
A Proofs of Upper Bounds

In this section, we provide the proofs of sample complexity upper bounds.

A.1 Proof of Theorem 4.2

We will first introduce a lemma to show that for the planning module Algorithm 1, if it is guaranteed
that the estimation θ is close to the true parameter θ∗, then the estimated value function is optimistic.
Also the gap between the optimal value function and the value function of the output policy {πh}Hh=1
could be controlled by the summation of UCB bonus term.
Lemma A.1. Let θ,Σ, β be as defined in Algorithm 1. Suppose there exists some event ξ such that
∥θ∗ − θ∥Σ ≤ β on this event. Then on this event, for all s ∈ S, V1(s) ≥ V ∗

1 (s; r), where V1 is the
output value function for Algorithm 1. We also have that

V1(s)− V π
1 (s) ≤ E

[ H∑
h=1

min{H, 2β∥ψVh+1
(sh, πh(sh))∥Σ−1}

∣∣∣s, π],
where the policy π = {πh}Hh=1 is generated by the planning module Algorithm 1 and Vh is the value
function calculated on Line 5 in Algorithm 1.

Next we will give the lemmas on how to guarantee the condition of Lemma A.1 and how to utilize
the result of that lemma to control the final policy error V ∗

1 (s1; r)− V π
1 (s1; r) where the policy π is

output of the planning phase. We start with Algorithm 2, which uses the Hoeffding bonus.

Firstly, the next lemma shows how to guarantee the condition in Lemma A.1.
Lemma A.2 (Confidence interval, Hoeffding). For Algorithm 2, let λ, β be as defined in Theorem 4.2,
then with probability at least 1− δ/3, ∥θ∗ − θk∥Σ1,k

≤ β for any k ∈ [K + 1].

Secondly, based on the lemma above, we find that the policy error during the planning phase is
controlled by a summation of the UCB terms. Since from the intuition, the exploration driven
reward function (4.2) is the UCB term divided by H , the policy error during the planning phase
can be converted to the value function V k

1 in the exploration phase. The next lemma shows that the
summation of V k

1 over K iterations is sub-linear to K, thus the policy error during the planning phase
should be small.
Lemma A.3 (Summation, Hoeffding). Set the parameters of Algorithm 2 as that of Theorem 4.2. If
the condition in Lemma A.2 holds, then with probability at least 1− δ/3, the summation of the value
function V k

1 (sk1) during the exploration phase is controlled by
K∑

k=1

V k
1 (sk1) ≤ 8β

√
HKd log(1 +KH3B2/d)

+ 8βHd log(1 +KH3B2) + 2H
√
2HK log(1/δ).

Equipped with these lemmas, we are about to prove Theorem 4.2.

Proof of Theorem 4.2. In the following proof, we condition on the events in Lemma A.2 and
Lemma A.3 which holds with probability at least 1 − 2δ/3 by taking the union bound. Apply-
ing Lemma A.1 to the final planning phase, we have

V ∗
1 (s; r)− V π

1 (s; r) ≤ V1(s; r)− V π
1 (s; r) ≤ E

[ H∑
h=1

min{H, 2β∥ψVh+1
(sh, πh(sh))∥Σ−1

1,K+1
}
]

︸ ︷︷ ︸
I1

,

(A.1)
where the expectation is taken condition on initial state s and policy π generated by the planning
phase. Since Σ1,k ⪯ Σ1,K+1 for all k ∈ [K], we can guarantee that ∥ψVh+1

(sh, πh(sh))∥Σ−1
1,K+1

≤
∥ψVh+1

(sh, πh(sh))∥Σ−1
1,k

. Recall the exploration driven reward function is defined by

rkh(s, a) = min

{
1,

2β

H

√
max

f∈S7→[0,H−h]
∥ψf (s, a)∥Σ−1

1,k

}
, (A.3) (A.2)
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one can easily verify that min{H, 2β∥ψVh+1
(sh, πh(sh))∥Σ−1

1,k
} ≤ Hrkh(sh, πh(sh)). Therefore for

any k ∈ [K] episode, we can bound the term I1 using the value function V π
1 (s; {rkh}Hh=1) of the

output policy π in the planning phase given the {rkh}Hh=1 as the reward function, i.e.

I1 ≤ E
[ H∑
h=1

Hrkh(sh, πh(sh))

]
= HV π

1 (s; {rkh}kh=1). (A.3)

Plugging the bound of I1 back into (A.1) then taking the expectation over the initial state distribution
µ, we have for any k ∈ [K],

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ HEs∼µ[V
π
1 (s; {rkh}kh=1)]

= H
(
V π
1 (sk1 ; {rkh}kh=1)− V π

1 (sk1 ; {rkh}kh=1)
)

+HEs∼µ[V
π
1 (s; {rkh}kh=1)].

Hence

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ H

K

K∑
k=1

(
V π
1 (sk1 ; {rkh}kh=1)− V π

1 (sk1 ; {rkh}kh=1)

+ Es∼µ[V
π
1 (s; {rkh}kh=1)]

)
. (A.4)

Since V π
1 (s; {rkh}kh=1) ≤ H for all k ∈ [K], s ∈ S, by Azuma-Hoeffding’s inequality, with

probability at least 1− δ/3,

K∑
k=1

(
Es∼µ[V

π
1 (s; {rkh}kh=1)]− V π

1 (sk1 ; {rkh}kh=1)
)
≤ H

√
2K log(3/δ). (A.5)

By plugging (A.5) into (A.4), we have

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ H

K

K∑
k=1

V π
1 (sk1 ; {rkh}kh=1) +H2

√
2 log(3/δ)/K.

Applying Lemma A.1 to the exploration phase, for any k-th episode, V π
1 (sk1 ; {rkh}kh=1) ≤

V ∗
1 (s

k
1 ; {rkh}kh=1) ≤ V k

1 (sk1), thus replacing the value function V π
1 with the estimated value function

V k
1 , we have

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ H

K

K∑
k=1

V k
1 (sk1) +H2

√
2 log(3/δ)/K. (A.6)

Finally by Lemma A.3 we can bound the summation over V k
1 , hence

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ H2
√

2 log(3/δ)/K + 8β
√

H3d log(1 +KH3B2/d)/K

+ 8βdH2 log(1 +KH3B2)/K + 2H2
√
2H log(1/δ)/K

and by taking union bound, the result holds with probability at least 1 − δ. Recall the setting of
β ∼ Õ(H

√
d) as in Theorem 4.2, let K = Õ(H5d2ϵ−2), the policy error Es∼µ[V

∗
1 (s; r)−V π

1 (s; r)]
is bounded by ϵ.

A.2 Proof of Corollary 4.4

Proof of Corollary 4.4. Following the proof of Theorem 4.2, since for all x ∈ Rd, ∥x∥1 ≤ ∥x∥2 ≤√
d∥x∥1 it follows that

∥ψVh+1
(sh, πh(sh))∥Σ−1

1,K+1
= ∥Σ−1/2

1,K+1ψVh+1
(sh, πh(sh))∥2

≤
√
d∥Σ−1/2

1,K+1ψVh+1
(sh, πh(sh))∥1. (A.7)
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We denote ũk
h as the result using the ℓ1 norm as the surrogate objective function in this optimization

problem (4.5), i.e.

ũk
h := argmax

f∈S7→[0,H−h]

∥Σ−1/2
1,k ψf (s

k
h, a

k
h)∥1,

then (A.7) yields

∥ψVh+1
(sh, πh(sh))∥Σ−1

1,K+1
≤
√
d∥Σ−1/2

1,K+1ψVh+1
(sh, πh(sh))∥1

≤
√
d∥Σ−1/2

1,K+1ψũk
h
(sh, πh(sh))∥1

≤
√
d∥Σ−1/2

1,K+1ψũk
h
(sh, πh(sh))∥2

≤
√
d∥Σ−1/2

1,K+1ψuk
h
(sh, πh(sh))∥2,

where the second inequality comes from ũk
h is the solution in (4.5), the third inequality comes from

the fact that ∥x∥1 ≤ ∥x∥2 and the forth inequality comes from the definition that uk
h. Then (A.3) is

changed to be

I1 ≤ H
√
dV π

1 (s, {rkh}kh=1).

