and a nonzero number of model-providers choose
1� y⇤, and it is 1� ↵(x0) if all of the model-providers choose 1� y⇤.

Let’s combine this with our equilibrium characterization results. If ↵(x0) < 1/m, then the unique
equilibrium is at yi = y⇤ so the equilibrium social loss is ↵(x) as desired. If ↵(x0) > 1/m, then
neither yi = y⇤ for all i 2 [m] nor yi = 1� y⇤ for all i 2 [m] is an equilibrium. Since there exists a
pure strategy equilibrium by Proposition 1, there must be a pure strategy equilibrium where a nonzero
number of model-providers choose y⇤ and a nonzero number of model-providers choose 1� y⇤. The
equilibrium social loss is thus zero.

Note when ↵(x0) = 1 � 1/m, there is actually an equilibrium where all of the model-providers
choose yi = y⇤, 0 and an equilibrium where a nonzero number of model-providers choose y⇤ and a
nonzero number of model-providers choose 1� y⇤; thus, the equilibrium social loss can be zero or
1/m.

D.3 Proofs for Section 3.3

We prove Proposition 3.
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Proof of Proposition 3. Let DR be the marginal distribution of X with respect to the distribution
(X,Y ) ⇠ D. Let f1, . . . , fm be a pure-strategy equilibrium. The social loss is equal to:

SL(f1, . . . , fm) = E[`(fj⇤(x,y)(x), y)]

= E
x0⇠DR


E

(x,y)⇠D
[`(fj⇤(x,y)(x), y) | x = x0]

�

= E
x0⇠DR


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
,

where Dx0 denotes the conditional distribution (X,Y ) | X = x0 where (X,Y ) ⇠ D. Thus, to
analyze the overall social loss, we can separately analyze the social loss on each distribution Dx0 and
then average across distributions. It suffices to show that

E
Dx0

"
KX

i=1

↵i(x) ·
h
↵i(x) <

c

m

i#
 E

Dx0
[`(fj⇤(x,y)(x), y)]  E

Dx0

"
KX

i=1

↵i(x) ·

↵i(x)  1

m

�#
.

To compute the social loss on Dx0 , we first apply Lemma 5. This means that (f1(x0), . . . , fm(x0)) is
pure-strategy equilibrium with Dx0 . We then prove properties of the equilibrium structure for Dx0 and
use these properties to bound the equilibrium social loss. For notational convenience, let yi := fi(x0)
denote the label chosen by model-provider i and let let y⇤ = argmaxy P[y | x0] be the Bayes optimal
label for x0. We also abuse notation slightly and let u(y1; y�j) be model-provider 1’s utility if they
choose the label y1 for x0 and the other model-provider’s choose y�j . We can rewrite:

E
Dx0

[`(fj⇤(x,y)(x), y)] = E
Dx0

"
KX

i=1

↵i(x) · [yj 6= i for all j 2 [m]]

#
.

We first prove the lower bound on EDx0 [`(fj⇤(x,y)(x), y)] and then we prove the upper bound on
EDx0 [`(fj⇤(x,y)(x), y)].

Proof of lower bound. Let y1, . . . , ym be a pure strategy equilibrium. To prove the lower bound, it
suffices to show that if ↵i(x) < c/m, then yj 6= i for all j 2 [m].

Assume for sake of contradiction that ↵i(x) < c/m and yj = i for some j 2 [m]. Let i0 =

argmaxi002{0,1,...,K�1}↵
i00(x) be the class with maximal conditional probability. By the definition

of c, we see that ↵i0(x) � c > c/m which also implies that i0 6= i. We split into two cases—(1)
yj0 6= i0 for all j0 2 {0, 1, . . . ,K � 1}, and (2) yj0 = i0 for some j0 2 {0, 1, . . . ,K � 1}—and
derive a contradiction in each case.

Consider the first case where yj0 6= i0 for all j0 2 {0, 1, . . . ,K � 1}. Then if model-provider j
switched from yj to i0, the difference in their utility would be bounded as:

u(i0; y�j)� u(yj ; y�j) � ↵i0(x)�
 
↵i0(x)

m
+ ↵i(x)

!

= ↵i0(x)

✓
1� 1

m

◆
� ↵i(x)

> c

✓
1� 1

m

◆
� c

m

= c

✓
1� 2

m

◆

� 0,

so yj is not a best-response for model-provider j, which is a contradiction.

