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Abstract

Graphs are ubiquitous in encoding relational information of real-world objects
in many domains. Graph generation, whose purpose is to generate new graphs
from a distribution similar to the observed graphs, has received increasing attention
thanks to the recent advances of deep learning models. In this paper, we conduct
a comprehensive review on the existing literature of deep graph generation from
a variety of emerging methods to its wide application areas. Specifically, we
first formulate the problem of deep graph generation and discuss its difference
with several related graph learning tasks. Secondly, we divide the state-of-the-art
methods into three categories based on model architectures and summarize their
generation strategies. Thirdly, we introduce three key application areas of deep
graph generation. Lastly, we highlight challenges and opportunities in the future
study of deep graph generation.

1 Introduction

Graphs are ubiquitous in modeling relational and structural information of real-world objects in many
domains, ranging from social networks to chemical compounds. Generating realistic graphs therefore
has become a key technique to advance a variety of fields [1]. For example, in drug discovery and
chemical science, a fundamental yet challenging task is to generate novel, realistic molecular graphs
with desired properties (e.g., high drug-likeness and synthesis accessibility). Due to the discrete
and high-dimensional nature of graph structures, exploring the drug-like molecules on the chemical
space involves combinatorial optimization, as the size of the space is estimated to be 10%° [2]. In
this application, graph generation algorithms could help expedite the drug discovery process by
discovering new candidate molecules with desired properties.

Traditional graph generation models assume that real graphs obey certain statistical rules. These
models compute hand-crafted statistical features of existing graphs and generate new graphs with
similar features. However, this assumption oversimplifies the underlying distributions of graphs and
is thus not capable of capturing complex graph distributions in real scenarios. For example, the
Barabdsi-Albert model [3] assumes similar graphs follow the same empirical degree distribution, but
this model fails to capture other aspects (e.g., community structures) of real-world graphs. Recently,
there is an increasing interest in developing deep models for graph-structured data which enables
effective complex graph generation. To name a few, GraphRNN [4] treats graph generation as a
sequential generation problem and generates nodes and edges step by step; GraphVAE [5] proposes a
VAE-based graph generative model and generates new graphs in a one-shot manner; MoFlow [6]
designs an invertible mapping between the input graph and the latent space and generate the graph
(node feature and edge feature matrices) in one single step; MolGAN [7] designs a GAN-based
graph generative model where a discriminator is used to ensure the properties of the generated
graphs; GDSS [8] designs a score-based graph generative model which adds Gaussian noise to
both node features and structures and reconstructs from Gaussian noise to obtain generated graphs
during inference. Additionally, many other graph generative methods are utilized for deep graph
generation [9, 10, 11, 12, 13, 14].
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Figure 1: An overview of deep graph generation approaches: the encoder maps observed graphs into
a stochastic distribution; the sampler draws latent representations from that distribution; the decoder
receives latent codes and produces graphs.

Up to now, although many recent survey works have reviewed deep graph learning approaches,
most of them focus on graph representation learning [15, 16, 17] and little attention has been paid
to systematically review graph generation techniques. Two other surveys [18, 19] mostly focus
on the generation process and generative models while we focus on the entire spectrum of graph
generation from generative models, sampling strategies, to generation strategies. We also discuss
state-of-the-art techniques such as diffusion and score-based generative approaches. By categorizing
and discussing existing models of graph generation, we envision that this work will elucidate core
design considerations, discuss common approaches and their applications, and identify future research
directions in graph generation.

The remaining of this paper is structured as follows. Firstly, we formulate the problem of graph
generation and differentiate it from several closely related graph learning tasks (Section 2). Then,
we give an algorithm taxonomy that groups existing methods into three categories: latent variable
approaches, reinforcement learning approaches, and other graph generation models (Section 3). In
this section, we present a general framework, discuss common generation strategies in detail, and
introduce representative work of each type. Thirdly, we demonstrate how graph generation could
lead to great success in three promising application areas (Section 4). Finally, we conclude the paper
with challenges and future promises of deep graph generation (Section 5).

2 Problem Definition

We define a graph by a quadruplet G = (V, €, X, E), where V is the vertex set, &€ C )V X V is the
edge set, X € RYV*P is the node feature matrix, E € RV XN *F ig the edge attributes, and D, F are
the feature dimensionality. Given a set of M observed graphs G = {G;}} . eraph generation learns
the distribution of these graphs p(G), from which new graphs can be sampled Gyew ~ p(G).