Noticing that comparing to the original result, there’s an additional
√
d factor which yields (A.7)

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ H
√
d

K

K∑
k=1

V k
1 (sk1) +H2

√
2d log(3/δ)/K.

Then it is easy to show that using ℓ1 as the surrogate objective function, the sample complexity of
Algorithm 2 turns out to be Õ(H5d3ϵ−2)

A.3 Proof of Theorem 5.1

We are going to analyze Algorithm 3 and provide the proof of Theorem 5.1. Following the proof of
Theorem 4.2, we only need to revise Lemmas A.2 and A.3 to continue the proof of Theorem 5.1.

Lemma A.4 (Confidence interval, Bernstein). Let β, β̂, β̃, β̌ and λ be defined as Theorem 5.1, then
with probability at least 1− δ/3, for all k ∈ [K + 1],

∥θ∗ − θ̂k∥Σ̂1,k
≤ β̂, ∥θ∗ − θ̂k∥Σ̂1,k

≤ β̌, ∥θ∗ − θ̃k∥Σ̃1,k
≤ β̃, ∥θ∗ − θK+1∥Σ1,K+1

≤ β,

(A.8)

and |[VhV
k
h+1](s, a)− V̄k

h(s, a)| ≤ Ek
h(s, a).

Lemma A.5 (Summation, Bernstein). For Algorithm 2, setting its parameters as in Lemma A.2,
with probability at least 1− δ/3, the summation of the value function during exploration phase is
controlled by

K∑
k=1

V k
1 (sk1) ≤ Õ(

√
H3Kd+Hd

√
K) + o(

√
K).

Proof of Theorem 5.1. The proof is almost the same as the proof of Theorem 4.2 by replacing
Lemma A.2 with Lemma A.4, Lemma A.3 with Lemma A.5. In detail, following the same method,
(A.6) works for Algorithm 3 under the condition in Lemma A.4 holds. Therefore, by using Lemma A.5
instead of Lemma A.3, with probability at least 1− δ,

Es∼µ[V
∗
1 (s; r)− V π

1 (s; r)] ≤ H

K

K∑
k=1

V k
1 (sk1) +H2

√
2 log(3/δ)/K

≤ Õ
(
(
√
H4d2 +

√
H5d)/

√
K
)
.

Letting K = Õ(H4d(H + d)ϵ−2), the policy error for the planning phase could be controlled by
Es∼µ[V

∗
1 (s; r)− V π

1 (s; r)] ≤ ϵ.
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A.4 Proof of Corollary 5.3

Proof of Corollary 5.3. The proof is almost the same as proof of Corollary 4.4, by adding the
additional dependency d into the regret bound achieved by Theorem 5.1, it’s easy to verify that the
sample complexity using the ℓ1 norm as the surrogate function (4.5) is Õ(H4d2(H + d)ϵ−2)

B Missing Proofs in Appendix A

B.1 Filtration

For the simplicity of further proof, we define the event filtration here as

Gh,k =
{
{sκi , aκi }

H,k−1
i=1,κ=1, {s

k
i , a

k
i }h−1

i=1

}
,

it is easy to verify that skh is Gh+1,k-measurable. Also, since πk is Gh,k-measurable for all h ∈ [H],
akh = πk

h(s
k
h) is also Gh+1,k-measurable. Also, for any function f ≤ R built on Gh+1,k, such as

V k
h+1, u

k
h, f(skh+1)− [Pf ](skh, akh) is Gh+1,k-measurable and it is also a zero-mean R-sub-Gaussian

conditioned on Gh+1,k.

Since GH+1,k = G1,k+1, we could arrange the filtration as
G = {G1,1, · · · ,GH,1, · · · ,G1,k, · · · ,Gh,k, · · · GH,k, · · · ,G1,k+1, · · · ,GH,K ,G1,K+1},

and we will use G as the filtration set for all of the proofs in the following section and it is obvious
that G1,K+1 contains all information we collect during the exploration phase.

B.2 Proof of Lemma A.1

Proof of Lemma A.1. We prove this lemma by induction on time step h. Indeed, when h = H + 1,
VH+1(s) = V ∗

H+1(s; r) = 0 by definition. Suppose for h ∈ [H], Vh+1(s) ≥ V ∗
h+1(s; r), then

following the update rule of Q function in Algorithm 1, we have
Qh(s, a)−Q∗

h(s, a; r)

= min
{
H, rh(s, a) + ⟨ψVh+1

(s, a),θ⟩+ β∥ψVh+1
(s, a)∥Σ−1

}
− rh(s, a)− [PV ∗

h+1](s, a; r)

≥ min
{
H −Q∗

h(s, a; r), ⟨ψVh+1
(s, a),θ⟩+ β∥ψVh+1

(s, a)∥Σ−1 − [PV ∗
h+1](s, a; r)

}
.

We need to show that Qh(s, a) ≥ Q∗
h(s, a; r). Since it is obvious that the first term H −Q∗

h(s, a; r)
in min operator is greater than zero, we only need to verify that the second term is also positive where

⟨ψVh+1
(s, a),θ⟩+ β∥ψVh+1

(s, a)∥Σ−1 − [PV ∗
h+1](s, a; r)

≥ ⟨ψVh+1
(s, a),θ⟩+ β∥ψVh+1

(s, a)∥Σ−1 − [PVh+1](s, a; r)

= ⟨ψVh+1
(s, a),θ − θ∗⟩+ β∥ψVh+1

(s, a)∥Σ−1

≥ β∥ψVh+1
(s, a)∥Σ−1 − ∥ψVh+1

(s, a)∥Σ−1∥θ − θ∗∥Σ,
where the first inequality is from the induction assumption that V ∗

h+1(s; r) ≤ Vh+1(s). The second
equality is from the expectation of value function is a linear function of ψVh+1

shown in (3.2).
Then the inequality on the third line is utilizing the fact that ⟨x,y⟩ ≥ −∥x∥A−1∥y∥A. Since it is
guaranteed that β ≥ ∥θ − θ∗∥Σ from the statement of this lemma, Qh(s, a) − Q∗

h(s, a; r) ≥ 0,
which from induction we get our conclusion.

For the second part controlling V1(s)−V π
1 (s), since aforementioned proof has shown that V ∗

h (s; r) ≤
Vh(s) for all h ∈ [H], we have V ∗

h (s; r)− V π
h (s; r) ≤ Vh(s)− V π

h (s; r) and
Vh(s)− V π

h (s; r) = min{H, rh(s, πh(s)) + ⟨ψVh+1
,θ⟩+ β∥ψVh+1

(s, πh(s))∥Σ−1}
− rh(s, πh(s))− [PV π

h+1](s, πh(s); r)

≤ min{H, ⟨ψVh+1
,θ⟩+ β∥ψVh+1

(s, πh(s))∥Σ−1 − [PVh+1](s, πh(s))}
+ [PVh+1](s, πh(s))} − [PV π

h+1](s, πh; r)

= min{H, ⟨ψVh+1
,θ − θ∗⟩+ β∥ψVh+1

(s, πh(s))∥Σ−1}
+ [PVh+1](s, πh(s))} − [PV π

h+1](s, πh(s); r)

≤ min{H, 2β∥ψVh+1
(s, πh(s))∥Σ−1}

+ [PVh+1](s, πh(s))} − [PV π
h+1](s, πh(s); r),
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where the first inequality is directly from moving term −rh(s, πh(s)) − [PVh+1](s, πh(s)) into
the min operator, the second inequality uses the condition that ∥θ − θ∗∥Σ ≤ β and ⟨x,y⟩ ≤
∥x∥A−1∥y∥A. Considering the first step h = 1, we have

V1(s1)− V π
1 (s1; r) ≤ min{H, 2β∥ψV2

(s1, π1(s1))∥Σ−1}+ Es2∼P(·|s1,π1(s1))[V2(s2)− V π
2 (s2)]

≤ min{H, 2β∥ψV2
(s1, π1(s1))∥Σ−1}

+ Es2∼P(·|s1,π1(s1))

[
min{H, 2β∥ψV3

(s2, π2(s2))∥Σ−1}

+ Es3∼P(·|s2,π2(s2))[V3(s3)− V π
3 (s3)]

]
≤ · · ·

≤ E
[ H∑
h=1

min{H, 2β∥ψVh+1
(sh, πh(sh))∥Σ−1}

∣∣∣∣s1, π],
which concludes our proof.

