A Proofs of Upper Bounds

In this section, we provide the proofs of sample complexity upper bounds.
A.1 Proof of Theorem 4.2

We will first introduce a lemma to show that for the planning module Algorithm 1, if it is guaranteed
that the estimation @ is close to the true parameter 8*, then the estimated value function is optimistic.
Also the gap between the optimal value function and the value function of the output policy {m), }/_,
could be controlled by the summation of UCB bonus term.

Lemma A.1. Let 6,3, 8 be as defined in Algorithm 1. Suppose there exists some event & such that
||6* — 8]|ss < (8 on this event. Then on this event, for all s € S, Vi(s) > V{*(s; ), where V; is the
output value function for Algorithm 1. We also have that

H
Vils) - Vi (s) < E[me{g, 2801411 (5 () 1) w}
h=1

where the policy m = {ﬂ'h,}le is generated by the planning module Algorithm 1 and V}, is the value
function calculated on Line 5 in Algorithm 1.

Next we will give the lemmas on how to guarantee the condition of Lemma A.1 and how to utilize
the result of that lemma to control the final policy error V;*(s1;r) — Vi (s1;7) where the policy 7 is
output of the planning phase. We start with Algorithm 2, which uses the Hoeffding bonus.

Firstly, the next lemma shows how to guarantee the condition in Lemma A.1.

Lemma A.2 (Confidence interval, Hoeffding). For Algorithm 2, let A, 3 be as defined in Theorem 4.2,
then with probability at least 1 — 0/3, |0 — 0|/, , < B forany k € [K + 1].

Secondly, based on the lemma above, we find that the policy error during the planning phase is
controlled by a summation of the UCB terms. Since from the intuition, the exploration driven
reward function (4.2) is the UCB term divided by H, the policy error during the planning phase
can be converted to the value function V}* in the exploration phase. The next lemma shows that the
summation of V}¥ over K iterations is sub-linear to K, thus the policy error during the planning phase
should be small.

Lemma A.3 (Summation, Hoeffding). Set the parameters of Algorithm 2 as that of Theorem 4.2. If
the condition in Lemma A.2 holds, then with probability at least 1 — §/3, the summation of the value
function V;*(s¥) during the exploration phase is controlled by

K
> Vi (st) < 88/ HEKdlog(1 + KH3B?/d)
k=1

+8BHdlog(1 + KH?B?) + 2H+\/2HK log(1/6).
Equipped with these lemmas, we are about to prove Theorem 4.2.
Proof of Theorem 4.2. In the following proof, we condition on the events in Lemma A.2 and

Lemma A.3 which holds with probability at least 1 — 26/3 by taking the union bound. Apply-
ing Lemma A.1 to the final planning phase, we have

H
Vi(sir) = Vit (sir) < Valsir) = V(i) < E{Z min{H, 254y, ., (sn, ma(sn))ls 1 3

1,K+1
h=1

I
(A.1)

where the expectation is taken condition on initial state s and policy m generated by the planning
phase. Since 31, = X1 g1 forall k € [K], we can guarantee that |[1v;, , (sn, T (sh))[lg-1 <

1,K+1
l14vi i1 (8, Th(sn))|| = - Recall the exploration driven reward function is defined by
1,

{28
rF(s,a) = min {17 o \/fesgg[gﬁ{_h] I#s(s,0) ;1 } (A3) (A2)
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one can easily verify that min{ H, 23||pv; , , (s, Wh(sh))”Ef}c} < Hr¥(sp, mh(sp)). Therefore for

any k € [K] episode, we can bound the term I; using the value function V{"(s; {rF}L ) of the
output policy 7 in the planning phase given the {r,’f}thl as the reward function, i.e.

H
I < E[Z Hrﬁ(sh,wh(sh))} = HV (s; {rf}e_)). (A3)
h=1

Plugging the bound of I; back into (A.1) then taking the expectation over the initial state distribution
1, we have for any k € [K],

ESNM[VF(&T) - Vlﬂ<5§ 7")] < HEsp [V1W(5§ {T}’i}zzﬂ]
= H(V7 (st frkHin) = W sk (Y y))
+ HEg[VY" (55 {Tﬁ}izl)]

Hence
H K
EolV7 (si7) = V7 (si7)] < 22 > (W sk {ri i) — v (s {rf} i)
k=1
+ EonlV7 (53 {rk o)) (A4)

Since Vi"(s; {r¥}¥_,) < H for all k € [K],s € S, by Azuma-Hoeffding’s inequality, with
probability at least 1 — 6/3,

K

Z (Es~u V1" (s; {Ti’i}gzl)] - Vfr(Slf; {72}2:1)) < H+/2Klog(3/9). (A.5)

k=1

By plugging (A.5) into (A.4), we have
g X
Eonn[Vi"(s57) = V" (s57)] < X Z Vlﬂ(slfé {TZ}Z:Q + H2\/ 2log(3/0)/K.
k=1

Applying Lemma A.l to the exploration phase, for any k-th episode, Vi™(sy;{rf}i_) <
V1 (ks {rkk_ ) < VIE(sk), thus replacing the value function V;* with the estimated value function
V, we have

K
EaulVE (s57) = VT (5:7)] < 2 30 V() + H2 /2 108(3/0) /K. (A6)
k=1

Finally by Lemma A.3 we can bound the summation over V¥, hence

Eoop[Vi(537) — Vi (s37)] < H?\/21og(3/6)/K + 88/ H3dlog(1 + KH3B2/d)/K
+ 8BdH?log(1 + KH?*B?)/K + 2H*\/2H log(1/6)/ K

and by taking union bound, the result holds with probability at least 1 — . Recall the setting of
B~ O(H+/d) as in Theorem 4.2, let K = O(H?d?e2), the policy error E.,,[Vi* (s;7) — V™ (s;7)]
is bounded by e. O

A.2 Proof of Corollary 4.4

Proof of Corollary 4.4. Following the proof of Theorem 4.2, since for all x € R?, [|x||; < [x[2 <

V/d||x||; it follows that
—1/2
[vis (s (s s pr = 113 v, (snmn(sn)) |2

<Vd||z]; K+1'¢Vh+1(3ha7Th(3h))||1- (A7)
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We denote ﬂﬁ as the result using the ¢; norm as the surrogate objective function in this optimization
problem (4.5), i.e.