Related problems. In the regime of graph learning, there are three problems that are closely
related to, but different from, deep graph generation. Here, we succinctly compare them with graph
generation and we refer readers of interest to relevant surveys for a comprehensive understanding of
these areas.

e Link prediction [20, 21] aims to predict the possibility of the missing links between a pair
of nodes in a graph. Some generative link prediction models estimate the distribution of edge
connectivity, and thus could be used for graph generation as well.

¢ Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

* Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.
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Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

¢ Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder—sampler—decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function fo(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function fg outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ~ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the
graph generating process is more complicated due to the discrete, non-Euclidean nature of graph
objects. Specifically, the decoders could be categorized into two categories: sequential generation
and one-hot generation. Sequential generation refers to generating graphs in a set of consecutive
steps, usually done nodes by nodes and edges by edges. One-shot generation, instead, refers to
generating the node feature and edge feature matrices in one single step.

It should be noted that not all methods include all of the components discussed in this framework.
For example, Generative Adversarial Networks (GANs) often do not include a specific encoder
component.



113
114

115
116
117
118

119
120
121

122
123

124
125
126
127

128
129
130

145
146
147

A Survey on Deep Graph Generation: Methods and Applications

3.1 Deep Generative Models

At first, we discuss the following five representative deep generative models, which aims to learn the
probability distribution of graphs so that we can sample new graphs from it.

Auto-Regressive models (AR). AR models factorize a joint distribution over N random variables
via the chain rule of probability. Specifically, this model factorizes the generation process as a
sequential step which determines the next step action given the current subgraph. The general
formulation of AR models is as follows:

N N
=[[»GF1GT.G5.--- . GE)) =] p(G] | GZ)), (1)

where G, = {GT,G7,--- ,GT_,} is the set of random variables in the previous steps. Since AR
works like sequential generation, applying AR models requires a pre-specified ordering 7 of nodes in
the graph.

Variational Autoencoders (VAEs). The VAE [30] estimates the distributions of graphs p(G) by
maximizing the Evidence Lower BOund (ELBO) as follows:

LAk = g, (z10) 108(po (G | 2)) = Dii(ge(2 | G) | po(2))), @)

where the former term is known as the reconstruction loss between the input and the reconstructed
graph, while the latter is the disentanglement enhancement term that drives g4(2z | G) to the prior
distribution py(z), usually a Gaussian distribution. The encoder p(z | G) and decoder ¢(G | z) are
typically parametrized by graph neural networks (e.g., GCN [31], GAT [32]).

Normalizing Flows. Normalizing flow estimates the density of graphs p(G) directly with an
invertible and deterministic mapping between the latent variables and the graphs via the change of
variable theorem [33, 34]. A typical instance of flow-based models takes the following form:

(€)= p(2) |der (24 )
a0

where ="~ is the Jacobian matrix. As the encoder f(() needs to be invertible, the decoder is

essentially f~!(z). Then, normalizing-flow-based models are usually trained by minimizing the
negative log-likelihood over the training data G.

) 3

Generative Adversarial Networks (GANs). The GAN model is another type of generative models,
especially popular in the computer vision domain [35]. It is an implicit generative model, which
learns to sample real graphs. GAN consists of two main components, namely, a generator fg for
generating realistic graphs and a discriminator fp for distinguishing between synthetic and real
graphs. Formally, its training objective is a min-max game as follows:

min max Loan(fa, o) = Egap(c)llog fo(G)] + Eznp(z)llog(l — fo(fa(2)))]- “

Diffusion models. Diffusion or score-based generative models are a new class of generative models
inspired by nonequilibrium thermodynamics [36, 37, 38]. Diffusion models contain two processes,
the forward and the reverse diffusion process. The forward diffusion process constantly adds noise
to the data sample x(, while the reverse diffusion process recreates the true data sample from a
Gaussian noise input z ~ A (0, I). Specifically, the forward diffusion process from step (¢ — 1) to
t is defined as:

(iEt | LTt 1) :N(flit; v1- Bixi—1, 5tI)> (5)
T
g(@17 | o) = H (@ | 1), 6)

where f3; € (0,1) controls the step size. Note that the reverse diffusion process q(x:—1 | ;) will
also be Gaussian if 3; is small enough. However, since ¢(x;—1 | ;) is intractable, we learn a model
pp to approximate these conditional probabilities, which is defined as:

po(Ti—1 | &) = N(@i—1; po(xe, t), Zo(x, 1)), @)
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We use the variational lower bound to optimize the negative log-likelihood:

q(z1.7 | fﬂo)]
—lo To) < Ey(ayplmg) [0 ————=| 8
820 (%0) < Eg(ay.rlzo) [ e p—— ®)
where
T
po(@o.r) = p(@r) [ po(@e1 | 20). ©)
t=1
The final objective takes expectation over ¢(xo) on both sides of Equation (8):
(@17 | 0)
Lvie = Eg(zo.r) {log pa(SCOT)] > —Eq(a,) log po(xo). (10)