B.3 Proof of Lemma A.2

We introduce the classical confidence set lemma from [1].
Lemma B.1 (Theorem 2, [1]). Let {Ft}∞t=0 be a filtration and {ηt} is a real-valued stochastic
process which is Ft-measurable and conditionally R-sub-Gaussian. Set yt = ⟨xt,ψ

∗⟩+ ηt, Vt =

λI +
∑t

i=1 xix
⊤
i where x ∈ Rd. Denote the estimation of ψ∗ as ψt = V−1

t

∑t
i=1 yixi. If

∥ψ∗∥2 ≤ S, ∥xt∥2 ≤ L, then with probability at least 1− δ, for all t ≥ 0

∥ψ∗ −ψt∥Vt
≤ R

√
d log

(
1 + tL2/λ

δ

)
+ S
√
λ.

Equipped with this lemma, we begin our proof.

Proof of Lemma A.2. Since [Puk
h](s

k
h, a

k
h) = ⟨ψuk

h
(skh, a

k
h),θ

∗⟩ due to (3.2) and uk
h(s) ≤ H ,

uk
h(s) − ⟨ψuk

h
(skh, a

k
h),θ

∗⟩ is Gh,k-measurable and it is also a zero mean H-sub-Gaussian ran-
dom variable conditioned on Gh,k. Also from Definition 3.1, ∥θ∗∥2 ≤ B, ∥ψuk

h
(skh, a

k
h)∥2 ≤ H .

Therefore, recall the calculation of θk, according to Lemma B.1, let t = (k − 1)H we have

∥θk − θ∗∥Σ1,k
≤ H

√
d log

(
1 + (k − 1)H3/λ

δ

)
+B
√
λ.

Let λ = B−2, δ = δ/3 and relax k with k = K + 1, we can get the β claimed in Theorem 4.2.

B.4 Proof of Lemma A.3

We provide the proof to control the summation of the value function during the exploration phase.
To start with, since rather than immediately updating the parameter after each time step, we can
only update the estimation θ and its ‘covariance matrix’ Σ once after each episode. As a result,
this ‘batched update rule’ make the UCB bonus term at step (h, k) be ∥ψuk

h
(skh, a

k
h)∥U−1

1,k
instead

of ∥ψuk
h
(skh, a

k
h)∥U−1

h,k
in the vanilla linear bandit setting. Therefore, we need lemmas showing that

these two UCB terms are close to each other.
Lemma B.2. For any {xh,k}H,K

h=1,k=1 ⊂ Rd satisfying that ∥xh,k∥2 ≤ L,∀(h, k) ∈ [H]× [K], let

Uh,k = λI+
∑k−1

κ=1

∑H
i=1 xi,κx

⊤
i,κ +

∑h−1
i=1 xi,kx

⊤
i,k, there exists at most 2Hd log(1 +KHL2/λ)

pairs of (h, k) tuple such that detUh,k ≤ 2 detU1,k.

Lemma B.3 (Lemma 12, [1]). Suppose A,B ∈ Rd×d are two positive definite matrices satisfying
that A ⪰ B, then for any x ∈ Rd, we have ∥x∥A ≤ ∥x∥B

√
det(A)/ det(B).

Following that, we also need to introduce the classical lemma to control the summation of the UCB
bonus terms in vanilla linear bandit setting.
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Lemma B.4 (Lemma 11, [1]). For any {xt}Tt=1 ⊂ Rd satisfying that ∥xt∥2 ≤ L,∀t ∈ [T ], let
Ut = λI+

∑t−1
τ=1 xτx

⊤
τ , we have

T∑
t=1

min{1, ∥xt∥U−1
t
}2 ≤ 2d log

(
dλ+ TL2

dλ

)
.

We also need to introduce the Azuma-Hoeffding’s inequality to build the concentration bound for
martingale difference sequences.
Lemma B.5 (Azuma-Hoeffding’s inequality, [4]). Let {xi}ni=1 be a martingale difference sequence
with respect to a filtration {Gi}ni=1 (i.e. E[xi|Gi] = 0 a.s. and xi is Gi+1 measurable) such that
|xi| ≤M a.s.. Then for any 0 < δ < 1, with probability at least 1− δ,

∑n
i=1 xi ≤M

√
2n log(1/δ).

Proof of Lemma A.3. By Lemma A.1, for the k-th episode, we have

V k
1 (sk1)− V πk

(sk1) = E
[ H∑
h=1

min{H, 2β∥ψV k
h+1

(sh, π
k
h(sh))∥Σ−1

1,k
}
∣∣∣∣sk1 , πk

]

≤ E
[ H∑
h=1

min{H, 2β∥ψuk
h
(sh, π

k
h(sh))∥Σ−1

1,k
}
∣∣∣∣sk1 , πk

]
(B.1)

where the inequality comes from that the pseudo value function uk
h defined in (4.3) is from maximizing

the UCB term ∥ψV k
h+1

(sh, π
k
h(sh))∥Σ−1

1,k
and we denote {πk

h}Hh=1 by πk in short. By the definition

of rkh, we have

V πk

(sk1) = E[
H∑

h=1

rkh(sh, π
k
h(sh))|sk1 , πk]

= E
[ H∑
h=1

min{1, 2β∥ψuk
h
(sh, π

k
h(sh))∥Σ−1

1,k
/H}

∣∣∣∣sk1 , πk

]
. (B.2)

Adding (B.1) and (B.2) together and taking summation over k, we have

K∑
k=1

V k
1 (sk1) ≤

H + 1

H

K∑
k=1

E
[ H∑
h=1

min{H, 2β∥ψuk
h
(sh, π

k
h(sh))∥Σ−1

1,k
}
∣∣∣∣sk1 , πk

]
︸ ︷︷ ︸

I1

≤ 2I1, (B.3)

where the last inequality is due to (H + 1)/H ≤ 2. Next we are going to control the expectation of
summation I1. Consider the filtration {Gh,k}H,K

h=1,k=1 defined in Section B.1, denote xh,k as follows:

xh,k = min{H, 2β∥ψuk
h
(skh, a

k
h)∥Σ−1

1,k
} − Esh

[
min{H, 2β∥ψuk

h
(sh, π

k
h(sh))∥Σ−1

1,k
}
]
,

then xh,k is obviously a martingale difference sequence bounded by H w.r.t. {Gh,k}H,K
h=1,k=1.

Thus by Azuma-Hoeffding’s inequality in Lemma B.5, we have with probability at least 1 − δ,∑K
k=1

∑H
h=1 xh ≤ H

√
2HK log(1/δ). Therefore,

I1 =

K∑
k=1

H∑
h=1

min{H, 2β∥ψuk
h
(skh, a

k
h)∥Σ−1

1,k
}+

K∑
k=1

H∑
h=1

xh

≤ 2β

K∑
k=1

H∑
h=1

min{1, ∥ψuk
h
(skh, a

k
h)∥Σ−1

1,k
}+H

√
2HK log(1/δ)

≤ 2
√
2β

K∑
k=1

H∑
h=1

min{1, ∥ψuk
h
(skh, a

k
h)∥Σ−1

h,k
}︸ ︷︷ ︸

I2

+4βHd log(1 +KH3/λ) +H
√

2HK log(1/δ),
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where the inequality on the second line is due to 2β ≥ 2H
√
d log 3 ≥ H and the last inequality uses

Lemma B.3 with Σ−1
1,k ⪰ Σ−1

h,k and detΣ−1
1,k ≤ 2 detΣ−1

1,k expect for Õ(Hd) cases by Lemma B.2.
By min{1, ∥ψuk

h
(sh, π

k
h(sh))∥Σ−1

h,k
} ≤ 1 and ∥ψuk

h
(skh, a

k
h)∥2 ≤ H since uk

h ≤ H , we can further

bound the Õ(Hd) terms where detΣ−1
1,k > 2 detΣ−1

1,k. To bound I2, by Lemma B.4, using Cauchy-
Schwarz inequality we have

I2 ≤
√
KH

√√√√ K∑
k=1

H∑
h=1

min{1, ∥ψuk
h
(skh, a

k
h)∥2Σ−1

h,k

} ≤
√

2KHd log(1 +KH3/(dλ)),

Plugging I2 into I1 then plugging I1 into (B.3). Let λ = B−2, the summation of the value function
V k
1 (sk1) is bounded by

K∑
k=1

V k
1 (sk1) ≤ 8β

(√
HKd log(1 +KH3B2/d) + dH log(1 +KH3B2)

)
+ 2H

√
2HK log(1/δ).

