
PlayVirtual: Augmenting Cycle-Consistent Virtual
Trajectories for Reinforcement Learning (Appendix)

Tao Yu1∗ Cuiling Lan2† Wenjun Zeng2 Mingxiao Feng1 Zhizheng Zhang2 Zhibo Chen1†
1University of Science and Technology of China 2Microsoft Research Asia
yutao666@mail.ustc.edu.cn, {culan,wezeng}@microsoft.com

fmxustc@mail.ustc.edu.cn, zhizzhang@microsoft.com, chenzhibo@ustc.edu.cn

A More Implementation Details

A.1 Network Architecture

Network Architecture for Discrete Control Benchmark of Atari. For the discrete control bench-
mark of Atari, we use SPR [9] as our strong baseline (dubbed Baseline) and build our method on top
of SPR by augmenting cycle-consistent virtual trajectories for better representation learning.

SPR [9] has three main components: (online) encoder f(·), dynamics model (DM) h(·, ·), and policy
learning (Q-learning) head π(·). The encoder consists of three convolutional layers with ReLU
layer after each convolutional layer. The DM is composed of two convolutional layers with batch
normalization [5] after the first convolutional layer and ReLU after the second convolutional layer.
The Q-learning head is designed following Rainbow [4]. Rather than predicting representations
produced by the online encoder (by the DM), SPR computes target representations for future states
using a target encoder fm, whose parameters are an exponential moving average (EMA) of the online
encoder parameters. To obtain the "projection" metric space d (see Eq. (ii) in the main manuscript)
for future state prediction optimization, SPR uses online and target projection heads g(·) and gm(·)
to project online and target representations to a smaller latent space, and apply a prediction head q(·)
to the online projections to predict the target projections.

For our PlayVirtual, on top of SPR, we add a backward dynamics model (BDM) b(·, ·). For simplicity,
we use the same network architecture as the DM. To calculate the cycle consistency loss for the feature
representations (in a forward-backward trajectory) in a distance metric on spaceM, we can simply
use the cosine distance on the latent feature space, i.e., dM(z′t, zt) = 2 − 2

z′
t

∥z′
t∥

zt

∥zt∥ . As a design
alternative, we can use the "projection" metric space as in SPR [9] (discussed in the last paragraph)
to calculate the cosine distance on the projection space, i.e., dM(z′t, zt) = 2− 2

q(g(z′
t)

∥q(g(z′
t))∥

gm(zt)
∥gm(zt)∥ .

In our implementation, we could directly use zt (the start state of the virtual trajectory) as the target
feature representation. Motivated by SPR, for each trajectory, we use the feature representation
z̃t of a stochastic augmentation s̃t of the current video clip (observation) st, as the target feature
representation. Then, dM(z′t, z̃t) is the actual distance metric.

Network Architecture for Continuous Control Benchmark of DMControl. For the continuous
control benchmark of DMControl, considering the SPR is originally designed only for discrete
control, we build a SPR-like scheme SPR†as our baseline (dubbed Baseline) for continuous control
games. Particularly, we use the encoder and policy networks of CURL [7] as the basic networks.
Following SPR [9], we remove the contrastive loss in CURL and introduce BYOL [3] heads to build
SPR-like baseline scheme. We use the network architecture similar to the dynamics model in DBC
[11] to build the dynamics model (DM) in SPR†, where the DM consists of two fully connected
layers with an LN (layer normalization) layer and a ReLU after the first fully connected layer. The

∗This work was done when Tao Yu was an intern at Microsoft Research Asia.
†Corresponding Author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Algorithm 1 Training Algorithm for PlayVirtual

Require: denote parameters of an encoder f , a dynamics model h, a backward dynamics model b
and a policy learning head π, as θf , ξh, ξb and ω, respectively;

1: denote the number of prediction steps as K, the number of virtual trajectories as M ;
2: denote the prediction loss weight and the predefined maximum weight for cycle consistency loss

as λpred and λmax
cyc , respectively;