3.2 Sampling Strategies

After learning a latent space for representing the input graphs, we sample new latent code so as to
manipulate the graphs to be generated. The sampling strategies could be divided into two categories,
random sampling and controllable sampling. Random sampling simply draws latent samples from
the prior distribution, in which the model learns to approximate the distribution of the observed graphs.
The latter, on the contrary, samples new graphs with controls (i.e. desired properties). Therefore, for
latent variable approaches, random sampling is relatively trivial, while controllable sampling usually
requires extra effort in algorithm design.

Controllable generation usually manipulates the randomly sampled z ~ p(z) or the encoded vector
z ~ p(z | G) in the latent space to obtain a final representation vector z, which is later decoded to a
graph with expected properties. There are three types of commonly used approaches:

* Disentangled sampling factorizes the latent vector z with each dimension z,, focusing on
one property p,,, following the disentanglement regularization that encourages the learnt latent
variables to be disentangled from each other. Therefore, varying one latent dimension z,, of the
latent vector z will lead to property change in the generated graphs.

* Conditional sampling introduces a conditional code c that explicitly controls the property of
generated graphs. In this case, the final representation z is usually the concatenation of z and c.

* Traverse-based sampling searches over the latent space by directly optimizing the continuous
latent vector z to obtain Z with specific properties or uses heuristic-based approach (e.g., linear
or nonlinear interpolation from z to obtain z), to control the property of the generated graphs.

3.3 Generation Strategies

Finally, the decoder restores the latent code back to graph structures. Due to the discrete, high-
dimensional, and unordered nature of graph data, the resulting non-differentiability hinders the
backpropagation of the graph decoder, unlike continuous generation in image or audio domains.
To address this issue, existing works take two types of generation strategies for graph generation,
one-shot generation and sequential generation.

One-shot generation. One-shot generation usually generates a new graph represented in an adja-
cency matrix with optional node and edge features in one single step. It is achieved by feeding the
latent representations to neural networks to obtain the adjacency and feature matrices. In practice,
various neural networks could be utilized, including Convolutional Neural Networks (CNN), Graph
Neural Networks (GNN), Multi-layer Perceptron (MLP) [39, 40, 41], according to different types
of feature matrices to be generated. For example, Du et al. [42] utilize 1D-CNN to decode the node
feature and 2D-CNN for the edge feature, and Flam-Shepherd et al. [40] jointly utilize a GNN and
a MLP for the decoder. The advantage of one-shot generation is that it generates the whole graph
in a single step without sequential dependency on node ordering, while it has to set a predefined
maximum number of nodes and may suffer from low scalability as it scales as O(N?) with respect to
N nodes in the graphs.

Sequential generation. In contrast to one-shot generation, sequential generation generates a graph
consecutively in a few steps. As there is no ordering naturally defined for graphs, sequential generation
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has to follow a certain ordering of nodes for the generation. This is usually done by generating a
probabilistic node feature and edge feature matrices while sampling step by step from the matrices
following a predefined node ordering (e.g., breadth-first search [43, 44]). Sequential generation enjoys
the benefit of flexibility, especially when the number of nodes to generate is unknown beforehand.
Therefore, it could be easily combined with constraint checking in each of the generation steps, when
the graph to be generated should obey certain restrictions. However, when generating a large graph
with a long sequence, the error will accumulate at each step, possibly resulting in discrepancies in the
final generated and observed graphs.

3.4 Discussion: Permutation Invariance and Equivariance

Graphs are inherently invariant with respect to permutation, which means that any arbitrary permuta-
tion on nodes should result in the same graph representation. As such, graph generative models need
to model permutation-invariant graph distributions. Under certain mild conditions, it is possible for
different generation models (e.g., GANs/VAEs [45], normalizing flows [46], diffusion or score-based
generative models [47], and energy-based models [48]) to achieve this goal. In most of these cases, a
simple graph neural network with a permutation-equivariant encoder, e.g., GCN [31] and GAT [32],
will suffice. This permutation-equivariance property ensures that when given a permuted graph, it
produces equivalently permuted node representation vectors. However, auto-regressive models often
require a node ordering, e.g. breath-first search in GraphRNN, it is nontrivial to achieve permutation
invariance for auto-regressive models.