Taking δ = δ/3, we can finalize the proof of Lemma A.3.

B.5 Proof of Lemma A.4

The proof of this lemma is similar to the proof of Lemma 5.2 in [29]. We extend their proof to a
time varying reward and homogeneous setting, where the rewards (i.e., the exploration-driven reward
function rkh) are different in different episode k. To prove this lemma, we need to introduce the
Bernstein inequality for vector-valued martingales.
Lemma B.6 (Theorem 4.1, [29]). Let {Gt}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic process so
that xt ∈ Rd is Gt-measurable and ηt is Gt+1-measurable. Fix R,L, σ, λ > 0,µ∗ ∈ Rd. For t ≥ 1,
let yt = ⟨µ∗,xt⟩+ ηt. Suppose ηt,xt satisfy

|ηt| ≤ R, E[ηt|Gt] = 0, E[η2t |Gt] ≤ σ2, ∥xt∥2 ≤ L.

Then for any 0 < δ < 1, with probability at least 1− δ, we have

∀t > 0,

∥∥∥∥ t∑
τ=1

xτητ

∥∥∥∥
U−1

τ

≤ βt, ∥µt − µ∗∥Ut ≤ βt +
√
λ∥µ∗∥2,

where µt = U−1
t bt,Ut = λI+

∑t
τ=1 xτx

⊤
τ ,bt =

∑t
τ=i yτxτ , and

βt = 8σ
√

d log(1 + tL2/dλ) log(4t2/δ) + 4R log(4t2/δ).

We also introduce the following lemma to analyze the error between the estimated variance V̄k
h and

the true variance Vk
h.

Lemma B.7 (Lemma C.1, [29]). Let Vk
h(s, a) be as defined in (3.1) and V̄k

h(s, a) be as defined
in (5.3), then

|Vk
h(s, a)− V̄k

h(s, a)| ≤ min
{
H2, ∥ψ[V k

h+1]
2(s, a)∥Σ̃−1

1,k
∥θ̃k − θ∗∥Σ̃1,k

}
+min

{
H2, 2H∥ψV k

h+1
(s, a)∥Σ̂−1

1,k
∥θ̂k − θ∗∥Σ̂1,k

}
.

Equipped with these lemmas, we can start the proof of Lemma A.4.

Proof of Lemma A.4. Recall the regression in (5.4). For the regression on Σ̂, θ̂, let xk
h =

ψV k
h+1

(skh, a
k
h)/σ̄

k
h, and ηkh = V k

h+1(s
k
h+1)/σ̄

k
h − ⟨θ∗,xk

h⟩. Since σ̄k
h ≥ H/

√
d defined in (5.2),

we get ∥xk
h∥2 ≤

√
d, |ηkh| ≤

√
d, thus one could verify that E[[ηkh]2|Gh,k] ≤ d, E[ηkh|Gh,k] = 0, from

Lemma B.6, taking t = (k − 1)H we have

∥θ∗ − θ̂k∥Σ̂1,k
≤ 8d

√
log(1 + (k − 1)H/λ) log(4(k − 1)2H2/δ)

+ 4
√
d log(4(k − 1)2H2/δ) +

√
λB.
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For the regression of Σ̃, θ̃, xk
h = ψ[V k

h+1]
2(skh, a

k
h) which directly implies ∥xk

h∥2 ≤ H2. Let ηkh =

V k
h+1(s

k
h+1)

2 − ⟨θ∗,xk
h⟩, one can easily verify that |ηkh| ≤ H2 and E[ηkh|Gh,k] = 0,E[[ηkh]2|Gh,k] ≤

H4, thus using Lemma B.6 again we have

∥θ∗ − θ̃k∥Σ̃1,k
≤ 8H2

√
d log(1 + (k − 1)H/λ) log(4(k − 1)2H2/δ)

+ 4H2 log(4(k − 1)2H2/δ) +
√
λB.

Since λ = B−2, if we select β̌ and β̃ as

β̌ = 8d
√
log(1 +KHB2/) log(4K2H2/δ) + 4

√
d log(4(k − 1)2H2/δ) + 1

β̃ = 8H2
√
d log(1 +KHB2) log(4K2H2/δ) + 4H2 log(4K2H2/δ) + 1,

then with probability at least 1− 2δ, for all k ∈ [K + 1], ∥θ∗ − θ̂k∥Σ̂1,k
≤ β̌, ∥θ∗ − θ̃k∥Σ̃1,k

≤ β̃.

Next we are going to give the choice of β̂ to make sure that ∥θ∗ − θ̂k∥Σ̂1,k
≤ β̌ holds with high

probability. The following proof is conditioned on that the aforementioned event ∥θ∗− θ̂k∥Σ̂1,k
≤ β̌,

∥θ∗ − θ̃k∥Σ̃1,k
≤ β̃ holds, then from Lemma B.7 we have

|Vk
h(s, a)− V̄k

h(s, a)|

≤ min
{
H2, β̃∥ψ[V k

h+1]
2(s, a)∥Σ̃−1

1,k

}
+min

{
H2, 2β̌H∥ψV k

h+1
(s, a)∥Σ̂−1

1,k

}
= Ek

h(s, a) (B.4)

Again, let xk
h = ψV k

h+1
(skh, a

k
h)/σ̄

k
h to denote the context vector and ηkh = V k

h+1(s
k
h+1)/σ̄

k
h−⟨θ∗,xk

h⟩
to denote the noise term, since ∥θ∗ − θ̂k∥Σ̂1,k

≤ β̌, we have

E[[ηkh]2|Gh,k] = Vk
h(s

k
h, a

k
h)/ν

k
h ≤ (Ek

h(s
k
h, a

k
h) + V̄k

h(s
k
h, a

k
h))/ν

k
h ≤ 1,

where the first inequality is from (B.4), the second inequality holds because the definition of νkh
in (5.2).

Therefore we have verified that the noise term ηkh is a zero-mean random variable conditioned on
Gh,k and E[[ηkh]2|Gh,k] ≤ 1. In that case, using Lemma B.6 again we could get with probability at
least 1− δ,

∥θ∗ − θ̂k∥Σ̂1,k
≤ 8
√

d(1 + (k − 1)H/λ) log(4(k − 1)2H2/δ) (B.5)

+ 4
√
d log(4(k − 1)2H2/δ) +

√
λB, (B.6)

again, since λ = B−2, if we select β̂ as

β̂ = 8
√
d(1 +KHB2) log(4K2H2/δ) + 4

√
d log(4K2H2/δ) + 1,

then ∥θ∗ − θ̂k∥Σ̂1,k
≤ β̂ with probability at least 1− δ for all k ∈ [K + 1].

Next, for the regression of θK+1,Σ1,K+1, by Lemma A.2, we obtain the same result with the
selection of β as

β = H

√
d log

(
1 +KH3/λ

δ

)
+B
√
λ,

which suggests that with probability at least 1 − δ, ∥θK+1 − θ∗∥Σ1,K+1
≤ β. Then taking union

bound with all aforementioned event ∥θ∗ − θ̂k∥Σ̂1,k
≤ β̌, ∥θ∗ − θ̃k∥Σ̃1,k

≤ β̃, ∥θ∗ − θ̂k∥Σ̂1,k
≤ β̂,

we have all these events mentioned in this proof holds with probability at least 1 − 4δ. Replace δ
with δ/12, we obtain our final results.

Next, for the regression of θK+1,Σ1,K+1, by Lemma A.2, we obtain the same result with the
selection of β as

β = H

√
d log

(
1 +KH3/λ

δ

)
+B
√
λ,
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which suggests that with probability at least 1 − δ, ∥θK+1 − θ∗∥Σ1,K+1
≤ β. Again, taking an

additional union bound, with probability at least 1 − 4δ, all events mentioned in this proof hold.
Replace δ with δ/12, we obtain our final results.