3: denote the warmup end iteration as iend;.
4: denote the replay buffer as D;
5: denote the interaction step index for Atari and the environment step index for DMControl as i;
6: randomly initialize all network parameters and make the reply buffer empty.
7: while train do
8: determine the action a ∼ π(f(s)) (based on policy) and interact with environment
9: record/collect experience D ← D ∪ (s,a, snext, r)

10: sample a sequence of (s,a, snext, r) ∼ D
11: Lcyc ← 0; Lpred ← 0; Lrl ← 0
12: zt ← f(st)
13: for j = 1, 2, ...,M do
14: {ǎ(j)t , ǎ

(j)
t+1, . . . , ǎ

(j)
t+K−1} ∼ A ▷ randomly sample a sequence of actions

15: ẑ
(j)
t ← zt

16: for k = 0, 1, ...,K − 1 do
17: ẑ

(j)
t+k+1 ← h(ẑ

(j)
t+k, ǎ

(j)
t+k) ▷ (forward) dynamics prediction

18: end for
19: z

′(j)
t+K ← ẑ

(j)
t+K

20: for k = K − 1,K − 2, ..., 0 do
21: z

′(j)
t+k ← b(z

′(j)
t+k+1, ǎ

(j)
t+k) ▷ backward dynamics prediction

22: end for
23: Lcyc ← Lcyc + d(z

′(j)
t , z

(j)
t) ▷ calculate cycle-consistency loss

24: end for
25: Lcyc ← Lcyc/M
26: calculate the forward prediction loss Lpred according to Eq. (2)
27: calculate the RL loss Lrl

28: warmup λcyc based on λmax
cyc , iend, i

29: Ltotal ← Lrl + λpredLpred + λcycLcyc

30: θf , ξh, ξb, ω ← Optimize((θf , ξh, ξb, ω),Ltotal)
31: end while

encoder has four convolutional layers (with a ReLU after each), followed by a fully connected layer,
an LN layer [1], and a hyperbolic tangent (tanh) activation. Similar to the design in SPR, we have a
projection head g(·), a prediction head q(·) for the (online) encoder, and a momentum encoder fm(·)
and a momentum projection head gm(·). The projection head and prediction head are both built by
two fully connected layers (with a ReLU layer after the first) of 512 hidden units for each.

For our PlayVirtual, we add a backward dynamics model (BDM) b(·, ·) which has the same architec-
ture as the DM. We have the same design as in the discrete control case of the distance metric dM on
spaceM.

A.2 Training Details

Training Algorithm. We describe the main training procedure in Algorithm 1. Note that for the
convenience of description, we parameterize the encoder f , dynamics model h, backward dynamics
model b, and policy π with θf , ξh, ξb, and ω, respectively.

Hyperparameters. We present the hyperparameters used for benchmarks of Atari and DMControl
in Table 8 and 9, respectively. We set them mainly following SPR [9] on Atari, and CURL [7] on
DMControl.

Loss Details. Our total loss is composed of three components: RL loss Lrl, prediction loss Lpred

and cycle loss Lcyc. The RL loss is only applied on real trajectories to update the encoder and the

2

policy learning head. The prediction loss is applied on real trajectories to update the encoder and
the DM. The cycle consistency loss acts only on virtual trajectories to update the encoder, the DM
and the BDM. Note that we experimentally observe that additionally applying the cycle consistency
loss on the real trajectories achieves only slight further improvement. For example, it achieves 0.1%
improvement on Atari in the median human-normalized score (i.e., median HNS).

Warmup Scheme. In the early stage of training, the dynamics model has not been trained well and
thus the cycle-consistency constraint may not be reliable. Therefore, inspired by [6, 8], we ramp
up the weight λcyc for the cycle-consistency loss from a small number close to 0 to a maximum
number λmax

cyc . i denotes the index of interaction step for Atari and the index of environment step
for DMControl. When i is smaller than iend, λcyc = λmax

cyc · exp(−5 · (1− i
iend

)2) according to a
Gaussian ramp-up curve before a warmup end iteration iend. Otherwise, λcyc = λmax

cyc . We set iend
to 50k. We set λpred = 1 and λmax

cyc = 1.