3.5 Representative Work

In this subsection, we succinctly discuss a few representative works in each type of generative models
with an emphasis on how they handle controllable generation.

Auto-regressive models. AR models naturally generate graphs in a sequential way, while it requires
a specified node ordering. GraphRNN [4] leverages breath-first search to determine the node ordering
and generates nodes and its associated edges sequentially. In contrast, Bacciu et al. [49], Goyal et al.
[50], Bacciu and Podda [51] design edge-based auto-regressive models that generate each edge and
the nodes it connects sequentially. Additionally, since the auto-regressive model can determine the
action for the next step given the current subgraph, by formulating graph generation as a sequence of
the decision-making processes, it is commonly used as a policy network together with Reinforcement
Learning (RL). MolecularRNN [52] designs an RL environment with an auto-regressive model as the
policy network to generate new nodes and edges sequentially for new graphs. Rewards are designed
for controllable generation that generates graphs with desired properties.

Variational autoencoders. VAE is a simple yet flexible framework and could be adopted for
controllable sampling by modifying the loss function to enforce latent variables to be correlated with
properties of interest [53, 54, 55, 56]. MDVAE [54] designs a monotonic constraint between the latent
variables and the properties such that increasing the values of latent variables leads to increasing
the values of the properties. PCVAE [56] learns an invertible mapping between the latent variables
and the properties in which generating graphs with desired properties is as trivial as inverting the
mapping function. This approach could also proceed in an unsupervised fashion and has demonstrated
controllability over graph properties [41, 42, 57, 58].

The other approaches [59, 60, 61] leverage the learned continuous and meaningful latent space with
Bayesian optimization, search for latent vectors optimizing specific properties, and then decode the
graphs from the latent vectors. Du et al. [53] also introduces a new method that aims to control the
properties of the generated molecules via a smooth linear interpolation over the latent space.

Additionally, optimization-based methods are also developed to search latent vectors that possess
desired or optimal molecular properties. JT-VAE [61] performs Bayesian optimization on the latent
vector searching for molecular graphs with optimal properties. Kajino [62] circumvents the designs
for a complex network to generate valid graphs by introducing a graph grammar that encodes the hard
chemical constraint for molecular graphs. Yang et al. [63] combine a conditional VAE-based model
with adversarial training to incorporate semantic contexts in graph generation. Zhang et al. [64] work
on the generation of directed acyclic graphs with an asynchronous message passing scheme. Samanta
et al. [65] incorporate the 3D coordinates of molecular graphs into the model and thus is capable of
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generating both 2D graphs and 3D coordinates of the molecules. Lim et al. [66] especially take care
of one application scenario where a predefined subgraph is given and the rest of the graph needs to be
completed. Li et al. [67] introduce a new perspective to view the reconstruction of the VAE-based
model in graph generation as a balanced graph cut.

Normalizing flows. Normalizing flow is also a commonly used model in deep graph generation.
GraphNVP [68] first adapts normalizing flow to graph generation which encodes graph node feature
and edge feature matrices in the latent space and then reverses the flow to generate the graphs
represented by the node feature and edge features matrices. Nevertheless, it adopts one-shot generation
on molecular graph generation while failing to generate fully-valid molecules in the absence of the
validity constraint. MoFlow [6] also adopts one-shot generation but further designs a valency
correction as a post-processing step that corrects the generated invalid molecular graphs. This line of
work demonstrates the advantage of sequential generation in the sense that they are able to generate
syntactically valid new graphs, while one-shot generation may require post-processing since it does
not impose any constraint on the generated graphs. For controllable sampling, flow-based methods
also learn a continuous latent space and adopt optimization-based methods on the latent space to
search for latent vectors with expected properties. MoFlow [6] adopts the regression optimization
to optimize the latent vectors for desired properties. GraphDF [69] challenges the commonly used
approach that learns a continuous latent space for graph generation and designs a normalizing
flow-based approach that learns discrete latent variables.