B.6 Proof of Lemma A.5

The proof of this lemma borrows some intuition from the proof of Theorem 5.3 in [29]. Unlike Zhou
et al. [29] that deals the fixed reward and time-inhomogeneous setting, we need to extend their proof
in order to deal with the time-varying reward and time-homogeneous setting.

The next lemmas shows the relationship between the summation of νkh and the difference between
V k
h (s) calculated in Algorithm 3 and V πk

h (s; {rkh}
H,K
h=1,k=1)

Lemma B.8. Let V k
h , νkh be defined in Algorithm 3. Then if the condition in Lemma A.4 holds, the

following inequality holds with probability at least 1− 2δ,

K∑
k=1

[V k
1 (sk1)− V πk

1 (sk1)] ≤ 4
√
dβ̂

√√√√ K∑
k=1

H∑
h=1

νkh
√
log(1 +KHB2)

+ 2H2d log(1 +KHB2d) +H
√

2KH log(1/δ)

K∑
k=1

H∑
h=1

[P(V k
h+1 − V πk

h+1)](s
k
h, a

k
h) ≤ 4

√
dHβ̂

√√√√ K∑
k=1

H∑
h=1

νkh
√
log(1 +KHB2)

+ 2H3d log(1 +KHB2d) + 2H2
√
2KH log(1/δ),

Lemma B.9. Let V k
h , νkh be defined in Algorithm 3. Then if the condition in Lemma A.4 holds, with

probability at least 1− δ,

K∑
k=1

H∑
h=1

νkh ≤
H3K

d
+ 3H2K + 3H3 log(1/δ) + 2H

K∑
k=1

H∑
h=1

[P(V k
h+1 − V πk

h+1](s
k
h, a

k
h)

+ 2β̃
√
KHd log(1 +KH5B2/d) + 4β̃Hd log(1 +KH5B2/d)

+ 8H2β̌
√

KHd log(1 +KHB2) + 8H3dβ̌ log(1 +KHdB2).

Equipped with these two lemmas, we can start to prove Lemma A.5.

Proof of Lemma A.5. In this proof, we use Õ(·) to ignore all constant and log terms to simplify
the results. Recall the selection of β, β̂, β̌, β̃, we have β = Õ(H

√
d), β̂ = Õ(

√
d), β̌ = Õ(d),

β̃ = Õ(H2
√
d). Therefore Lemma B.8 could be simplified as

K∑
k=1

H∑
h=1

[P(V k
h+1 − V πk

h+1)](s
k
h, a

k
h) ≤ Õ

(
Hd

√√√√ K∑
k=1

H∑
h=1

νkh +H3d+
√
KH5

)
. (B.7)

Lemma B.9 could also be simplified as

K∑
k=1

H∑
h=1

νkh ≤ Õ

(
H3K

d
+H2K +H

K∑
k=1

H∑
h=1

[P(V k
h+1 − V πk

h+1)](s
k
h, a

k
h) +

√
KH5d3 +H3d2

)
.

(B.8)

Let
√∑K

k=1

∑H
h=1 ν

k
h = x, plugging (B.7) into (B.8), we have

x2 ≤ Õ(H3Kd−1 +H2K +H2dx+H4d+
√
KH7 +

√
KH5d3 +H3d2),

Since the quadratic inequality x2 ≤ Õ(bx+ c) indicates that x ≤ O(b+
√
c), setting

b = Õ(H2d), c = Õ(H3Kd−1 +H2K +H4d+
√
KH7 +

√
KH5d3 +H3d2),
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hence√√√√ K∑
k=1

H∑
h=1

νkh ≤ Õ(H
2d+

√
H3K/d+H

√
K +H2

√
d+ d

√
H3 + (KH7)1/4 + (KH5d3)1/4)

(B.9)

= Õ(
√
H3K/d+H

√
K) + o(

√
K). (B.10)

Plugging (B.10) back to Lemma B.8, we have
K∑

k=1

[V k
1 (sk1)− V πk

1 (sk1)] ≤ Õ(
√
H3Kd+Hd

√
K) + o(

√
K). (B.11)

Next we are going to show the bound of the summation over V πk

1 (sk1), note that this value function is
bounded by H and from Bellman equality, we have

V πk

h (sk1) = rkh(s
k
1 , a

k
1) + [PV πk

h+1](s
k
h, a

k
h),

taking summation over h ∈ [H], k ∈ [K] then
K∑

k=1

V πk

1 (sk1) =

K∑
k=1

H∑
h=1

rkh(s
k
1 , a

k
1) +

K∑
k=1

H∑
h=1

[PV πk

h+1](s
k
h, a

k
h)− V πk

h+1(s
k
h+1)

≤
K∑

k=1

H∑
h=1

min{1, 2β∥ψuk
h
(skh, a

k
h)∥Σ−1

1,k
/H}+H

√
HK log(1/δ),

where the last inequality holds due to Azuma-Hoeffding’s inequality i.e. Lemma B.5. For the first
term,

K∑
k=1

H∑
h=1

min{1, 2β∥ψuk
h
(skh, a

k
h)∥Σ−1

1,k
/H} ≤ 2β

H

K∑
k=1

H∑
h=1

min{1, ∥ψuk
h
(skh, a

k
h)∥Σ−1

1,k
}︸ ︷︷ ︸

I1

,

where the inequality is due to β ≥ H
√

log(12) ≥ H/2. Using Lemma B.2 and Lemma B.3 with
Σ−1

1,k ⪰ Σ−1
h,k and detΣ−1

1,k ≤ 2 detΣ−1
h,k except for Õ(Hd) steps mentioned in Lemma B.2, setting

λ = B−2, we have

I1 ≤ 2Hd log(1 +KH3B2) +
√
2

K∑
k=1

H∑
h=1

min{1, ∥ψuk
h
(skh, a

k
h)∥Σ−1

h,k
}

≤ 2Hd log(1 +KH3B2) +
√
2HK

√√√√ K∑
k=1

H∑
h=1

min{1, ∥ψuk
h
(skh, a

k
h)∥2Σ−1

h,k

}

≤ 2Hd log(1 +KH3B2) + 2
√

HKd log(1 +KH3B2/d).

Therefore, since β = Õ(H
√
d), then

K∑
k=1

V πk

1 (sk1) ≤ 4βd log(1 +KH3B2) + 4β
√
Kd log(1 +KH3B2/d)/H +

√
H3K log(1/δ)

(B.12)

≤ Õ(d
√
KH +

√
KH3) + o(

√
K). (B.13)

Adding (B.11) and (B.13) together, we have the following result,
K∑

k=1

V k
1 (sk1) ≤ Õ(

√
H3Kd+Hd

√
K) + o(

√
K).

By taking the union bound, this inequality holds with probability at least 1− 4δ. Since δ only appears
in the logarithmic terms, thus changing δ to δ/12 will not affect the result.
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C Proof of Auxiliary Lemmas in Appendix B

C.1 Proof of Lemma B.2

Proof of Lemma B.2. We want to know how many pairs of (h, k) exists such that detUh,k ≥
2 detU1,k.

Furthermore, we have if there exists k ∈ [K] such that detU1,k+1 ≤ 2 detU1,k, then it is obvious
that for all h ∈ [H], we have detUh,k ≤ detU1,k+1 ≤ 2 detU1,k.

Therefore, suppose there exists a set K ⊂ [K] such that for all k /∈ K, detU1,k+1 ≤ 2 detU1,k and
for all k ∈ K, detU1,k+1 > 2 detU1,k, then the pair of (h, k) such that detUh,k ≥ 2 detU1,k is
upper bounded by H|K|.
Notice that for all k ∈ K, detU1,k+1 > 2 detU1,k, it is easy to show that

detU1,K+1 > 2|K| detU1,1 = 2|K|λd,

where the last inequality comes from U1,1 = λI ∈ Rd×d. Notice that detU ≤ ∥U∥d2, taking log we
have

d log(∥U1,K+1∥2) ≥ log detU1,K+1 > |K| log 2 + d log λ. (C.1)
From the definition of U1,K+1, by triangle inequality,

∥U1,K+1∥2 ≤ λ+
∑
k=1

K

H∑
h=1

∥xk
hx

k⊤
h ∥2 ≤ λ+KH∥xk

h∥22 ≤ λ+KHL2, (C.2)

where the last inequality is due to ∥x∥2 ≤ L from the statement of the lemma. Therefore we conclude
our proof by merging (C.1) and (C.2) together to get

|K| log 2 < d log(1 +HKL2/λ),

noticing log 2 ≥ 1/2 we can get the result claimed in the lemma.