GPU Setup. In this work, we run each experiment on one GPU (NVIDIA Tesla V100, P40 or P100).

A.3 Environment and Code

In this work, we evaluate models on Atari [2] and DMControl [10], which are commonly used
benchmarks for discrete and continuous control, respectively. The two benchmarks do not involve
personally identifiable information or offensive contents. Our implementation code for Atari is based
on SPR [9] assert3, and that for DMControl is mainly based on CURL [7] assert4.

A.4 Error Bar of Main Results

Due to space limitation, we report the error bar (the mean and standard deviation over 10 random
seeds) only on DMControl-100k and report the mean scores on Atari-100k. Here, we report the
standard deviation over 15 random seeds for both Baseline (i.e., SPR run by us) and PlayVirtual on
Atari-100k in Table 1. We can see that the standard deviation of our PlayVirtual is comparable with
that of Baseline.

Table 1: The standard deviation (STD) comparison of Baseline and PlayVirtual on Atari-100k. The
STD is obtained from 15 runs with random seeds.

Game Baseline PlayVirtual Game Baseline PlayVirtual Game Baseline PlayVirtual
Alien 138.8 231.7 Crazy Climber 6275.9 4664.4 Kung Fu Master 4095.1 6198.7
Amidar 43.0 41.3 Demon Attack 207.6 332.4 Ms Pacman 546.9 330.7
Assault 138.8 50.2 Freeway 15.3 13.9 Pong 6.5 13.2
Asterix 229.8 170.5 Frostbite 1075.0 1196.3 Private Eye 0.0 23.5
Bank Heist 97.2 160.9 Gopher 251.9 276.6 Qbert 1053.2 952.6
Battle Zone 4027.3 5261.6 Hero 2940.3 2130.9 Road Runner 3940.8 3765.5
Boxing 13.6 19.9 Jamesbond 47.3 75.3 Seaquest 111.9 126.9
Breakout 3.9 4.4 Kangaroo 3551.8 3183.0 Up N Down 2848.4 10398.1
Chopper Command 337.0 318.7 Krull 323.7 524.6

B More Experimental Results and Analysis

B.1 More Ablation Studies

We present more ablation studies, including effectiveness of PlayVirtual at different environment
steps, warmup scheme, weight for cycle consistency loss and where to add the cycle consistency
constraint. We use the median HNS of the 26 Atari games and the median score of the 6 DMControl
environments to measure the overall performance on Atari and DMControl, respectively. We run
each game in Atari with 15 random seeds. To save computational resource, we run each environment
in DMControl with 5 random seeds.

Effectiveness of PlayVirtual at Different Environment Steps. To further benchmark PlayVirtual’s
data efficiency, we compare the testing performance in every 5k environment steps at the first 100k

3Link: https://github.com/mila-iqia/spr, licensed under the MIT License.
4Link: https://github.com/MishaLaskin/curl, licensed under the MIT License.

3

https://github.com/mila-iqia/spr
https://github.com/MishaLaskin/curl

Figure 1: Test performance comparison on DMControl where the lines denote the mean score and the
shadow indicates the corresponding standard deviation (obtained by running each environment with
5 random seeds). Our PlayVirtual (marked with blue) outperforms Baseline (marked with orange) in
most environments by a large margin at different environment steps.

on DMControl. Figure 1 shows the test performance curves of Baseline (SPR†) and PlayVirtual. We
can see that our PlayVirtual performs better than Baseline in most environments, where the curves of
PlayVirtual outperform Baseline by a large margin on "reacher, easy", "walker, wall", and "ball in
cup, catch" environments.

Effectiveness of the Warmup for λcyc. Instead of setting λcyc to be a predefined value λmax
cyc , as

described in Appendix A.2, we ramp up the weight λcyc in training. We compare the performance of
our PlayVirtual without using warmup and with warmup in Table 2, which shows that warmup can
benefit the training and results in better performance.

Table 2: Influence of warmup for the weight λcyc w.r.t. the cycle consistency loss.