Generative adversarial networks. GAN-based models by design allow easy implementation of
controllable sampling, e.g., by introducing a property discriminator for desired properties. Mol-
GAN [7] learns to sample the probability matrix for the node feature and edge feature, respectively.
It directly generates new graphs by taking the maximum likelihood of the nodes and edges. It also
designs a reward discriminator which determines the property score of the generated graphs. However,
there remains a paucity of GAN-based graph generative models most likely due to the difficulty
of designing generators. Guarino et al. [70] design a GAN-based model that learns hierarchical
representations of graphs in the discriminator network. Jin et al. [71] leverage adversarial training that
discriminates the generated graphs and the expected graphs. Pglster]l and Wachinger [72], Maziarka
et al. [73] introduce a cycle-consistency loss in the GAN-based model for graph generation. Fan and
Huang [74] propose a conditional GAN model for graph generation. Gamage et al. [75] propose a
GAN-based model that focuses on learning higher-order structures or motifs for the graph generation.
Yang et al. [76] generate target relation graphs modeling the underlying interrelationships among
time series.

Diffusion models. Diffusion or score-based generative models allow the generation of high-quality
data involving various data modalities, including images [77], audios [78], point clouds [27], etc.
Recently, diffusion models have been adopted to graph-structured data generation as well [8, 47].
Specifically, Niu et al. [47] design a score-based generative model that estimates the score of the graph
topology (adjacency matrix) and samples new graph topology by leveraging Langevin dynamics.
Its follow-up work GDSS [8] and DiGress [79] further consider generating the node feature vectors
and graph topology together. Unlike other diffusion models that train the energy function using a
score-matching objective function, GraphEBM [48] resorts to contrastive divergence and generates
new graphs by leveraging Langevin dynamics [80].

3.6 Other Approaches

While many models involve only one type of generative models for graph generation, it is also
possible to develop methods with hybrid generative models, enjoying the advantages of ensemble
models. For example, GraphAF [81] adopts normalizing flow in an auto-regressive model framework.
Additionally, other optimization or searching methods which directly sample from the data space
rather than the latent space are also introduced for graph generation [47, 48, 82, 83, 84, 85, 86, 87].
MARS [13] employs Markov Chain Monte Carlo sampling (MCMC) that iteratively edits the graphs
to optimize the objective (i.e. desired property). DST [9] directly optimizes the graph representation
(i.e. node feature matrix and edge feature matrix) while optimizing the property of the newly
generated graph.
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4 Applications

In this section, we discuss the real applications of graph generation. Specifically, we focus on three
concrete examples, molecule design, protein design, and program synthesis. We illustrate their
formulations in graph generation and how graph generation techniques could lead to success in
various real-world applications.

4.1 Molecule Design

In molecule generation, there are two goals for generative design: (1) graph generative methods
should generate syntactically valid molecules and (2) the generated molecule should possess certain
properties. Sequential generation strategy could ensure the validity of the generated molecules
by incorporating a valency check in each intermediate generation step. GraphAF [81] designs an
auto-regressive flow that takes an iterative sampling process and allows for valency check in each
step, thus achieving high validity in the generated molecules. However, one-shot generation may
suffer from the low validity of the generated molecules. GraphNVP [68] and GRF [88] first introduce
normalizing-flow-based models into molecular graph generation and design invertible mapping layers
for node features and edge features, while both suffering from the low validity of the generated
molecules due to the lack of valency constraint within one-hot generation. Moflow [6] improves over
GraphNVP with a post-valency correction step which solves the low-validity issues of the generated
molecules. For controllable generation, VAE- and Flow-based methods [6, 61] usually connect with
traverse-based sampling that searches over the learned continuous latent space for vectors/molecules
with desired properties. For GAN- and VAE-based methods [7, 54], they are suitable for conditional
generation (i.e. conditional sampling), where the latent code could control the properties of the
generated molecules. Furthermore, reinforcement learning approaches can achieve controllable
generation for molecule design. They are typically used in conjunction with another generative model
(e.g., AR, GANS) to generate molecules with desired properties by designing appropriate reward
functions [7, 14, 81].

4.2 Protein Design

Protein design is another critical application of graph generation. Protein is naturally a sequence
of amino acids and could be represented as graphs by constructing a pairwise contact map based
on 3D structure data, because the 3D structures of protein determine its functions. Specifically,
the contact map establishes edge connectivity when two nodes (residues) have contacted with each
other. In protein generation, early work [89] represents the pairwise contact map as grid data and
processes it with CNNs. However, representing the protein contact as a grid only considers adjacent
residues as neighbors, while graph representations could capture more local contact information [57].
Representative work [90] designs an auto-regressive model for protein sequence design given the
3D structures represented by graphs. Recently, Guo et al. [57] design a VAE-based graph generative
model that generates new protein contact maps and then decodes the 3D structure. Jin et al. [91]
introduce an iterative refinement GNN model that designs both the sequences and structures of the
Complementarity-Determining Regions (CDRs) of antibodies.