Now, consider the second case, where yj0 = i0 for some j0 2 {0, 1, . . . ,K � 1}. If we compare the
utility when model-provider j chooses i0 versus yj as their action, the difference is utility can be
bounded as:

u(i0; y�j)� u(yj ; y�j) �
↵i0(x)

m
� ↵i(x) >

c

m
� c

m
= 0.
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y2 = 1� y⇤ y2 = y⇤

y1 = 1� y⇤ (wmax, wmin) (↵(x), 1� ↵(x))

y1 = y⇤ (1� ↵(x),↵(x)) (wmax, wmin)

Table 1: Let X = {x}, F = F binary
all , user decisions are noiseless, and user decisions are noiseless (i.e., c ! 0,

so user decisions are given by (7)). Suppose that there are m = 2 model-providers with market reputations wmin
and wmax, where wmax � wmin and wmax + wmin = 1. Let y⇤ = argmaxy P[y | x] be the Bayes optimal label
for x0. The table shows the game matrix when model-provider 1 chooses the label y1 and model provider 2
chooses the label y2.

so yj is not a best-response for model-provider j, which is a contradiction.

This proves the lower bound as desired.

Proof of upper bound. Let y1, . . . , ym be a pure strategy equilibrium. To prove the upper bound, it
suffices to show if ↵i(x) > 1/m, then yj = i for some j 2 [m]. Assume for sake of contradiction
that ↵i(x) > 1/m and yj 6= i for all j 2 [m]. For any set of actions y1, . . . , ym, the total utilityPm

j=1 u(yj ; y�j) = 1 sums to 1. Thus, some model provider j 2 [m] must have utility satisfying
u(yj ; y�j)  1/m. However, if model-provider j instead chose action i, then they would achieve
utility:

u(i; y�j) � ↵i(x) >
1

m
� u(yj ; y�j),

so yj is not a best-response for model-provider j, which is a contradiction. This proves the upper
bound as desired.

D.4 Proofs for Section B.1

A useful lemma is the following calculation of the game matrix when there is a single representation
X = {x}.

Lemma 6. Let X = {x}, and let F = Fbinary

all
. Suppose that there are m = 2 model-providers with

market reputations wmin and wmax, where wmax � wmin and wmax + wmin = 1. Suppose that user

decisions are noiseless (i.e., c ! 0, so user decisions are given by (7)). Then the game matrix is

specified by Table 1.

Proof. This follows from applying (7) and using the fact that `(y, y0) = [y 6= y0].

We show that pure strategy equilibria are no longer guaranteed to exist when model-providers have
unequal market reputations, even when there is a single representation X = {x}.

Lemma 7. Let X = {x} let F = Fbinary

all
. Suppose that there are m = 2 model-providers with

market reputations wmin and wmax, where wmax � wmin and wmax + wmin = 1. Suppose that user

decisions are noiseless (i.e., c ! 0, so user decisions are given by (7)). If ↵(x) > wmin, then a pure

strategy equilibrium does not exist.

Proof. For notational convenience, let yi := fi(x0) denote the label chosen by model-provider i and
let y⇤ = argmaxy P[y | x0] be the Bayes optimal label for x0. We also abuse notation slightly and let
ui(y; y0) be model-provider i’s utility if they choose the label y for x and the other model-providers
choose y0. The proof follows from the game matrix show in Table 1 (Lemma 6). Using the fact that
model-provider 1 must best-respond to model-provider 2’s action, this leaves y1 = 1�y⇤, y2 = 1�y⇤

and y1 = y⇤, y2 = y⇤. However, neither of these market outcomes captures a best-response for
model-provider 2: if y1 = 1� y⇤, then model-provider 2’s unique best response is y⇤; if y1 = y⇤,
then model-provider 2’s unique best response is 1� y⇤. This rules out the existence of a symmetric
or asymmetric pure strategy equilibrium.
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Given the lack of existence of pure strategy equilibria, we must turn to mixed strategies. A mixed
strategy equilibrium is guaranteed to exist since the game has finitely many actions Fbinary

all and finitely
many players m. Let (µ1, µ2, . . . , µm) denote a mixed strategy profile over Fbinary

all . We show the
following analogue of Lemma 5 that allows us to again decompose model-provider actions into
independent decisions about each representation x. To formalize this, let D be the data distribution,
and again let Dx be the conditional distribution of (X,Y ) when X = x, where (X,Y ) ⇠ D. Again,
let (Fbinary

all )x := {f0, f1} be the class of the (two) functions from a single representation x to {0, 1},
where f0(x) = 0 and f1(x) = 1. Given a mixed strategy profile µ and a representation x, we
define the conditional mixed strategy µx over (Fbinary

all )x := {f0, f1} to be defined so Pµx [fi] :=
Pf⇠µ[f(x) = i] for i 2 {0, 1}.