Model Atari-100k DMControl-100k
Baseline 37.1 728.0
PlayVirtual(w/o warmup) 42.5 749.5
PlayVirtual 47.2 797.0

Influence of Predefined Weight λmax
cyc w.r.t. the Cycle Consistency Loss. We set a maximum

weight value λmax
cyc for the cycle consistency loss in the warmup scheme. We study the influence of

this hyperparameter in Table 3. We find that λmax
cyc = 1 provides superior performance for both Atari

and DMControl.

Where to Add the Cycle Consistency Constraint? For the cycle consistency constraint, we
can add this constraint at the end step (i.e., dM(z′t, z̃t) at t) or at every step (e.g., dM(z′t, z̃t) +∑k=K−1

k=1 dM(z′t+k, ẑt+k)) w.r.t. the backward trajectory (see Figure 1 in our main manuscript for
better understanding). Table 4 shows the performance for the two cases. We find their results are
similar, where the end-step case is slightly better than the every-step case. A possible explanation is
that the estimated states from the DM may be not accurate and the supervision from them in every step

4

Table 3: Influence of predefined weight λmax
cyc w.r.t. the cycle consistency loss.

λmax
cyc 0 0.1 1 2 10

Atari-100k 37.1 40.7 47.2 45.5 41.9
DMC-100k 723.0 777.0 797.0 740.5 763.5

(besides the end-step) may bring side-effect. For simplicity, we add the cycle consistency constraint
only at the end-step where the state z̃t (which is obtained from the observation st) is reliable.

Table 4: Ablation study on where to add the cycle consistency constraint.

Model Atari-100k DMControl-100k
Baseline 37.1 728.0
PlayVirtual(every step) 46.1 781.0
PlayVirtual(end step) 47.2 797.0

B.2 Complexity

We compare the complexity of PlayVirtual with Baseline in terms of running time and the number
of parameters. The inference time of PlayVirtual is exactly the same as Baseline, since the network
architecture of their encoder and the policy learning head are the same, where the auxiliary task is
discarded in test. Averagely, our method increases Baseline’s training time by about 6% on Atari and
12% on DMControl, which is acceptable.

PlayVirtual introduces a backward dynamics model on top of Baseline in training. PlayVirtual has
a very close number of parameters to that of Baseline on DMControl. For example, on "cartpole,
swingup" (DMControl), PlayVirtual has 25.86M parameters while Baseline has 25.81M parameters.
On "pong" (Atari), PlayVirtual has 3.91M parameters while Baseline has 3.83M parameters.

C More Discussion

How Does PlayVirtual Avoid Trivial Solutions in the Latent Space? Our proposed method does
not fall into trivial solutions (such as a constant representation vector) due to the following reasons.
(i) We adopt the policy learning (RL) loss to update the encoder to prevent it from falling into this
trivial solution. (ii) We also do inference for the dynamics model using real trajectories and supervise
the prediction with the representations of the groundtruth states. (iii) We also adopt a target encoder
and stop gradient scheme as in SPR [9] and BYOL [3] to avoid the representation collapse.

Performance of Dynamics Model. We conduct an evaluation on the dynamics model (DM).
Particularly, after 100k environment steps training, we calculate the average prediction mean squared
error (MSE) of DM in latent space over 1000 transitions. The evaluation is on a subset of DMControl
environments with 5 random seeds. The comparison results of Baseline (SPR†) and PlayVirtual are
shown in Table 5. We can see that our models achieve better prediction performance than Baseline.
Thanks to our cycle-consistency regularized virtual trajectories generation, we safely augment the
trajectories for learning better state representations, which also results in a stronger dynamics model.

Table 5: Evaluation on dynamics models in Baseline and our method. The mean squared error (MSE)
results of dynamics prediction are reported.

