Appendix

A. Video Model Implementation

We adapted the pretrained Stable Video Diffusion model [1], which generates 25-frame videos at a
time. In our adaptation, the first 13 frames correspond to the stereo view 1, and the last 12 frames
correspond to the stereo view 2, captured from the two cameras. To condition the video model to
generate a stereo video, we modified the per-frame image embedding based on the viewing angle
of each output frame. Since each frame of the stereo videos should be paired but the video model
generates an odd number of frames, the first frame of the video model output is always the same as
the input and discarded at test time. The model training hyperparameters are given in Table 1. During
inference, we use 30 denoising steps with a constant classifier-free guidance of 1.0. Additional
qualitative results for the four tasks are shown in Fig 1, 2, 3 and 4.

H-Param Res Lr  Batch Size Train Steps  Clip Duration Fps  MotScr
Rotation (Full DS) 768x448  1le-5 4 16384 2.0 6 200
Rotation (2/3DS)  768x448  le-5 4 16384 2.0 6 200
Rotation (1/3DS)  768x448  le-5 3 15360 2.0 6 200

Scooping 768x448  le-5 4 16384 3.0 5 200

Sweeping 768x448  le-5 4 16384 3.0 5 200

Push-Shape 768x448  le-5 4 17408 2.0 6 200

Table 1: Hyperparameters for Video Model Training. Res: image and video resolution, Lr:
learning rate, Batch Size: batch size, Training Steps: training steps for the evaluation checkpoint,
Clip Duration: single demonstration video length in seconds, Fps: the video sub-sampling frame
rate and model fps parameter, MotScr: model motion score parameter.

B. Experimental Setup

The stereo camera setup consists of two Intel RealSense D435i cameras spaced approximately 660
mm apart at a 45° angle. The distance between the cameras and the table is about 760 mm. The
real-world data collection and the robot experiment setups are shown in Fig. 9, 10. The training
videos are recorded at a resolution of 1280x720 and are then cropped and resized to the appropriate
resolution for model input. The table surface used for data collection and experiments is covered
with a black cloth, which introduces variations in friction and increases uncertainty in the Push-
Shape experiments. For the rotation and scooping experiments, UFACTORY xArm 7 robots are
used, while URS5 robots are used for the sweeping and Push-Shape experiments. For calculating
the mIoU in the Push-Shape experiment, the view from the stereo camera 1 is used. In each trial
with multiple steps, the resulting image with the highest IoU with the target is used to calculate the
rotation error. In sweeping and push-shape experiments, the robot end-effector height is limited to
avoid robot collision with the table top.

C. Data Collection

For all tasks, the first frame of the human demonstration video is an image of the scene. The
subsequent frames include the human demonstrator using the tool to perform the manipulation. In
the Push-Shape demonstration, an object is pushed to a location in multiple steps. The final position
of the object is used as a mask and blended with the entire video for the target position. The objects
used in training and testing for different tasks are shown in Fig. 5, 6, 7 and 8.

D. Object Tracking

In the videos, the tool is tracked using MegaPose [2]. Utilizing a stereo setup, the center of the
tracked object from each camera are projected into 3D space as a straight line. The translation
component of the object in 3D space is determined by finding the midpoint between the projected
lines from the two cameras. The rotation component of the object is obtained by averaging the



object rotations from the two views. This refined object pose from the stereo setup enhances the
accuracy of the object’s depth measurement from the cameras. In the scooping task, only the handle
of the scooper is tracked to avoid inaccuracies due to occlusion by particles. In the sweeping and
Push-Shape tasks, the tool without the handle is tracked, as the handle is occluded by the human
hand. To obtain the tool trajectories for training the Diffusion Policy, the same stereo tracking is
applied to the demonstration videos.

E. Diffusion Policy Baseline

We use a CNN-based Diffusion Policy as our baseline, employing two pretrained ResNet-18 [3]
image encoders to process the stereo images of the scene. The input images have a resolution of
384 <224, similar to the original implementation resolution. We found that higher resolution input
images did not improve model performance.

References

[1] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. En-
glish, V. Voleti, A. Letts, et al. Stable video diffusion: Scaling latent video diffusion models to
large datasets. arXiv preprint arXiv:2311.15127, 2023.

[2] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,
M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render
& compare. arXiv preprint arXiv:2212.06870, 2022.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778,

2016.

Input Image Ours (Trajectory) Diffusion Policy (Trajectory)

Start End

Figure 1: Additional Rotation Qualitative Results. The trajectories of the end-effectors are pro-
jected onto the input image.
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Figure 2: Additional Scooping Qualitative Results. The trajectory of the end-effector is projected
onto the input image.
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Figure 3: Additional Sweeping Qualitative Results. The trajectory of the end-effector is projected
onto the input image.
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Figure 4: Additional Push-Shape Qualitative Results. The trajectory of the end-effector is pro-
jected onto the input image.
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Figure 5: Rotation Objects. The training set includes 14 real-world objects and 17 custom colored
shapes made out of foam. The testing set includes 10 challenging real-world objects.
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Figure 6: Scooping Objects. The training set includes 17 bowls, 8 colored beans and 4 real-world
objects. The testing set includes 8 bowls, 4 colored particles and 15 real-world distraction objects.
During data collection, both the real-world objects and inverted bowls are used as the single distrac-
tion object in the scene.
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Figure 7: Sweeping Objects. The training set includes 25 distraction objects and 6 colored beans,

with 5 to 6 distractions in the scene at a time during data collection. The testing set includes 15 real-
world distraction objects and 6 colored particles. The star is used as the target in the experiments.
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Figure 8: Push-Shape Objects. The training set includes all 26 capital letters of the alphabet, while
the testing set consists of 8 shapes, including digits and polygons.




Stereo

Camera 1
Stereo

Camera 2

Figure 9: Real-world Data Collection Setup. The data collection setup has the same camera
arrangement as the robot experiment setup.
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Figure 10: Real-world Robot Experiment Setup. The robot experiment setup includes the 3 robots
to perform all the experiments.
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