~ 2
uf = argmax S (s, ab),
FES—[0,H—h]

then (A.7) yields
[9vias (s T (sl < VAR 190 (s 7 (50))
< V|5 s (s mn(sn))
< VIS g (snom(sn)) 12
< VIS W (sn, (sn)) 2,

where the second inequality comes from Eh is the solution in (4.5), the third inequality comes from

the fact that ||x||; < ||x||2 and the forth inequality comes from the definition that u}. Then (A.3) is
changed to be

I, < HVAV (s, {rith)-

Noticing that comparing to the original result, there’s an additional v/d factor which yields (A.7)

B[V (s37) — Vi (557)] < ﬂ > VF(sh) + H?\/2d1og(3/5)/ K.

k=1

Then it is easy to show that using ¢; as the surrogate objective function, the sample complexity of
Algorithm 2 turns out to be O( H?d3e~2) O

A.3 Proof of Theorem 5.1

We are going to analyze Algorithm 3 and provide the proof of Theorem 5.1. Following the proof of

Theorem 4.2, we only need to revise Lemmas A.2 and A.3 to continue the proof of Theorem 5.1.

Lemma A.4 (Confidence interval, Bernstein). Let 3, B , E , 3 and \ be defined as Theorem 5.1, then

with probability at least 1 — §/3, for all k € [K + 1],

||0* - elf”f]l,C < [37 He* - eka;lk < Ba ||0* - ek”f]lk < 57 He* - 0K+1||21,K+1 < /65

(A.8)

and HVthk_‘_ﬂ(S, a) - Vlfi(sv a)‘ < Ei]i(& a)'

Lemma A.5 (Summation, Bernstein). For Algorithm 2, setting its parameters as in Lemma A.2,

with probability at least 1 — §/3, the summation of the value function during exploration phase is
controlled by

V(Y < O(VH3Kd + HIVE) + o(VK).

M=

k=1

Proof of Theorem 5.1. The proof is almost the same as the proof of Theorem 4.2 by replacing
Lemma A.2 with Lemma A.4, Lemma A.3 with Lemma A.5. In detail, following the same method,
(A.6) works for Algorithm 3 under the condition in Lemma A.4 holds. Therefore, by using Lemma A.5
instead of Lemma A.3, with probability at least 1 — ¢,

K
EonnlVE (5:7) — W (5i7)] < 2 S0 Vi (s4) + H2/2108(3/9) /K

k=1

< (5((\/H4d2 + \/ﬁ)/@).

Letting K = 5(H 4d(H + d)e=?), the policy error for the planning phase could be controlled by
Eonpn[Vi" (s57) = V" (si7)] < e -
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A4 Proof of Corollary 5.3

Proof of Corollary 5.3. The proof is almost the same as proof of Corollary 4.4, by adding the
additional dependency d into the regret bound achieved by Theorem 5.1, it’s easy to verify that the

sample complexity using the ¢1 norm as the surrogate function (4.5) is O(H*d2(H + d)e~2) O

B Missing Proofs in Appendix A
B.1 Filtration

For the simplicity of further proof, we define the event filtration here as
Hk—1 E  kyh—1
Gne = {{5f7 af i=1,k=1> {sivai }isi t,

it is easy to verify that SE is Gp41,5-measurable. Also, since 7k is G, ,-measurable for all h € [H],

aﬁ = 7;‘;(52) is also Gj41 ,-measurable. Also, for any function f < R built on G, , such as

thﬂ., “Z? f(sf 1) — [Pf](sf, af) is Gpi1,k-measurable and it is also a zero-mean R-sub-Gaussian
conditioned on Gp, 41 .

Since G415 = G1,k+1, we could arrange the filtration as

g = {gl,lv e ;gH,lv e ;gl,ka T 7gh,k7 e gH,k; e 7g1,k‘+17 T 7gH,K) gl,KJrl}v
and we will use G as the filtration set for all of the proofs in the following section and it is obvious
that G; g1 contains all information we collect during the exploration phase.

B.2 Proof of Lemma A.1

Proof of Lemma A.1. We prove this lemma by induction on time step h. Indeed, when h = H + 1,
Viry1(s) = Vi, 1(s;7) = 0 by definition. Suppose for h € [H], Vi11(s) > Vi¥ (s;7), then
following the update rule of () function in Algorithm 1, we have

Qh(sa a) - QZ(S7G;T)
— min {H, (5, @) + (v, (5,0), 0) + Blhvi,, (5, @)l } = ra(s.a) — [PVi,1)(s. a57)
= min {H - QZ(Sv a; ’I“), <¢Vh+1 (5’ a)» 0> + ﬁ||¢Vh+1 (Sa a)HE*l - [PV}L*JA](S’ a; ’I“)}

We need to show that Q(s,a) > Q7 (s, a; ). Since it is obvious that the first term H — Q5 (s, a; 1)
in min operator is greater than zero, we only need to verify that the second term is also positive where

(Yviii(s,0),0) + Bl (s,a) |z — [PVy4](s,a57)
> <11[)Vh+1 (87 CL)7 6> + /8||¢Vh+1 (87 a)HE*l - [PVh+1}(S7 a; 7“)
= <¢Vh+1 (5’ a)7 0 — 0*> + ﬂ”":thJd (5’ Q)HZ*1

> B||¢Vh+1 (Sva)”E*l - ||¢Vh+1 (870‘)”2*1 H0 - B*HE’

where the first inequality is from the induction assumption that V;*, , (s;7) < Vi, 41(s). The second
equality is from the expectation of value function is a linear function of %y, , shown in (3.2).
Then the inequality on the third line is utilizing the fact that (x,y) > —||x||a-:|ly|la. Since it is
guaranteed that § > ||@ — 6*||x; from the statement of this lemma, Qp(s,a) — Q7 (s,a;7r) > 0,
which from induction we get our conclusion.