MSE Cartpole, swingup Reacher, easy Cheetah, run
Baseline 0.2517 0.3920 0.0731
PlayVirtual 0.2357 0.3633 0.0672

5

Performance of Learned Representations. Besides the final performance reported in our main
manuscript, we further evaluate the state representations by studying which kind of representations
can better promote the policy learning. As shown in Table 6, we consider three schemes. (i) For
None, models are trained from scratch with only RL loss (i.e., Lrl). (ii) For Baseline Encoder,
models are trained with only RL loss while their encoders are initialized with (100k environment
steps) SPR†-pretrained encoder parameters, and these encoders are fixed during training. (iii) For
PlayVirtual Encoder, the setting is similar to (ii) except for initializing the encoders with PlayVirtual-
pretrained encoder parameters. We test the 100k-step performance (i.e., scores) on a subset of
DMControl environments with 5 random seeds. As shown in Table 6, we can observe that the model
whose encoder is initialized by a pretrained PlayVirtual Encoder performs better than that of Baseline
Encoder and non-pretrained non-fixed encoder (i.e., None). This observation demonstrates the state
representations learned by our method are more helpful to the policy learning.

Table 6: Evaluation on learned representations. The 100k-step scores of models with different
pretrained encoders are reported.

Initialization Cartpole, swingup Reacher, easy Cheetah, run
None 796 ± 60 730 ± 185 388 ± 89
Baseline Encoder 839 ± 24 517 ± 141 478 ± 30
PlayVirtual Encoder 847 ± 31 828 ± 67 512 ± 31

Method of Action Sampling. In this work, we uniformly sample actions from the action space when
generating virtual trajectories. Although the study of action sampling is not the focus of this work,
we do evaluate other action sampling methods such as adding zero-mean Gaussian noise N (0, σ) to
the original actions in the real trajectories. We conduct the experiment with 5 random seeds. The
results in Table 7 show that using uniformly sampled actions (i.e., Random Action) achieves higher
performance than the above-mentioned Gaussian-noise perturbed actions (i.e., Perturbed Action
(σ)). This maybe because random actions can "explore" more states for boosting representation
learning. Further, there can be more advanced sampling methods such as surprise-based sampling or
policy-guided sampling. We leave the study on them as future work.

Table 7: Study on action sampling methods in generating virtual trajectories. Perturbed Action
(σ) denotes adding N (0, σ) Gaussian noise to the original actions, while Random Action indicates
uniformly sampled actions. We report the median scores across 6 DMControl environments.

DMControl Perturbed Action (0.01) Perturbed Action (0.02) Perturbed Action (0.05) Random Action (Ours)
Median Score 732.0 747.0 764.0 797.0

Why Do We Predict Dynamics in the Latent Space? We predict environment dynamics in the
latent space instead of the observation space for two reasons. (i) For high-dimensional control tasks
such as image-based RL, we expect to learn compact and informative representations that exclude
control-irrelevant information to better serve policy learning. If we stay in the observation space, the
representations would include control-irrelevant information to reconstruct some control-irrelevant
details, which distracts RL algorithms and slows down the policy learning speed [11]. (ii) Staying in
the latent space requires less computational cost as the dimension is lower.

Application and Limitation. Our proposed method PlayVirtual, which augments cycle-consistent
virtual trajectories, is generic and can be applied to many existing RL frameworks. In this work,
we apply it on top of two model-free methods: SPR for discrete control benchmark and on top of a
variant of SPR, i.e., SPR†for continuous control benchmark. But it is not limited to the two baselines.
Our method should be applicable to model-based RL methods to improve data efficiency. We leave
the implementation on top of other model-free or model-based baselines as future work. However, our
method also bears some limitations such as not excelling in non-deterministic environments where the
environment dynamics is difficult to be modeled and the cycle consistency in the forward-backward
trajectory may be hard to meet.

6

D Potential Societal Impact

Deep reinforcement learning (RL) has broad applications, including games, robotics, healthcare,
dialog systems, etc. Learning good feature representations is important for deep RL. However,
with limited experience, RL often suffers from data inefficiency for training. In this work, we
propose a general method, dubbed PlayVirtual, which augments cycle-consistent virtual trajectories
to enhance the data efficiency for RL feature representation learning. We have demonstrated the
effectiveness of our PlayVirtual, which achieves the best performance on both discrete control
benchmark and continuous control benchmark. We believe our technique will promote the progress
of RL applications and inspire more interesting works on improving the data efficiency for RL.
Meanwhile, for image-based RL, systems should be developed following responsible AI policies to
be fair and safe.