Lemma 8. Let X be a finite set of representations, let F = (Fbinary

all
), and let D be the distribution

over (X,Y ). For each x 2 X , let Dx be the conditional distribution of (X,Y ) given X = x,

where (X,Y ) ⇠ D, and let (Fbinary

all
)x := {f0, f1} be the class of the (two) functions from a single

representation x to {0, 1}, where f0(x) = 0 and f1(x) = 1. Suppose that user decisions are noiseless

(i.e., c ! 0, so user decisions are given by (3)). A strategy profile (µ1, µ2, . . . , µm) is an equilibrium

if and only if for every x 2 X , the market outcome (µx
1 , µ

x
2 , . . . , µ

x
m) (where µx

1 , . . ., µx
m are the

conditional mixed strategies defined above) is an equilibrium for (Fbinary

all
)x with data distribution

Dx.

Proof. The proof follows similarly to the proof of Lemma 8, but some minor generalizations to
account for mixed strategy equilibria. Let DR be the marginal distribution of X with respect to the
distribution (X,Y ) ⇠ D. Let DR be the marginal distribution of X with respect to the distribution
(X,Y ) ⇠ D. First, we write model-provider j’s utility as:

E
fj⇠µj

f�j⇠µ�j

[u(fj ; f�j)] = E
fj⇠µj

f�j⇠µ�j


E

(x,y)⇠D
[P[j⇤(x, y) = j]]

�
= E

x0⇠DR

2

6664
E

fj⇠µx0
j

f�j⇠µx0
�j


E

(x,y)⇠Dx0
[P[j⇤(x, y) = j]]

�
3

7775
.

(10)
where µ�j denotes the mixed strategies chosen by the other model-providers.

First we show that if µ1, µ2, . . . , µm is an equilibrium, then (µx0

1 , . . . , µx0

m) is an equilibrium for
(Fbinary

all )x
0

with data distribution Dx0 . Let fj be in supp(µj0). Assume for sake of contradiction that
(µx0

1 , . . . , µx0

m) is not an equilibrium. Then there exists j0 2 [m] such that model-provider j0 would
achieve higher utility on f1�fj0 (x

0) than ffj0 (x
0). Let f 0

j0 be the predictor given by f 0
j0(x) = fj0(x)

if x 6= x0 and f 0
j0(x

0) = 1� fj0(x0). By equation (10), this would mean that u(f 0
j0 ;µ�j0) is strictly

higher than u(fj0 ;µ�j0) which is a contradiction.

Next, we show that if (µx0

1 , . . . , µx0

m) is an equilibrium for (Fbinary
all )x

0
with data distribution Dx0

for all x0 2 X then µ1, . . . , µm is an equilibrium. Let fj be in supp(µj0). Assume for sake of
contradiction that there exists j0 such that u(f 0

j0 ;µ�j0) > u(fj ;µ�j0). By equation (9), there must
exist x0 such that Ef�j0⇠µx0

�j0

⇥
E(x,y)⇠Dx0 [P[j⇤(x, y) = j0]]

⇤
is higher for f 0

j0 than fj0 . This means

that (µx0

1 , . . . , µx0

m) is not an equilibrium, which is a contradiction.

We now prove Proposition 4.
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Proof of Proposition 4. Let DR be the marginal distribution of x with respect to the distribution
(x, y) ⇠ D. Let µ1, µ2 be a mixed strategy equilibrium. The social loss is equal to:

E
f1⇠µ1
f2⇠µ2

[SL(f1, f2)] = E[`(fj⇤(x,y)(x), y)]

= E
f1⇠µ1
f2⇠µ2


E

x0⇠DR


E

(x,y)⇠D
[`(fj⇤(x,y)(x), y) | x = x0]