For the second part controlling V7 (s) — V™ (s), since aforementioned proof has shown that V;*(s; r) <
Vi(s) for all h € [H], we have V;*(s;7) — V" (s;7) < Vi (s) — V{7 (s;r) and

Vi(s) = Vi (si7) = min{H, ra (s, 74()) + (3., 6) + Blvi, (5, 70()) |1}

— ru(s, mn(s)) = [PV ) (s ma(s)im)

< min{H, (v, 0) + Bllwbvi . (5,74 (5)lls1 — [BVisa)(s, 7 (5))
+ [BVisr] (5, a(5))} — [PV )5, mi7)

— min{H, (v, ,,. 0 — %) + Bty ., (5,74 (5)) 51}
+ [BViia] (5. (5))} — [PV ) (s, ()i 7)

< min{ H, 28] v, ., (s, mn(5)) s+ }
+ [BViia) (5, (5)} — [PV )(s, (55 7),
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where the first inequality is directly from moving term —7 (s, m4(s)) — [PVii1](s, 7h(s)) into
the min operator, the second inequality uses the condition that || — 6*||s; < § and (x,y) <
[Ix||a-1]l¥|la. Considering the first step h = 1, we have

Vi(s1) — Vi"(s1;7) < min{H, 2|1y, (51, 71(51)) |51} 4 Egyap(fs1,m (s1)) [V2(52) — V5 (52)]
< min{H, 2|9y, (s1,m1(51)) |51}

+ EszN]P’(‘|817771(81)) {min{Hv 25“¢V3 (527 772(52))”2*1}

F Egynb( [52,ma(52)) [V3(83) — Ve,”(s?))ﬂ

IA

H
< B| S min{#,25v,., (51,70 60)) )

h=1

5177T:|a

which concludes our proof. O

B.3 Proof of Lemma A.2

‘We introduce the classical confidence set lemma from [1].
Lemma B.1 (Theorem 2, [1]). Let {F;}:2, be a filtration and {r;} is a real-valued stochastic
process which is Ft measurable and conditionally R-sub-Gaussian. Set y; = (X, 1/) ) +n, Vi =

A+ Z xzx where x € R?. Denote the estimation of * as ¥, = A\ Zl 1% If
[[*]l2 < S ||XtH2 < L, then with probability at least 1 — 4, for all ¢ > 0

" —]|v, < R\/dlog (1+tL2/A> + SV

0
Equipped with this lemma, we begin our proof.

Proof of Lemma A.2. Since [Puf](sk, ak) = (Yo (s¥,ak),0%) due to (3.2) and uf(s) < H ,
uk(s) — (P (sh, a¥),0*) is Gj, x-measurable and it is also a zero mean H-sub-Gaussian ran-
dom variable condltloned on G, . Also from Definition 3 Il < B, ||, (sﬁ, af)|l2 < H.
Therefore, recall the calculation of 8y, according to Lemma B. 1 lett = (k — l)H we have

1 k—1)H3/\
0k0*|zl,k§H¢dlog< +E-1) /)+Bﬁ.

)
Let \=B2§= 0/3 and relax k with k = K + 1, we can get the 8 claimed in Theorem 4.2. [

B.4 Proof of Lemma A.3

We provide the proof to control the summation of the value function during the exploration phase.
To start with, since rather than immediately updating the parameter after each time step, we can
only update the estimation @ and its ‘covariance matrix’ 3 once after each eplsode As a result,
this ‘batched update rule’ make the UCB bonus term at step (h, k) be ||, (sh, af) HU_1 instead

of Hzpuh k(K ak) ||U L in the vanilla linear bandit setting. Therefore, we need lemmas showmg that
these two UCB terms are close to each other.

Lemma B.2. For any {Xh7k}h:1’k:1 CR? < L,Y(h,k) € [H] x [K], let
Up =M+ ZIZ;} fil XX . + Z?;ll Xz‘,kXIk, there exists at most 2Hd log(1 + K HL?/)\)
pairs of (h, k) tuple such that det Uy, ;, < 2det Uy .

Lemma B.3 (Lemma 12, [1]). Suppose A, B € R%*? are two positive definite matrices satisfying

that A = B, then for any x € R%, we have ||x||a < |x||g+/det(A)/ det(B).

Following that, we also need to introduce the classical lemma to control the summation of the UCB
bonus terms in vanilla linear bandit setting.
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Lemma B.4 (Lemma 11, [1]). For any {x;}F; C R satisfying that ||x;||2 < L,Vt € [T}, let
U, =M+ Z 1 XTXT, we have

T
d\+ TL?
Zmin{l, ||X15||U;1}2 < 2dlog <—2/\)
t=1 /

We also need to introduce the Azuma-Hoeffding’s inequality to build the concentration bound for
martingale difference sequences.

Lemma B.5 (Azuma-Hoeffding’s inequality, [4]). Let {z;}?_, be a martlngale difference sequence
with respect to a filtration {G;}? , (i.e. E[z;|G;] = 0 a.s. and z; is G;41 measurable) such that

|z;] < M a.s.. Then for any 0 < (5 < 1, with probability at least 1 — 8, >, z; < M+/2nlog(1/4).

817 :|

FL ’“] (B.1)

Proof of Lemma A.3. By Lemma A.1, for the k-th episode, we have

V() - v [me{H 2Blbug,, (o) s}

<E[Zm1n{H 26\, (Shaﬂh(sh))”z 1}

h=1

where the inequality comes from that the pseudo value function u defined in (4.3) is from maximizing
the UCB term ||1/JV}§+1 (8,7 (sn))||ss—1 and we denote {w¥}/_, by 7* in short. By the definition
1,k

of ¥, we have
H
Z (sn, 75 (sn))|st, 7]

me{l 2611t (51 (50)) 1 /H} (B.2)

l—l
Vo)
=
3

k‘l

Adding (B.1) and (B.2) together and taking summation over k, we have

H+1 ]
Zvl ) < ; {me{H 2819y (s> mh (5) |55 1}5’5,7#@ <2, (B3)
k=1 h=1 -

I
where the last inequality is due to (H + 1)/H < 2. Next we are going to control the expectation of
summation /. Consider the filtration {Qh,k}hH;If x—1 defined in Section B.1, denote x, j, as follows:

ok = min{H, 26|\, (sh, ap)l|-1 } — Eo, [min{H, 28], (sn, 75, (s0) 22 1],

then x, j, is obviously a martingale difference sequence bounded by H w.r.t. {Qh,k}hH;If) b1
Thus by Azuma-Hoeffding’s inequality in Lemma B.5, we have with probability at least 1 — 4,

S S w, < Hy/2HK log(1/6). Therefore,
K H K H
=30 min{H, 28], (sh, a1} + >0 > an

k=1 h=1 k=1h=1

K H
<253 min{L, 4, (sks o)l 1} + Hy2H K log(1/0)
k=1h=1 ’
K H
<2 BZZmln{l [t ( s,ﬂah)HE_l}+4BHd10g(l+KH3/)\ )+ Hy/2HK log(1/6),
k=1h=1