7

Table 8: Hyperparameters used for Atari.

Hyperparameter Value
Gray-scaling True
Frame stack 4
Observation downsampling (84, 84)
Augmentation Random shift & intensity
Action repeat 4
Training steps 100K
Max frames per episode 108K
Reply buffer size 100K
Minimum replay size for sampling 2000
Mini-batch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer: ϵ 0.00015
Max gradient norm 10
Update Distributional Q
Dueling True
Support of Q-distribution 51 bins
Discount factor 0.99
Reward clipping Frame stack [-1, 1]
Priority exponent 0.5
Priority correction 0.4→ 1
Exploration Noisy nets
Noisy nets parameter 0.5
Evaluation trajectories 100
Replay period every 1 step
Updates per step 2
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8 × 8, 4 × 4, 3 × 3
Q network: stride 4, 2, 1
Q network: hidden units 256
Target network update period 1
τ (EMA coefficient) 0

Additional Hyperparameters in PlayVirtual
K (number of prediction steps) 9
M (number of virtual trajectories) 2|A| (two times of action space size)
λpred (weight for prediction loss) 1
λmax
cyc (a weight related to cycle consistency loss) 1

Warmup Gaussian ramp-up (iend=50K)

8

Table 9: Hyperparameters used for DMControl.

Hyperparameter Value
Frame stack 3
Observation rendering (100, 100)
Observation downsampling (84, 84)
Augmentation Random crop & intensity
Replay buffer size 100000
Initial exploration steps 1000
Action repeat 2 finger-spin and walker-walk;

8 cartpole-swingup;
4 otherwise

Evaluation episodes 10
Optimizer Adam
(β1, β2)→ (θf , ξh, ξb, ω) (0.9, 0.999)
(β1, β2)→ (α) (temperature in SAC) (0.5, 0.999)
Learning rate (θf , ω) 0.0002 cheetah-run

0.001 otherwise
Learning rate (θf , ξh, ξb) 0.0001 cheetah-run

0.0005 otherwise
Learning rate (α) 0.0001
Policy batch size (θf , ω) 512
Auxiliary batch size (θf , ξh, ξb) 128
Q-function EMA τ 0.01
Critic target update freq 2
Discount factor 0.99
Initial temperature 0.1
Target network update period 1
Target network EMA τ 0.05

Additional Hyperparameters in PlayVirtual
K (number of prediction steps) 6
M (number of virtual trajectories) 10
λpred (weight for prediction loss) 1
λmax
cyc (a weight related to cycle consistency loss) 1

Warmup Gaussian ramp-up (iend=50K)

9

References
[1] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

[3] Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., kavukcuoglu, k., Munos, R., and Valko,
M. Bootstrap your own latent - a new approach to self-supervised learning. In Advances in
Neural Information Processing Systems, 2020.

[4] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D.,
Piot, B., Azar, M., and Silver, D. Rainbow: Combining improvements in deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[5] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456. PMLR,
2015.

[6] Laine, S. and Aila, T. Temporal ensembling for semi-supervised learning. In International
Conference on Learning Representations, 2017.

[7] Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, pp. 5639–5650.
PMLR, 2020.

[8] Qiao, S., Shen, W., Zhang, Z., Wang, B., and Yuille, A. Deep co-training for semi-supervised
image recognition. In Proceedings of the European Conference on Computer Vision (eccv), pp.
135–152, 2018.

[9] Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A., and Bachman, P. Data-efficient
reinforcement learning with self-predictive representations. In International Conference on
Learning Representations, 2021.

[10] Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[11] Zhang, A., McAllister, R. T., Calandra, R., Gal, Y., and Levine, S. Learning invariant repre-
sentations for reinforcement learning without reconstruction. In International Conference on
Learning Representations, 2021.

10

	More Implementation Details
	Network Architecture
	Training Details
	Environment and Code
	Error Bar of Main Results

	More Experimental Results and Analysis
	More Ablation Studies
	Complexity

	More Discussion
	Potential Societal Impact