C.2 Proof of Lemma B.8

Proof of Lemma B.8. Assume that the condition in Lemma A.4 holds, then

V k
h (skh)− V πk

h (skh)

≤ ⟨θ̂k,ψV k
h+1

(skh, a
k
h)⟩ − [PV πk

h+1](s
k
h, a

k
h) + β̂∥ψV k

h+1
(skh, a

k
h)∥Σ̂−1

1,k

≤ ∥θ̂k − θ∗∥Σ̂1,k
∥ψV k

h+1
(skh, a

k
h)∥Σ̂−1

1,k
+ [PV k

h+1 − V πk

h+1](s
k
h, a

k
h) + β̂∥ψV k

h+1
(skh, a

k
h)∥Σ̂−1

1,k

≤ 2β̂∥ψV k
h+1

(skh, a
k
h)∥Σ̂−1

1,k
+ [PV k

h+1 − V πk

h+1](s
k
h, a

k
h),

where the first inequality holds due to the definition of V k
h , the second inequality holds due to

Cauchy-Schwarz inequality and the third one holds due to the condition (A.8) in Lemma A.4. Notice
that V k

h − V πk

h ≤ H , we have

V k
h (skh)− V πk

h (skh) ≤ min{H, 2β̂∥ψV k
h+1

(skh, a
k
h)∥Σ̂−1

1,k
}+ [PV k

h+1 − V πk

h+1](s
k
h, a

k
h)

Taking summation over k ∈ [K] and h ∈ [H], we have
K∑

k=1

[V k
1 (sk1)− V πk

1 (sk1)] ≤
K∑

k=1

H∑
h=1

min{H, 2β̂∥ψV k
h+1

(skh, a
k
h)∥Σ̂−1

1,k
}

+

K∑
k=1

H∑
h=1

[
[PV k

h+1 − V πk

h+1](s
k
h, a

k
h)− [V k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1)]

]
≤

K∑
k=1

H∑
h=1

min{H, 2β̂∥ψV k
h+1

(skh, a
k
h)∥Σ̂−1

1,k
}︸ ︷︷ ︸

I1

+H
√

2KH log(1/δ),

(C.3)
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where the second inequality is a direct result of Azuma-Hoeffding’s inequality as in Lemma B.5.

Next we bound I1. Recall the update rule of Σ̂h,k, notice that σ̄k
h ≥ H/

√
d and ∥ψV k

h+1
(sKh , aKh )∥2 ≤

H from V k
h+1 ≤ H , it is easy to verify that ∥ψV k

h+1
(sKh , aKh )/σ̂k

h∥2 ≤
√
d. Hence

I1 ≤
√
2

K∑
k=1

H∑
h=1

min{H, 2β̂∥ψV k
h+1

(skh, a
k
h)∥Σ̂−1

h,k
}+ 2H2d log(1 +KHd/λ)

≤
√
2max{

√
d, 2β̂}

K∑
k=1

H∑
h=1

σ̄k
h min{1, ∥ψV k

h+1
(skh, a

k
h)/σ̄

k
h∥Σ̂−1

h,k
}+ 2H2d log(1 +KHd/λ)

≤ 2
√
2β̂

√√√√ K∑
k=1

H∑
h=1

νkh

√√√√ K∑
k=1

H∑
h=1

min{1, ∥ψV k
h+1

(skh, a
k
h)/σ̄

k
h∥2Σ̂−1

h,k

}+ 2H2d log(1 +KHd/λ)

≤ 4β̂
√
d

√√√√ K∑
k=1

H∑
h=1

νkh
√
log(1 +KH/λ) + 2H2d log(1 +KHd/λ),

where the first inequality, similar to the corresponding proof in Lemma A.3, is a direct implication
of Lemma B.2 and Lemma B.3 with Σ̂−1

1,k ⪰ Σ̂−1
h,k and detΣ−1

1,k ≤ 2 det Σ̂−1
1,k except for Õ(Hd)

cases mentioned in Lemma B.2, the second inequality moves σ̄k
h outside, the third inequality holds

because β̂ ≥ 4
√
d log 12 ≥

√
d and Cauchy-Schwarz inequality, and the forth inequality holds due

to Lemma B.4. Plugging I1 into (C.3) and let h′ = 1, λ = B−2, we have

K∑
k=1

[V k
1 (sk1)− V πk

1 (sk1)] ≤ 4
√
dβ̂

√√√√ K∑
k=1

H∑
h=1

νkh
√
log(1 +KHB2)

+ 2H2d log(1 +KHB2d) +H
√
2KH log(1/δ).

Furthermore, by Azuma-Hoeffding’s inequality as in Lemma B.5,

K∑
k=1

H∑
h=1

P[V k
h+1 − V πk

h+1](s
k
h, a

k
h) =

K∑
k=1

H∑
h=2

[V k
h − V πk

h ](skh)

+

K∑
k=1

H∑
h=1

[
P(V k

h+1 − V πk

h+1](s
k
h, a

k
h)− [V k

h+1 − V πk

h+1)](s
k
h+1)

≤ 4
√
dHβ̂

√√√√ K∑
k=1

H∑
h=1

νkh
√

log(1 +KHB2)

+ 2H3d log(1 +KHB2d) + (H + 1)H
√
2KH log(1/δ),

which becomes the second part of the statement in the lemma. Using H + 1 ≤ 2H we can get the
result claimed in the lemma.

C.3 Proof of Lemma B.9

To begin with, we will first show the total variance lemma originally introduced in [8].

Lemma C.1 (Total variance lemma, Lemma C.5, [8]). 1 With probability at least 1− δ, we have

K∑
k=1

H∑
h=1

[VV πk

h (·; {rkh}Hh=1)](s, a) ≤ 3H2K + 3H3 log(1/δ).

1The original Lemma C.5 in Jin et al. [8] holds for the identical reward functions, i.e., r1h = · · · = rKh . Their
lemma also holds for the general case r1h ̸= · · · ̸= rKh without changing their proof.
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Proof of Lemma B.9. Assume the condition in Lemma A.4 holds, we have with probability at least
1− δ,

K∑
k=1

H∑
h=1

νkh ≤
K∑

k=1

H∑
h=1

(
H2

d
+ V̄k

h(s
k
h, a

k
h) + Ek

h(s
k
h, a

k
h)

)

=
H3K

d
+

K∑
k=1

H∑
h=1

(
[VhV

k
h+1](s

k
h, a

k
h)− [VhV

πk

h+1](s
k
h, a

k
h)
)

︸ ︷︷ ︸
I1

+2

H∑
k=1

H∑
h=1

Ek
h(s

k
h, a

k
h)︸ ︷︷ ︸

I2

+

K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h)︸ ︷︷ ︸

I3

+

K∑
k=1

H∑
h=1

[
V̄k

h(s
k
h, a

k
h)− [VhV

k
h+1](s

k
h, a

k
h)− Ek

h

]
︸ ︷︷ ︸

I4

≤ H3K

d
+ I1 + I2 + 3H2K + 3H3 log(1/δ), (C.4)

where the value function V πk

h (s) is short for V πk

h (s; {rkh}Hh=1) for simplicity. The first inequality is
from the definition of νkh in (5.2), while the last inequality is from Lemma C.1 to control I3. I4 ≤ 0
is due to Lemma A.4. Next we are about to bound I1 and I2 separately.

Since the estimated value function V k
h+1 and the real value function V πk

h+1 are both bounded by [0, H],
we have

I1 ≤
K∑

k=1

H∑
h=1

[
P([V k

h+1]
2 − [V πk

h+1]
2)
]
(skh, a

k
h) ≤ 2H

K∑
k=1

H∑
h=1

[P(V k
h+1 − V πk

h+1)](s
k
h, a

k
h).