Iy
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where the inequality on the second line is due to 23 > 2H/dlog 3 > H and the last inequality uses
Lemma B.3 with 37} = %, } and det 37, < 2det X} expect for O(Hd) cases by Lemma B.2.
By min{1, [|tb,x (sn, WZ(Sh))HE’—lk} < 1and ||1/Juﬁ(s’,§, a¥)||2 < H since uf < H, we can further

bound the O(Hd) terms where det Ef,lc > 2det Ef,lc To bound I5, by Lemma B.4, using Cauchy-
Schwarz inequality we have

K H
I < VKH, | Yy min{l, |[¢, (sf, af)

k=1h=1

12, .} < V2K Hdlog( + KH*/(aV)),
h,k

Plugging I into I; then plugging I; into (B.3). Let A = B2, the summation of the value function
V[ (s%) is bounded by

K
S Vist) < 88(v/HKdlog(1 + KHB2/d) + dH log(1 + K H* B*))
k=1

: +2H+\/2HK log(1/46).

Taking § = ¢/3, we can finalize the proof of Lemma A.3. O

B.5 Proof of Lemma A .4

The proof of this lemma is similar to the proof of Lemma 5.2 in [29]. We extend their proof to a
time varying reward and homogeneous setting, where the rewards (i.e., the exploration-driven reward
function r,’j) are different in different episode k. To prove this lemma, we need to introduce the
Bernstein inequality for vector-valued martingales.

Lemma B.6 (Theorem 4.1, [29]). Let {G;}72, be a filtration, {x;, 7 };>1 a stochastic process so
that x; € R? is G;-measurable and 7 is G;,1-measurable. Fix R, L,o, A > 0, u* € R, Fort > 1,
lety; = (p*,x;) + 1. Suppose 7y, x; satisfy

Il < R, Elm|Gi] = 0, E[f|Gi] < 0°, [Ixil2 < L.
Then for any 0 < § < 1, with probability at least 1 — &, we have

t
§ XrMr
T=1

where p; = Ut_lbt, U; =+ Zizl x,x] by = Z’;:z Yr X, and
B: = 8ov/dlog(1 + tL2/d)\)log(4t2/5) + 4R log(4t/4).

vt > 0,

< B e = Nl < Be+ VAT,
U-

We also introduce the following lemma to analyze the error between the estimated variance V¥ and
the true variance V.

Lemma B.7 (Lemma C.1, [29]). Let V¥ (s,a) be as defined in (3.1) and V¥ (s, a) be as defined
in (5.3), then

[Vh(s,0) = Vi(s,0)] < min { B2 [e o (s,0)ll51 106 — 075, , |
(s, 0)ls1 10— 6" l5,, }-

Equipped with these lemmas, we can start the proof of Lemma A 4.

+ min {H2,2HH1/:V}5+

1

Proof of Lemma A.4. Recall the regression in (5.4). For the regression on f],é, let XZ =
Yy (sh.af)/o), and nf = VE (sf1)/af — (0%,x}). Since o)y > H/V/d defined in (5.2),

we get [|xF |2 < V/d, [nf| < V/d, thus one could verify that E[[nf]2|Gn.x] < d, E[nf|Gn.1] = 0, from
Lemma B.6, taking t = (k — 1) H we have

16" — Bills, , < 8dv/log(1+ (k — 1)H/\) log(4(k — 1)>H?/5)
+ 4V dlog(4(k — 1)>H?/8) + VAB.
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For the regression of 3, 8, x§ = Vg, )2 2(s¥, a¥) which directly implies ||x} |2 < H?. Letn}
th+1(s§+1) (6%, x¥), one can easily verify that [n}| < H? and E[n}|Gpx] = 0, E[[n]2|Gh k]
H*, thus using Lemma B.6 again we have

6% — §k||glﬁk < 8H*\/dlog(1+ (k — 1)H/\)log(4(k — 1)2H?/5)
+ 4H?log(4(k — 1)2H?/8) + VAB.
Since A = B2, if we select /3 and 3 as
B = 8d\/log(1 + KHB?/)log(4K2H? /) + 4v/dlog(4(k — 1)2H? /) + 1
B =8H?\/dlog(1 + KHB?)log(4K2H?/8) + 4H?log(4K?H?/8) + 1,
then with probability at least 1 — 20, for all k € [K + 1], 0% — Oil, < 5, (16" — Ok[l5, , < 5.

IA

Next we are going to give the choice of 3 to make sure that ||0* — 0y, Is,, < /3 holds with high
probability. The following proof is conditioned on that the aforementioned event ||6* — 0y, ||§:1 LS B,
||0* — §;€||z~:1 LS f holds, then from Lemma B.7 we have

Vi(s,a) = Vi(s,a)]
< win {12, Bl x5, )l } o+ min {2, 25H by (s, a)l5r }
= Ef(s,a) (B.4)
Again, letx§ = Yy (sf,ay)/ay to denote the context vector and iy = Vi, (sF ;) /) —(0*,xF)
to denote the noise term, since ||@* — 0y, ||§: < f3, we have

E[[U£]2|gh,, | = Vk(shv ah)/”h (Eh(sha ah) + Vk(shv ah))/”h <1
where the first inequality is from (B.4), the second inequality holds because the definition of V,’f
in (5.2).
Therefore we have verified that the noise term 77,"5 is a zero-mean random variable conditioned on

Gn.r. and E[[nF]2|Gp k] < 1. In that case, using Lemma B.6 again we could get with probability at
least 1 — 9,

10" — B, <8+/d(1 —1)H/\) log(4(k — 1)2H? /) (B.5)
+ 4\/& log(4(k: —1)2H?/5) + VB, (B.6)
again, since A\ = B —2, if we select B as
B =8\/d(1+ KHB?)log(4K?H? /) + 4Vdlog(AK>H?/5) + 1
then ||0* — §k||f11k < B with probability at least 1 — & for all k € [K +1].

Next, for the regression of Ok 1,31 k11, by Lemma A.2, we obtain the same result with the

selection of 3 as
1+ KH?

which suggests that with probability at least 1 — 0, ||@x 41 — 0* H21 w1 < 6. Then taking union
bound with all aforementioned event ||0* — OkHz < B, ||6* - OkHE 0k||2 <48,

we have all these events mentioned in this proof holds with probablllty at least 1 — 46. Replace 1)
with §/12, we obtain our final results.