4.3 Program Synthesis

Graph generation can also be applied in program synthesis. Program synthesis aims at generating
programs from specifications consisting of natural language description and input output samples.
Traditional methods formulate program synthesis as a sequence-to-sequence problem and employ
language modeling techniques from the NLP community [92, 93]. However, unlike natural language
data, programming languages are well structured by their nature. To model the intrinsic structures
underlying programs, researchers propose the notion of program graphs [94, 95] that incorporate the
knowledge from program syntax and semantics. Specifically, the program graph can be constructed
from the Abstract Syntax Trees (AST) of programs with additional edges based on program semantics.
Regarding graph generation for programs, a natural idea is to synthesize programs by generating
ASTs [83, 96, 97, 98]. To enforce the validity of generated programs, most existing methods take the
sequential generation strategy: the model will choose one grammar rule to expand one non-terminal
node in the partially-generated graph. To determine the order of generation, most approaches seek
to expand the left-most, bottom most non-terminal node [83, 98, 99]. Take several representative
works as examples; Brockschmidt et al. [83] propose to augment the partially-generated ASTs with
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additional syntactic and semantic connections to incorporate prior knowledge from static program
analysis into the generation process. Brockschmidt et al. [83], Dai et al. [100] go beyond context-free
grammars and employ attributed grammars as the generation framework in order to encourage the
semantic validity of resulting program graphs.

5 Challenges and Opportunities

Despite remarkable progress, there is abundant room for further development of graph generation
methods and applications. Here, we identify challenges of prior work and outline future directions.

Evaluation pipeline. The evaluation of graph generative models is one of the main bottlenecks
that hinder the advances of the field of ever-increasing complexity [101, 102]. Like generation
in other domains, graph generation is hard to evaluate due to the absence of ground-truth labels.
Therefore, current evaluations mostly depend on prior knowledge (i.e. graph statistics, properties)
about the graphs, while the real-world applications typically require expensive evaluations, e.g.,
wet-lab experiments for molecule design. Furthermore, the selected statistics and properties are
typically task-specific, i.e., some statistics are important for one type of graph while may be irrelevant
for another type of graph. Further work is required to establish proper evaluation metrics and pipeline
for graph generation models.

Graph properties/rules design. Currently, the graph properties or rules utilized for controllable
generation are quite simple and limited to a small set. For example, in molecular graph design, the
molecular properties utilized are usually simple molecular descriptors, while expensive and real-world
drug discovery oracles, e.g., synthesis accessibility, protein-binding affinity score, could be studied in
the future.

Diverse graph types. Graph is ubiquitous in the world and many data could be interpreted as graph
structures, e.g., spatial networks (such as molecules, social networks, and circuit networks), temporal
graphs (such as traffic networks and dynamical system simulations), etc. Yet, different types of
graphs are usually largely distinct. However, the current study on graph generation mostly focuses on
molecular graphs while ignoring the diversity of real graph data, partially due to the low availability
of large repositories of graph data in many domains.

Scalability. The scalability of graph generative methods is usually bounded to the complexity of
the encoder and decoder design. Few effort have been made in this direction: Dai et al. [103], Kawai
et al. [104] leverage the sparsity of graph structures and parallel training for auto-regressive models.
However, the current decoder design with an one-hot generation strategy still has poor scalability due
to its O(IN?) complexity with regard to N nodes. In light of the fact that many real-world graph data,
e.g., proteins, materials, etc., are large in scales, designing scalable encoders and decoders is critical
yet under-explored.

Interpretability. Even though graph generation is capable of generating new graphs, the generation
process has low interpretability [105]. To improve the transparency of the generation model, we
could consider the following aspects of interpretability: interpreting a series of decision-making
process to improve certain property of a graph, interpreting how graph generative models learn
the latent space that control the properties of the generated graphs, and interpreting the complex
properties of the graph data with respect to the graph structures.

6 Concluding Remarks

In this paper, we present a comprehensive review of deep graph generation models and applications.
Specifically, we formulate the deep graph generation task through a unified encoder—sampler—decoder
framework and present an algorithm taxonomy with three key components. Following that, for each
component, we discuss the common graph generation techniques and their key characteristics in detail.
Thereafter, we focus on three application areas in which deep graph generation plays an important
role. Finally, we highlight challenges in current studies and discuss future research directions of deep
graph generation.
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