For term I2, we have

I2 ≤
K∑

k=1

H∑
h=1

min{H2, β̃∥ψ[V k
h+1]

2(skh, a
k
h)∥Σ̃−1

1,k
}+

K∑
k=1

H∑
h=1

min{H2, 2Hβ̌∥ψV k
h+1

(s, a)∥Σ̂−1
1,k
}

≤ max{H2, β̃}
K∑

k=1

H∑
h=1

min{1, ∥ψ[V k
h+1]

2(skh, a
k
h)∥Σ̃−1

1,k
}

+

K∑
k=1

H∑
h=1

max{H2, 2Hβ̌σ̄k
h}min

{
1,
∥∥ψV k

h+1
(s, a)/σ̄k

h

∥∥
Σ̂−1

1,k

}
.

Noticing that from the definition of νkh ,

νhk = max{H2/d, V̄k
h(s

k
h, a

k
h) + Ek

h(s
k
h, a

k
h)} ≤ max{H2/d,H2 + 2H2} = 3H2,

thus σ̄k
h =

√
νkh ≤ 2H . Recall that β̃ ≥ 4H2 log(12) ≥ H2 and β̌ ≥ 1, we have

I2 ≤ β̃

K∑
k=1

H∑
h=1

min{1, ∥ψ[V k
h+1]

2(skh, a
k
h)∥Σ̃−1

1,k
}︸ ︷︷ ︸

I5

+4H2β̌

K∑
k=1

H∑
h=1

min
{
1,
∥∥ψV k

h+1
(s, a)/σ̄k

h

∥∥
Σ̂−1

1,k

}
︸ ︷︷ ︸

I6

.

For I5, using Lemmas B.2 and B.3 with Σ̃−1
1,k ⪰ Σ̃−1

h,k and det Σ̃−1
1,k ≤ 2 det Σ̃−1

1,k except for Õ(Hd)
cases mentioned in Lemma B.2, we have

I5 ≤
√
2

K∑
k=1

H∑
h=1

min{1, ∥ψ[V k
h+1]

2(skh, a
k
h)∥Σ̃−1

h,k
}+ 2Hd log(1 +KH5/dλ)

≤
√
2KH

√√√√ K∑
k=1

H∑
h=1

min{1, ∥ψ[V k
h+1]

2(skh, a
k
h)∥2Σ̃−1

h,k

}+ 2Hd log(1 +KH5/dλ)

≤ 2
√

KHd log(1 +KH5/dλ) + 2Hd log(1 +KH5/dλ),
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where the first inequality is a direct implication from Lemma B.2 and the second inequality is due to
Cauchy-Schwarz inequality. The third inequality utilizes Lemma B.4. As for I6, we have

I6 ≤
√
2

K∑
k=1

H∑
h=1

min
{
1,
∥∥ψV k

h+1
(s, a)/σ̄k

h

∥∥
Σ̂−1

h,k

}
+ 2Hd log(1 +KHd/λ)

≤
√
2KH

√√√√ K∑
k=1

H∑
h=1

min
{
1,
∥∥ψV k

h+1
(s, a)/σ̄k

h

∥∥
Σ̂−1

h,k

}
+ 2Hd log(1 +KHd/λ)

≤ 2
√

KHd log(1 +KH/λ) + 2Hd log(1 +KHd/λ).

Finally, plugging I5, I6 into I2 and I1, I2 into (C.4) we have

K∑
k=1

H∑
h=1

νkh ≤
H3K

d
+ 3H2K + 3H3 log(1/δ) + 2H

K∑
k=1

H∑
h=1

[P(V k
h+1 − V πk

h+1](s
k
h, a

k
h)

+ 2β̃
√
KHd log(1 +KH5/dλ) + 4β̃Hd log(1 +KH5/dλ)

+ 8H2β̌
√
KHd log(1 +KH/λ) + 8H3dβ̌ log(1 +KHd/λ).

Let λ = B−2 we could get the result in the statement of the lemma.

D Proof of Lower Bound

In this section, we will give the detailed proof of the sample complexity lower bound. We start
with verifying that the MDP structure as shown in Figure 1 is a linear mixture MDP satisfying
Definition 3.1.

D.1 Verification of the MDP structure

We will first show that the ℓ2 norm of θ is controlled. Recall the θi is set by Θ =
{
θi|θi =(√

2, αθ̃⊤i /
√
d
)⊤ }

where θ̃i = xi ∈M, we can have that ∥θi∥2 =
√
2 + α2, therefore, as long as

the parameter α is an absolute constant, the ℓ2 norm of θ is controlled. Next, considering a function
V ≤ D, we have

∥ψV (S1, ai)∥2 =

∥∥∥∥(V (S2,1)+V (S2,2)

2
√
2

(V (S2,1)− V (S2,2))
a⊤
i√
2d

)∥∥∥∥
2

≤
√

D2

2
+

D2d

2d
= D,

which shows that the MDP structure satisfies Definition 3.1.

D.2 Proof of Theorem 6.1

We denote the d − 1-dimension binary vector set as Bd−1 = {x|x ∈ Rd−1, [x]i ∈ {−1, 1}}. The
next lemma shows that the binary setM exists.

Lemma D.1. Given γ ∈ (0, 1), there exists aM ⊂ Bd−1 such that for any two different vector
x,x′ ∈M, ⟨x,x′⟩ ≤ (d−1)γ, and the log-cardinality of the proposed set is bounded as log(|M|) <
(d− 1)γ2/4.

With this lemma, we can construct a setM with |M| = ⌈exp(dγ2/4)⌉ − 1 where γ = 1
2 . It is easy

to verify that |M| < exp(dγ2/4) and

log(|M|) ≥ log(exp(dγ2/4)− 1)

≥ (d− 1)γ2

4
+ log(1− exp(−(d− 1)γ2/4))

≥ (d− 1)γ2

4
− 3, (D.1)
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where the last inequality holds since γ = 1
2 and d ≥ 2, we have log(1− exp(−(d− 1)γ2/4) ≥ −3.

From Lemma D.1, we know that for any two different vectors x,x′ ∈M, ⟨x,x′⟩ ≤ (d− 1)/2.

Next lemma establishes the lower bound of sample complexity for any algorithm to estimate the true
parameter θ ∈ Θ of the proposed linear mixture MDP, from the sampled state-action pairs of this
MDP.
Lemma D.2. Suppose an algorithm estimates the underlying parameter θ by building an estimator θ̂
from K sampled trajectories. If the algorithm guarantees that Eθ∼UnifΘ[1(θ̂ = θ)] ≥ 1− δ, we have

δ ≥ 1−
(
d− 1

16
− 3

)−1(
log 2 +

4Kα2

2− α2

)
.

Finally, the next lemma suggests that if α is selected properly, then any (ϵ, δ)-reward free algorithm
can be converted into an algorithm that provides the exact estimator with a probability of at least
1− δ.
Lemma D.3. Suppose α ≥ 2

√
2ϵ

H−1 , then any (ϵ, δ)-reward free algorithm could be converted to an

algorithm which outputs an estimator θ̂, satisfying Eθ∼Unif(Θ)[1(θ̂ = θ)] ≥ 1− δ.

Equipped with these lemmas, we can provide the proof for Theorem 6.1.

Proof of Theorem 6.1. Set α = 2
√
2ϵ

H−1 and ϵ ≤ (H − 1)/(2
√
2), then by Lemma D.3, any (ϵ, δ)-

reward free algorithm could be converted to an estimation algorithm with successful rate at least
1− δ. Thus from Lemma D.2, the sample complexity K of these reward free algorithms is bounded
by

K ≥ 2− α2

4α2

(
d− 1

16
− 3

)
(1− δ)− 2− α2

4α2
log 2

≥ (H − 1)2

128ϵ2

(
d− 1

16
− 3

)
(1− δ)− (H − 1)2 log 2

128ϵ2
.

Suppose H ≥ 2, d ≥ 50, δ ≥ 1/2 to simplify the result, we conclude that there exists an absolute
positive constant C such that K ≥ C(1− δ)H2dϵ−2, which leads to our final conclusion.

E Missing Proofs in Appendix D

We provide detailed proofs for lemmas in Appendix D. For simplicity, we denote by d′ = d− 1 the
dimension of the binary setM.