Next, for the regression of Ok 1,31 k11, by Lemma A.2, we obtain the same result with the

selection of 3 as
3
s Wlog (LD s

]
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which suggests that with probability at least 1 — 9, ||[@x11 — 6%||x, ., < B. Again, taking an
additional union bound, with probability at least 1 — 44, all events mentioned in this proof hold.
Replace § with /12, we obtain our final results. O

B.6 Proof of Lemma A.5

The proof of this lemma borrows some intuition from the proof of Theorem 5.3 in [29]. Unlike Zhou
et al. [29] that deals the fixed reward and time-inhomogeneous setting, we need to extend their proof
in order to deal with the time-varying reward and time-homogeneous setting.

The next lemmas shows the relationship between the summation of 1/,11C and the difference between
V;¥(s) caleulated in Algorithm 3 and Vi (s; {rf};25 )

Lemma B.8. Let V}*, v} be defined in Algorithm 3. Then if the condition in Lemma A.4 holds, the
following inequality holds with probability at least 1 — 24,

K
> [ (s)
k=1

K H
STNTBVEL - ViE)(sE, af) < 4VdHB

k=1h=1

+2H3dlog(1 + KHB?d) + 2H?+/2K H log(1/6),

Lemma B.9. Let V,f, y’,j be defined in Algorithm 3. Then if the condition in Lemma A.4 holds, with
probability at least 1 — 4,
K H

Z v +3H2K + 3H%log(1/0) + 2H Y S [P(ViF,y — Vi) (sh, af)
k=1 h=1 k=1h=1

+ 2,8\/KHd log(1 + KH5B2/d) + 43Hdlog(1 + KH"B?/d)
+ 8H?3\/KHdlog(1 + K HB?) + 8H3df log(1 + K HIB?).

HsK

Equipped with these two lemmas, we can start to prove Lemma A.5.

Proof of Lemma A.5. In this proof, we use (9( ) to ignore all constant and log terms to simplify
the results. Recall the selection of 3, 6 B, 6 we have 8 = O(Hf) B O(\/ﬁ), B = O(d),
B = O(H2V/d). Therefore Lemma B.8 could be simplified as

K H )
ZZ (th+1_vfir+1)i(shaah) <O< d

k=1 1

K H
SN vi+HY A+ \/KH5> ) (B.7)

k=1h=1

h=
Lemma B.9 could also be simplified as

. ~(HK L :
vy < 0( —+ HK + H YN [BVE, — Vil )(sk, af) + VEHS@ + H*d?
k=1 h=1 k=1h=1

et \/Zszl Ethl vF = x, plugging (B.7) into (B.8), we have

2? < O(H*Kd™' + H?K + H?dz + H*d+ VKH" + VKH5d3 + H>d?),

(B.8)

Since the quadratic inequality 22 < O(bx 4 ¢) indicates that z < O(b + /c), setting

b= O(H?d),c = OH*Kd ™' + H’K + H*d+ VKHT + VKH%d? + H*d?),
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hence

K H
SN vk <OH?d+ VH3K/d+ HVE + H*Vd + dVH3 + (KH")V/* + (KHd*)'/*)

k=1h=1

(B.9)
= O(VH3K/d+ HVK) + o(VK). (B.10)
Plugging (B.10) back to Lemma B.8, we have
K
S sh) = Vi ()] < O(WVH3Kd + HAVE) + o( V). (B.11)
k=1

Next we are going to show the bound of the summation over Vfrk (s¥), note that this value function is
bounded by H and from Bellman equality, we have

Vi (s1) = rh(sh,ab) + [PV (sh, af),

taking summation over h € [H], k € [K] then

Ko K H K H .
Z VT (1) = Z Z (st,ay) + Z Z PVh-H shyap) = Vit1 (shi1)
k=1

k=1h=1 k=1h=1
K H

<> > min{1,28]px (s}, af)ll -1 /H} + Hy/HEK log(1/6),
k=1 h=1

where the last inequality holds due to Azuma-Hoeffding’s inequality i.e. Lemma B.5. For the first
term,

m‘m

K H K H
ZZmln{l’2B|‘¢“2(827aﬁ)”2;}c/}[} ZZ 111{1 ||¢uh Slmah)HE 1}
k=1h=1 ' k=1h=1

Iy

where the 1nequahty isdueto 8 > H \/log (12) > H / 2. Using Lemma B.2 and Lemma B.3 with
b3 ,16 =3, . and det = ,16 < 2det X &, except for O(Hd) steps mentioned in Lemma B.2, setting
A= B2, we have

K H
L < 2Hdlog(1+ KH*B?) +v2) > min{1, [[¢h,g (sf, af )| 5,1 }
k=1 h=1 ’

K H
< 2Hdlog(1 + K H*B®) + V2H ernm{l g (s ab)lI5, 1 3

=1

=1h
< 2Hdlog(1 + KH®*B?) + 2\/HKdlog(1 + KH3B2/d).

Therefore, since § = O(H \/E), then

K
DoV (sf) < 4Bdlog(l + KHB) + 45/ Kdlog(1 + KHB?/d)/H + /H*K log(1/0)
k=1

(B.12)
< O(dVKH + VKH?) + o(VK). (B.13)
Adding (B.11) and (B.13) together we have the following result,

Zvl M < OWH3Kd + HIVK) + o(VK).

By taking the union bound, this inequality holds with probability at least 1 — 46. Since § only appears
in the logarithmic terms, thus changing J to §/12 will not affect the result. O
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C Proof of Auxiliary Lemmas in Appendix B

C.1 Proof of Lemma B.2
Proof of Lemma B.2. We want to know how many pairs of (h, k) exists such that det Uy, ;; >
2 det Ul,k-

Furthermore, we have if there exists k € [K] such that det Uy 11 < 2det Uy g, then it is obvious
that for all h € [H], we have det Uy, i, < det Uy 41 < 2det Uy .

Therefore, suppose there exists a set  C [K] such that for all k¥ ¢ K, det Uy 11 < 2det Uy , and
forall k € K, det Uy j41 > 2det Uy g, then the pair of (h, k) such that det Uy, ,, > 2det Uy, is
upper bounded by H|K|.