��

= E
f1⇠µ1
f2⇠µ2


E

x0⇠DR


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

��

= E
x0⇠DR

2

64 E
f1⇠µ⇤

1
f2⇠µ⇤

2


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
3

75

= E
x0⇠DX

2

664 E
f1⇠µx0

1

f2⇠µx0
2


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
3

775

where Dx0 denotes the conditional distribution (X,Y ) | X = x0 where (X,Y ) ⇠ D and where
µx denotes the conditional mixed strategy (Fbinary

all )x :=
�
f0, f1

 
to be defined so Pµx [f i] :=

Pf⇠µ[f(x) = i] for i 2 {0, 1} Thus, to analyze the overall social loss, we can separately analyze the
social loss on each distribution Dx0 and then average across distributions. It suffices to show that:

E
f1⇠µx0

1

f2⇠µx0
2


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
=

(
↵(x0) if ↵(x0) < wmin
2(↵(x0)�wmin)·(wmax�↵(x))

(1�2·wmin)2
if ↵(x0) > wmin.

To compute the social loss on Dx0 , we first apply Lemma 8. This means that (µx0

1 , µx0

2 ) is mixed-
strategy equilibrium with Dx0 . We characterize the equilibrium structure for Dx0 and use this
characterization to compute the equilibrium social loss.

Our main technical ingredient is the game matrix in Table 1 (Lemma 6). We will slightly abuse
notation and view choosing the label y as the strategy of the model-provider. Accordingly, we view a
mixed strategy as a distribution over {0, 1}. For notational convenience, let yi := fi(x0) denote the
label chosen by model-provider i and let y⇤ = argmaxy P[y | x0] be the Bayes optimal label for x0.
We split into two cases: ↵(x0) < wmin and ↵(x0) > wmin.

Case 1: ↵(x0) < wmin. We claim that the unique equilibrium is a pure strategy equilibrium where
y1 = y2 = y⇤. First, if ↵(x) < wmin, we show that choosing y⇤ is a strictly dominant strategy
for model-provider 1. This follows from the fact that 1 � ↵(x) > wmax and wmax � wmin > ↵(x).
Thus, model-provider 1 must play a pure strategy where they always choose y1 = y⇤. When model-
provider 1 chooses y⇤, then the unique best response for model-provider 2 is also to choose y⇤ since
↵(x0) < wmin. This establishes that y1 = y2 = y⇤ is the unique equilibrium. This also implies that
the equilibrium social loss satisfies:

E
f1⇠µx0

1

f2⇠µx0
2


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
= ↵(x0)

as desired.

Case 2: ↵(x0) > wmin. Let p1 = Pµx0
1
[y1 = y⇤] and let p2 = Pµx0

2
[y2 = y⇤]. By Lemma 7, a pure

strategy equilibrium does not exist. Thus, we consider mixed strategies. Since pure strategy equilibria
do not exist, at least one of p1 and p2 must be strictly between zero and one. We compute p1 and p2,
splitting into two cases: (1) p1 > 0 and (2) p2 > 0.
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If p1 > 0, then we know that model-provider 1 must be indifferent between choosing y⇤ and 1� y⇤.
This means that:

p2↵(x
0) + (1� p2)wmax = (1� p2)(1� ↵(x0)) + p2wmax.

Solving for p2, we obtain:

p2 =
wmax � (1� ↵(x0))

2wmax � 1
=

↵(x0)� wmin

1� 2wmin
> 0.

If p2 > 0, then we know that model-provider 2 must be indifferent between choosing y⇤ and 1� y⇤.
This means that:

p1↵(x
0) + (1� p1)wmin = (1� p1)(1� ↵(x0)) + p1wmin.

Solving for p1, we obtain:

p1 =
(1� ↵(x0))� wmin

1� 2wmin
=

wmax � ↵(x)

1� 2wmin
> 0.

Putting this all together, we see that:

p1 =
wmax � ↵(x0)

1� 2wmin

p2 =
↵(x0)� wmin

1� 2wmin
,

and in fact p1 + p2 = 1.

Using this characterization of p1 and p2, we see that the equilibrium social loss is equal to:

E
f1⇠µx0

1

f2⇠µx0
2


E

(x,y)⇠Dx0
[`(fj⇤(x,y)(x), y)]

�
= ↵(x0)P[y1 = y⇤]P[y2 = y⇤] + (1� ↵(x0))P[y1 = 1� y⇤]P[y2 = 1� y⇤]

= ↵(x0)p1p2 + (1� ↵(x))(1� p1)(1� p2)

= ↵(x0)p1p2 + (1� ↵(x))p1p2
= p1p2

=
(↵(x0)� wmin) · (wmax � ↵(x))

(1� 2 · wmin)2
,

as desired.
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