E.1 Proof of Lemma D.1

Proof of Lemma D.1. To begin with, we assume that x ∼ Unif(Bd′), i.e. [x]i ∼ {−1, 1}. Thus
given any x,x′ ∼ Unif(Bd′), we have

P(⟨x,x′⟩ ≥ d′γ) = Pzi∼Unif{−1,1}

( d′∑
i=1

zi ≥ d′γ

)

= Pzi∼Unif{−1,1}

(
1

d′

d′∑
i=1

zi ≥ γ

)
≤ exp(−d′γ2/2),

where the last inequality holds by utilizing the Azuma-Hoeffding’s inequality with the fact that
zi ∼ Unif{−1, 1} is a bounded random variable. Consider a setM with cardinality |M|, then there
is at most |M|2 pair of (x,x′). Thus taking a union bound over all vector pairs (x,x′), we have

P(∃x,x′ ∈M,x ̸= x′, ⟨x,x′⟩ ≥ d′γ) ≤ |M|2 exp(−d′γ2/2),

thus
P(∀x,x′ ∈M,x ̸= x′, ⟨x,x′⟩ ≤ d′γ) ≥ 1− |M|2 exp(−d′γ2/2),

Once we have that |M|2 exp(−d′γ2/2) < 1, there exists a setM such that for any two different
vector x,x′ ∈M, ⟨x,x′⟩ ≤ dγ.
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E.2 Proof of Lemma D.2

We start our lower bound proof from Fano’s inequality.

Lemma E.1 (Fano’s inequality, [6]). Consider probability measures Pθ,θ ∈ Θ on space Ω parame-
terized by θ ∈ Θ. Then for any estimator θ̂ on Ω and any comparison law P0 on Ω

1

|Θ|
∑
θ∈Θ

Pθ[θ̂ ̸= θ] ≥ 1−
log 2 + 1

|Θ|
∑

θ∈Θ KL(Pθ,P0)

log |Θ|
.

Then we will start our proof from the deterministic algorithms, which could be further extended to
random algorithms using Yao’s principle [23].

Proof of Lemma D.2. We denote Yk as such a trajectory at episode k and Y1:k for the trajectories
Y1, · · · , Yk. We have for the KL divergence over joint distribution Y1:k,

KL(Pθ(Y1:K),P0(Y1:K))

=
∑
Y1:K

Pθ(Y1:K) log(Pθ(Y1:K)/P0(Y1:K))

=
∑
Y1:K

Pθ(Y1:K−1)Pθ(YK |Y1:K−1) log(Pθ(Y1:K−1)/P0(Y1:K−1))

+
∑
Y1:K

Pθ(Y1:K−1)Pθ(YK |Y1:K−1) log(Pθ(Y1:K−1)/P0(Y1:K−1))

=
∑

Y1:K−1

Pθ(Y1:K−1) log(Pθ(Y1:K−1)/P0(Y1:K−1))
∑
YK

Pθ(YK |Y1:K−1)

+
∑

Y1:K−1

Pθ(Y1:K−1)
∑
Yk

Pθ(YK |Y1:K−1) log(Pθ(Y1:K−1)/P0(Y1:K−1))

= KL(Pθ(Y1:K−1),P0(Y1:K−1)) + EY1:K−1
[KL(Pθ(YK |Y1:K−1,P0(YK |Y1:K−1)].

Thus by further expanding the above equations, we have

KL(Pθ(Y1:K),P0(Y1:K)) =

K∑
k=1

EY1:k−1
[KL(Pθ(Yk|Y1:k−1),P0(Yk|Y1:k−1)],

where we denote EY1:0
[KL(Pθ(Y1|1 : 0),P0(Y1|1 : 0)] := KL(Pθ(Y1),P0(Y0)) for consistency.

Since for any deterministic algorithm, in any episode, the trajectory s1, a1, · · · , sH , aH is determined
after the algorithm goes into S2,1 or S2,2, furthermore, for these deterministic algorithms, the first
action a at k-th trajectory is fixed given previous knowledge Y1:k. Therefore, the distribution of the
whole trajectory could be replaced by the distribution of S2,1 and S2,2. We have there are at most
two possible value for Yk, we denote the trajectory S1, a1, S2,1, · · · , S2,1 by Yk = 0 and the other
trajectory S1, a1, S2,2, · · · , S2,2 by Yk = 1. We define the comparison distribution P0 as

P0(Yk = 0|Y1:k−1) =
1

|Θ|
∑
θi∈Θ

Pθi(Yk = 0|Y1:k−1) :=
1

2
+

α√
2d′
⟨a, θ̄⟩

P0(Yk = 1|Y1:k−1) =
1

|Θ|
∑
θi∈Θ

Pθi
(Yk = 1|Y1:k−1) :=

1

2
− α√

2d′
⟨a, θ̄⟩,

where we denote θ̄ is the mean value of θ̃i ∈M. (Recall that Θ =
{
θi|θi = (

√
2, αθ̃⊤i /

√
d′)⊤

}
).

For simplicity, we use Pθi
and P0 to denote the distributions for the whole trajectory defined above.
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Then we could bound the KL divergence between P0 and Pθi as

KL(Pθi
,P0)

=

(
1

2
+

α√
2d′
⟨a, θ̃i⟩

)
log

(√
2d′ + α⟨a, θ̃i⟩√
2d′ + α⟨a, θ̄⟩

)
+

(
1

2
− α√

2d′
⟨a, θ̃i⟩

)
log

(√
2d′ − α⟨a, θ̃i⟩√
2d′ − α⟨a, θ̄⟩

)
≤
(
1

2
+

α√
2d′
⟨a, θ̃i⟩

)
α⟨a, θ̃i − θ̄⟩√
2d′ + α⟨a, θ̄⟩

−
(
1

2
− α√

2d′
⟨a, θ̃i⟩

)
α⟨a, θ̃i − θ̄⟩√
2d′ − α⟨a, θ̄⟩

.

Taking summation over θi ∈ Θ, recall that θ̄ is the mean value of θ̃i ∈M, we have∑
θi∈Θ

KL(Pθi ,P0) =
2α2

2d′2 − α2⟨a, θ̄⟩2
∑
θi∈Θ

⟨a, θ̃i⟩⟨a, θ̃i − θ̄⟩.

Given the fact that ⟨x,x′⟩ ≤ d′ for any x,x′ ≤ A, one can easily get that

1

|Θ|
∑
θi∈Θ

KL(Pθi
,P0) ≤

4α2

2− α2
.

Plugging the above inequality into the decomposition of KL divergence, from Fano’s inequality
Lemma E.1, we have

δ ≥ 1

|Θ|
∑
θ∈Θ

Pθ[θ̂ ̸= θ] ≥ 1−
(
d′

16
− 3

)−1(
log 2 +

4Kα2

2− α2

)
.

Replacing d′ by d− 1, we can get the same result as the statement of the lemma.

E.3 Proof of Lemma D.3

We show the proof for Lemma D.3 by establishing different reward functions for this MDP structure.

Proof of Lemma D.3. For any θ ∈ Θ, we build the reward sequence as r(S1) = r(S2,1) =
0, r(S2,2) = 1, then any (ϵ, δ)-correct algorithm guarantees that

P(V ∗(S1, r;θ)− V π(S1, r;θ) ≤ ϵ) ≥ 1− δ, ∀θ ∈ Θ.

Our proof is to show that, as long as α ≥ 2
√
2ϵ

H−1 , we can build up the estimation of θ using θi =(√
2, αa⊤i /

√
d
)⊤

where ai is determined by ai = π(S1). It is guaranteed that Pθ[θi = θ] ≥ 1− δ

and furthermore, Eθ∼Unif(Θ)(1[θ = θ̂]) ≥ 1− δ.

Suppose for the MDP parameter θi, it is easy to find that the optimal policy for the first step is
π∗(S1) = ai. Suppose that for any policy π(S1) = aj where j ̸= i, then from the MDP structure,
the gap between policy and the optimal policy is

V ∗(S1, r;θi)− V π(S1, r;θi) =
(H − 1)α√

2d
(⟨ai,ai⟩ − ⟨ai,aj⟩)

≥ (H − 1)α√
2d′

(d′ − d′/2)

=
(H − 1)α

2
√
2

,

as long as we have α ≥ 2
√
2ϵ

H−1 , we can get the policy gap V ∗(S1, r;θi)− V π(S1, r;θi) ≥ ϵ.

Therefore, it is easy to show that the estimation using the policy π(S1) is guaranteed with successful
rate at least 1− δ for any MDP parameter θi, thus we can further conclude that Eθ∼Unif(Θ)(1[θ =

θ̂]) ≥ 1− δ.
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