Notice that for all k € K, det Uy 41 > 2det Uy, it is easy to show that
det Ul.,K—‘,—l > 2“6‘ det U171 — 2|K|)\d’

where the last inequality comes from Uy ; = AI € R%*<, Notice that det U < | U||¢, taking log we
have

dlog(||U1,k+1l2) > logdet Uy k41 > |K|log2 + dlog . (C.1)
From the definition of Uy g1, by triangle inequality,
H
U1kl <A+ D KD IxEx;Tlla < A+ KHI[xE|3 < A+ KHL?, (C2)
k=1 h=1

where the last inequality is due to ||x||2 < L from the statement of the lemma. Therefore we conclude
our proof by merging (C.1) and (C.2) together to get

IK|log?2 < dlog(1+ HKL*/\),
noticing log 2 > 1/2 we can get the result claimed in the lemma. O

C.2 Proof of Lemma B.8

Proof of Lemma B.S. Assume that the condition in Lemma A.4 holds, then
ﬂ_k
Vi (sh) = Vi (s5)
~ ﬂ,k -
< (Br vy, (sh,ab)) — PV I(sh, af) + Bl sk, af) 1

k _
<118k = 0"lls,, by, (b abllsr + PV, — Vimk (ks o) + Bl (shoablls s

ﬂ_k
< 2By, (s a)llgr + BV s — Vima (s} af),

where the first inequality holds due to the definition of V}*, the second inequality holds due to
Cauchy- Schwarz inequality and the third one holds due to the condition (A.8) in Lemma A.4. Notice

that Vh Vh < H, we have
. = ﬂ_k
Vi () — VhTr (s;) < min{H, 25“1/’\/,541(5]?1, a’/ﬁ)”i;}c} + [thk+1 - Vh+1](5]fm ay)

Taking summation over k € [K ] and h € [H], we have
K K
SOWVED) ~ Ve 6] < 303 ming, 2B, (s abls )
k=1 k=1h=1

K H
+ Z Z [thk+1 — Vil (st ak) = Vida () — Vf+1(32+1)]}
1h=1

min{H, 28||sy;_ (sh, a}) g1} +H /2K Hlog(1/9),

M
=

B
Il
_

I
(€3)
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where the second inequality is a direct result of Azuma-Hoeffding’s inequality as in Lemma B.5.

Next we bound . Recall the update rule of 3, 1., notice that 5% > H/+/d and vy, (sE a2 <
H from ViF, | < H, itis easy to verify that ||1/J‘/}Zc+1(s£<,aff)/8h\\2 < +/d. Hence

I < \[Zme{H 2B||’¢

k=1h=1

h+1

(shsaf) g1+ 2H>dlog(1 + K Hd/X)

T

< V2 max{Vd, 23} Z g min{L, [y (sh,ap)/o}ls 1} +2H?dlog(1 + KHd/A)
k=1h=1 '

Mx

H
Z min{1, [yr (sk,af)/af|% -, } +2H?dlog(1 + KHd/\)
h,k

h41
1h=1

<235, 33 vk
k=

1 h=1

o~
Il

K H
<48V, 7S vk log(1+ KH/X) + 2H?dlog(1 + K Hd/)),

k=1 h=

=

where the first inequality, similar to the corresponding proof in Lemma A.3, is a direct implication
of Lemma B.2 and Lemma B.3 with Efi - E;i and det 2;]1€ < 2det Efi except for O(Hd)
cases mentioned in Lemma B.2, the second inequality moves &} outside, the third inequality holds

because B > 4v/dlog 12 > /d and Cauchy-Schwarz inequality, and the forth inequality holds due
to Lemma B.4. Plugging I; into (C.3) and let i’ = 1, A\ = B2, we have

K H
STIVE(sY) - v (sh)] < avdB ZZ k\/log(1 + K HB?)
k=1 h=1

+ 2H2dlog(1 + KHB?d) + H\/2K H log(1/5).

Furthermore, by Azuma-Hoeffding’s inequality as in Lemma B.5,

K H
Z PVi¥, — Vil (sh, ap) = [Vie = Vir 1(sh)
k=1h=1 k=1h=2
K H . .
+ 300 [P = Vit (shsab) = ViE = Vi)l (k)
k=1 h=1
R K H
<4VAHB| Y > vf\/log(1+ KHB?)

k=1h=1

+2H%dlog(1 + KHB?d) + (H + 1)H\/2K H log(1/4),

which becomes the second part of the statement in the lemma. Using H + 1 < 2H we can get the
result claimed in the lemma. O

C.3 Proof of Lemma B.9
To begin with, we will first show the total variance lemma originally introduced in [8].

Lemma C.1 (Total variance lemma, Lemma C.5, [8]). ' With probability at least 1 — §, we have

SOS IV (B (s,a) < BH2K + 3H? log(1/5).
k=1 h=1

"The original Lemma C.5 in Jin et al. [8] holds for the identical reward functions, i.e., r;lL =...= rh Their
lemma also holds for the general case 7}, # - - - % r without changing their proof.
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Proof of Lemma B.9. Assume the condition in Lemma A.4 holds, we have with probability at least

H K H 2
Zz/ ZZ <H+Vk(shvah)+Eh(shaa];)>
k=1 h=1

K H H H
ZZ (VthJrl](Shaah) [Vth+1 Shy @i, )4‘222]5;]? (sh» ar)

k=1h=1

I I

K H
[thh—H sk, aj, +ZZ [Vk sk, aj,) [VthJrl](SZaah) Eh}
k=1h=1 k=1h=1

n
M=
M=

13 I4

<

+ I + I + 3H*K + 3H?log(1/6), (C.4)

where the value function V,fk (s) is short for V,fk (83 {rF}H_)) for simplicity. The first inequality is
from the definition of Z/,I: in (5.2), while the last inequality is from Lemma C.1 to control I5. Iy <0
is due to Lemma A.4. Next we are about to bound /; and I, separately.

Since the estimated value function V¥, and the real value function Vh’fl are both bounded by [0, H],
we have

[P(Viiy = Vi)l (shs ai).

~
IA
] >
M=
=
=
+
5&"
=
>
S
IA
[N}
)
] >
M=

Il
—
=
Il
—
>
I

1

K H K H
L<) Yy min{H?, Bl j2(sh, af)ls 5o ZZ min{H? 2Hp|[pye_ (s, a)lls1}
k=1 h=1 1

k=1h=1 —

K H
Smax{HQ,B}ZZ min{1, W’[v ]Z(Siwah)Hz—l}

Jrz:z:rnax{ﬂ2 2H oy} min {1, ||y (s,a /C’th—l}

k=1h=1

Noticing that from the definition of v/},

vl = max{H?/d, V(s af) + Efi (s, af)} < max{H?/d, H® + 2H?} = 3H?,

thus 5% = | /vF < 2H. Recall that § > 4H? log(12) > H2 and ( > 1, we have

K
I2 S BZ Z min{17 ||¢[V;5+1]2(827a2)”§1—}€} +4 " (S, a)/6f’§H§:;i} .
1 he , k

k=1h=1

Is Is

For I5, using Lemmas B.2 and B.3 with f)l_llc = Eg}c and det f]l_i < 2det f]l_i except for (5(Hd)
cases mentioned in Lemma B.2, we have

I <fZZm1n{1 [%7yx Vi (waalfi)”i;lk}+2Hd10g(1+KH5/d)\)

k=1h=1

k k\||2 5
<V2KH szmg b 2 (s h,ah)||)~:;,1k}+2Hdlog(1+KH /d\)

k=1h=1
< 2v/KHdlog(1 + KH®/d\) + 2Hdlog(1 + K H® /d)),
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where the first inequality is a direct implication from Lemma B.2 and the second inequality is due to
Cauchy-Schwarz inequality. The third inequality utilizes Lemma B.4. As for I, we have

Is <

h+1

(s, a)/&l,ijrl } +2Hdlog(1+ KHd/))
k=1 h=1 "

<V2KH szm{1 v, (5,07 |5, } + 2Hdlog(1 + K Hd/A)

k=1 h=1
< 2y/KHdlog(1+ KH/X) + 2Hdlog(1 + KHd/\).

Finally, plugging I5, I into I and I, I5 into (C.4) we have

K H
K .
vk < +3H2K + 3H%log(1/0) + 2H Y S [P(ViF,, — Vi) (sh, af)
k=1h=1 k=1h=1
+28\/KHdlog(1+ KH5/d)) + 43Hdlog(1 + K H® /d\)

+8H?\/KHdlog(1+ KH/\) + 8H3dBlog(1 + K Hd/)).

Let A = B2 we could get the result in the statement of the lemma. O

D Proof of Lower Bound

In this section, we will give the detailed proof of the sample complexity lower bound. We start
with verifying that the MDP structure as shown in Figure 1 is a linear mixture MDP satisfying
Definition 3.1.

D.1 Verification of the MDP structure

We will first show that the {5 norm of @ is controlled. Recall the 6; is set by @ = {0i|0i =

(ﬁ7 aBNZ.T/\/Zi)T } where 51 = x; € M, we can have that ||0;|]> = v2 + o2, therefore, as long as

the parameter « is an absolute constant, the > norm of 6 is controlled. Next, considering a function
V < D, we have

D? D
<\ =+=-=D
, V2 T ’

||'¢'V(Slaaz HQ H V(Sz 1)+V (S2,2) (V(S2,1) - V(SQ_]Q)) a;d)

which shows that the MDP structure satisfies Definition 3.1.

D.2 Proof of Theorem 6.1

We denote the d — 1-dimension binary vector set as B;_1 = {x|x € R4 [x]; € {—1,1}}. The
next lemma shows that the binary set M exists.

Lemma D.1. Given v € (0, 1), there exists a M C Bg_1 such that for any two different vector
x,x' € M, (x,x") < (d—1)~, and the log-cardinality of the proposed set is bounded as log(|]M|) <
(d—1)7*/4.

With this lemma, we can construct a set M with | M| = [exp(dy?/4)] — 1 where v = 1. Itis easy
to verify that |[M| < exp(dy?/4) and

log(|M|) > log(exp(dy?/4) — 1)

% +log(1 — exp(—(d — 1)y*/4))
N w s (D.1)
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where the last inequality holds since v = 1 and d > 2, we have log(1 — exp(—(d — 1)7%/4) > —3.
From Lemma D.1, we know that for any two different vectors x,x’ € M, (x,x) < (d —1)/2.

Next lemma establishes the lower bound of sample complexity for any algorithm to estimate the true
parameter 8 € © of the proposed linear mixture MDP, from the sampled state-action pairs of this
MDP.

Lemma D.2. Suppose an algorithm estimates the underlying parameter 8 by building an estimator 6
from K sampled trajectories. If the algorithm guarantees that Egunite [1(0 = 0)] > 1 — 4§, we have

d—1 \7' AKa?
6>1—|——-3 log2 4+ —— |.
= (16 ) (Og +2—042)
Finally, the next lemma suggests that if « is selected properly, then any (e, §)-reward free algorithm
can be converted into an algorithm that provides the exact estimator with a probability of at least
1-9.

Lemma D.3. Suppose @ > 2Y2¢

-1’
algorithm which outputs an estimator 6, satisfying Egunir(@)[1(0 = 0)] > 1 — 4.

then any (e, d)-reward free algorithm could be converted to an

Equipped with these lemmas, we can provide the proof for Theorem 6.1.

Proof of Theorem 6.1. Set o = 31‘/_516 and € < (H — 1)/(2v/2), then by Lemma D.3, any (e, )-
reward free algorithm could be converted to an estimation algorithm with successful rate at least
1 — 4. Thus from Lemma D.2, the sample complexity K of these reward free algorithms is bounded

by

2—-a?(d—1 2 — a?
K> —F | — — 1—9)— ——log?2
= Tda? < 16 3>( )= g lee
(H-1)?2/(d-1 (H —1)?log?2
> — - 1-6) - —————
—  128¢2 16 3)( ) 128¢2
Suppose H > 2,d > 50,0 > 1/2 to simplify the result, we conclude that there exists an absolute
positive constant C such that K > C(1 — 6)H2de_2, which leads to our final conclusion. O

E Missing Proofs in Appendix D

We provide detailed proofs for lemmas in Appendix D. For simplicity, we denote by d’ = d — 1 the
dimension of the binary set M.

E.1 Proof of Lemma D.1

Proof of Lemma D.1. To begin with, we assume that x ~ Unif(By ), i.e. [x]; ~ {—1,1}. Thus
given any x, X’ ~ Unif(Bg ), we have
d/

P((x,x") > d'y) = P., ~Unif{—1,1} (Zzz > le)
i—1

dl
1
=P, ~uUnit{-1,1} (d’ Z 2 2 ’Y)
i=1
< exp(—d'y*/2),
where the last inequality holds by utilizing the Azuma-Hoeffding’s inequality with the fact that

z; ~ Unif{—1,1} is a bounded random variable. Consider a set M with cardinality | M|, then there
is at most | M |? pair of (x, x’). Thus taking a union bound over all vector pairs (x, x’), we have

P(3x,x € M,x #x/, (x,x') > d'y) < |M[*exp(—d'+?/2),

thus
P(vx,x € M,x # X', (x,x') <d'7) > 1 — |M|? exp(—d'v?/2),

Once we have that | M|? exp(—d’y?/2) < 1, there exists a set M such that for any two different
vector x,x’ € M, (x,x') < d~. O
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E.2 Proof of Lemma D.2

We start our lower bound proof from Fano’s inequality.

Lemma E.1 (Fano’s inequality, [6]). Consider probability measures Pg, 0 € © on space §) parame-
terized by 6 € ©. Then for any estimator @ on {2 and any comparison law Py on 2

log2+ &1 Loce KL(Po, Po)
log [©|

‘T&ZPG[(;#(’]ZI

0c®

Then we will start our proof from the deterministic algorithms, which could be further extended to
random algorithms using Yao’s principle [23].

Proof of Lemma D.2. We denote Y}, as such a trajectory at episode k and Y7, for the trajectories
Yy, -+, Y. We have for the KL divergence over joint distribution Y7 .,

KL(Po(Y1.x), Po(Y1:x))
= Z Py (Y1.x) log(Pe(Y1.x)/Po(Y1.K))

= }gpe(yl:K—ﬂPg(YKYl:K_l) 10g(Pe(Yi.x—1)/Po(Viix 1))
+:Z Po(Yi.x-1)Po(Yic|Yi:k—1) log(Po(Viix—1)/Po(Yiirc—1))

- YiK Po(Y1.6-1)1l0og(Pe(Y1.x-1)/Po(Y1.kc-1)) YZ]}DG(YK|YLK71)
+:Z Po(Yi:k 1) ; Po(Yic[Yik—1) log(]pe(y;_l) Po(¥ix))

= KL(Po(Y1.x-1),Po(Y1.c-1)) + Ey, 1, [KL(Po (Y [Y1. 01, Po (Vi [Y1: 6 1)]-
Thus by further expanding the above equations, we have

K

KL(Pe(Y1:x), Po(Y1:K)) = Z Eyv,p o [KL(Po (Y| Yik—1), Po(Ye|Yi:k—1)],
k=1

where we denote Ey, ,[KL(Pg(Y1|1 : 0),Po(Y1|1: 0)] := KL(Pg (Y1), Po(Yp)) for consistency.

Since for any deterministic algorithm, in any episode, the trajectory s1, a1, - - - , Si, ap is determined
after the algorithm goes into Sy ; or S o, furthermore, for these deterministic algorithms, the first
action a at k-th trajectory is fixed given previous knowledge Y7.x. Therefore, the distribution of the
whole trajectory could be replaced by the distribution of Sy ; and S; 2. We have there are at most

two possible value for Y}, we denote the trajectory S1, a1, 52,1, ,S52,1 by Y = 0 and the other
trajectory Sy, a1, S22, - , 52,2 by Y, = 1. We define the comparison distribution [P as
Po(Yi = 0 Vi 1) = — 3 Po, (Vi = 0[Yi1) L2 ad)
= T = — ) = e = - a~7
o( Yk 1:k—1 |®|0 0, (Y& 1ik—1 SNOTT
iEO
Po(Yi = 1|Vip 1) = — 3" Po, (Vi = 1|Yis-1) L 6
= e = — . = e = = = a, 3
o( ¥k 1:k—1 |®|6'€® 0, (Y& 1:k—1 2 od

where we denote 8 is the mean value of §; € M. (Recall that © = {6;]0; = (v/2,08, /Vd)T ).
For simplicity, we use Pg, and [P to denote the distributions for the whole trajectory defined above.
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Then we could bound the KL divergence between [Py and Py, as
KL(P,, Po)

(3 ) (o)
(e (i)
a(a, 8; — 6)

= (i + \/gd’ (@, §i>> \[f;—foz_aOH ( \fd’ >> m

Taking summation over 6; € ©, recall that 0 is the mean value of 0i € M, we have

3" KL(Py,, Po) = 207 (a,0; — 6)
6,50 S99 9/ o yUg — .
= 207 — a(a, 0)2

0; E@
Given the fact that (x, x’) < d’ for any x,x’ < A, one can easily get that
4a?

KL(Py,,Po) < .
] 9;_) 3 a?

Plugging the above inequality into the decomposition of KL divergence, from Fano’s inequality
Lemma E.1, we have

d’ -t 4K
Pol0 #60]>1— (— — log 2 .
0= IG\Z ol # 6] <16 3) (Og M= a2>

0cO

Replacing d’ by d — 1, we can get the same result as the statement of the lemma. O

E.3 Proof of Lemma D.3

We show the proof for Lemma D.3 by establishing different reward functions for this MDP structure.

Proof of Lemma D.3. For any @ € ©, we build the reward sequence as r(S1) = r(S2,1) =
0,7(S2,2) = 1, then any (e, §)-correct algorithm guarantees that

P(V*(S1,7;0) — V™(S1,r;0) <¢)>1—6,V0 € O.
Our proof is to show that, as long as o > ?1‘/_516 , we can build up the estimation of 6 using 6; =
(v2, aa;r/\/g)T where a; is determined by a; = 7(S1). It is guaranteed that Pg[0; = 0] > 1 —§
and furthermore, Eg.unit(e) (1[0 = 5]) >1-—0.

Suppose for the MDP parameter 6, it is easy to find that the optimal policy for the first step is
7*(S1) = a;. Suppose that for any policy 7(51) = a; where j # i, then from the MDP structure,
the gap between policy and the optimal policy is

V(S1.7:0,) — V(Sy.7:6,) = “ﬂ};l)a«ai,a» ~ (aay))

(H-1Da

> o]
(H-1a

2v2
as long as we have o > 2\[6 , we can get the policy gap V*(S1,7;0;) — V™ (S1,7;0;) > ¢

(d' —d'/2)

Therefore, it is easy to show that the estimation using the policy 7(S1) is guaranteed with successful
rate at least 1 — ¢ for any MDP parameter 6;, thus we can further conclude that Eg uni¢e) (1[0 =

g)>1-0. O
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