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ABSTRACT

In this paper, we address conditional testing problems through the conformal in-
ference framework. We define the localized conformal p-values by inverting pre-
diction intervals and prove their theoretical properties. These defined p-values are
then applied to several conditional testing problems to illustrate their practicality.
Firstly, we propose a conditional outlier detection procedure to test for outliers in
the conditional distribution with finite-sample false discovery rate (FDR) control.
We also introduce a novel conditional label screening problem with the goal of
screening multivariate response variables and propose a screening procedure to
control the family-wise error rate (FWER). Finally, we consider the two-sample
conditional distribution test and define a weighted U-statistic through the aggrega-
tion of localized p-values. Numerical simulations and real-data examples validate
the superior performance of our proposed strategies.

1 INTRODUCTION

Nowadays, conformal inference has become an increasingly popular framework for quantifying
uncertainty of machine learning models. Suppose we have i.i.d. training data D1 = {(X1i, Y1i)}ni=1
and test data D2 = {(X2j , Y2j)}mj=1, where test responses {Y2j}mj=1 are unobserved. The goal is to
construct prediction intervals PI(X2j) for X2j ∈ D2 with marginal coverage guarantee

Pr(Y2j ∈ PI(X2j)) ≥ 1− α. (1.1)

By sample splitting or cross-fitting, conformal prediction methods (Vovk et al., 2005) can be coupled
with any machine learning algorithm to construct distribution-free prediction intervals with finite-
sample coverage guarantee. However, the marginal coverage (1.1) alone is not sufficient for an
efficient prediction interval. A marginally valid prediction interval could have a miscoverage rate
much higher than α in some subgroups of the data. Therefore, the conditional coverage is also an
important aspect:

Pr(Y2j ∈ PI(X2j) | X2j = x) ≥ 1− α. (1.2)

Although appealing, achieving (1.2) in a finite-sample and distribution-free context is impossible
(Vovk, 2013). Recent works have proposed many methods to construct prediction intervals with
approximate or asymptotic conditional coverage guarantee by either modifying the calibration step
(Lei & Wasserman, 2013; Guan, 2023) or using different score functions (Romano et al., 2019;
Chernozhukov et al., 2021).

In addition to prediction intervals, the conformal inference framework is also valuable for other in-
ference problems. With a similar calibration procedure, the conformal p-value is defined to address
various testing problems. This includes classical two-sample tests (Hu & Lei, 2023) and multiple
testing problems such as outlier detection (Bates et al., 2023; Zhang et al., 2022) and data selec-
tion/sampling (Jin & Candès, 2023b; Wu et al., 2023). Therefore, as a parallel development, our
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paper moves beyond conditional prediction intervals and defines conformal p-values tailored for
conditional testing problems.

We define localized conformal p-values by leveraging recent works Guan (2023) and Hore & Barber
(2024) which constructed prediction intervals to adapt to the conditional distribution of the response.
We present some fundamental properties of our defined p-values and demonstrate why they can ef-
fectively resolve these problems. More importantly, we also consider several non-trivial applications
of localized conformal p-values, encompassing various testing problems with different error criteria
(e.g., FDR, FWER or type I error). We show that the proposed testing rule can ensure valid corre-
sponding error rate control. Here we provide a brief overview of those problems and defer rigorous
formulations to later sections.

• Conditional outlier detection: Outlyingness in data sets may come from various forms
of heterogeneity. One of the important cases is that a few individuals in the test data do
not share the same regression functions with majority (Peng et al., 2023). This amounts
to detecting outliers in the functional relationship between the response and covariates that
can be represented by the conditional distribution of Y | X. This is common in many
spatial or temporal contexts where the scale or variance of the response variable varies with
location or time (Catterson et al., 2010).

• Conditional label screening: Consider a scenario where the response Y is multivariate.
Our goal is to determine whether each component of the response satisfies a pre-specified
rule for an unlabeled data point. For example, in the LLM factuality problem (Mohri &
Hashimoto, 2024; Cherian et al., 2024) we have a vector of claims output by a LLM. It is
desirable to screen out false claims to ensure reliability. In this example, the conditional
performance of the screening procedure is important, which needs to be addressed properly
to avoid extreme or imbalanced results.

• Two-sample conditional distribution test: The goal is to test for equality of conditional
distributions of Y | X between two samples (Hu & Lei, 2023). This is also known as the
problem of comparison of regression curves (Dette & Neumeyer, 2003). Some contempo-
rary applications include assessing casuality by testing whether the conditional distribution
of the response given the covariates remains the same between two samples (Bühlmann,
2020) and testing whether the pre-trained model can still perform well on a new test sam-
ple (Farahani et al., 2021).

1.1 OUR CONTRIBUTIONS

In this article, building on Hore & Barber (2024)’s randomly localized conformal prediction interval,
we construct localized conformal p-values, study their theoretical properties, and apply them to
several conditional testing problems. Our contributions to the applications are as follows:

• For the conditional outlier detection problem, we propose a procedure by utilizing the
Benjamini-Hochberg (BH) procedure (Benjamini & Hochberg, 1995) and conditional cali-
bration technique (Fithian & Lei, 2022). Our procedure controls the FDR in finite-sample.

• We elaborate a novel conditional label screening problem with rigorous formulation. We
use the localized conformal p-value to construct a screening procedure with finite-sample
marginal FWER control. We also present a conditional FWER inflation bound of our pro-
cedure to demonstrate its robustness against conditionality.

• We propose a U-statistic for the two-sample conditional distribution testing problem by
aggregating the localized conformal p-values. The asymptotic normality of the test statistic
under null and local alternatives is established.

We also validate our methods through simulations and real-data experiments. With commonly used
prediction algorithms, our proposed methods exhibit superiority in terms of both validity and power
compared to existing approaches.

1.2 RELATED WORKS

Conformal inference was originally designed to construct prediction intervals and enjoy valid and
distribution-free properties with the only assumption that the data are exchangeable. There have
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been several extensions to this framework. For example, Tibshirani et al. (2019) proposed weighted
conformal prediction for covariate shift settings, and Romano et al. (2019) introduced conformalized
quantile regression to account for heteroscedasticity. Other applications of the conformal inference
framework include causal inference (Lei & Candès, 2021), selective inference (Bao et al., 2024),
and survival analysis (Candès et al., 2023), among others. Besides conformal inference, we also
briefly review recent literature about our application problems in Appendix B.

1.3 NOTATIONS

The I{·} is the indicator function and ∥ · ∥2, ∥ · ∥∞ are the L2- and L∞-norm. The [n] denotes the
set {1, 2, . . . , n}. The δz denotes the point mass at value z. The notation Q(α;P ) denotes the α-th
quantile of distribution P . The subscripts of E and Pr indicate distributions of random variables in
the expectations and probabilities.

2 LOCALIZED CONFORMAL p-VALUES

In this section, we first revisit the definition of the split conformal prediction and its localized ex-
tensions by Guan (2023) and Hore & Barber (2024) in Section 2.1. Then we propose the localized
conformal p-values by inverting the localized prediction intervals in Section 2.2. At last we discuss
basic properties of the defined p-values in Section 2.3.

2.1 RECAP: CONFORMAL PREDICTION AND LOCALIZATION

We consider data pair (X, Y ) ∈ X × Y . Suppose we have D1 = {(X1i, Y1i)}ni=1 ∼ P1 = P1,X ×
P1,Y |X and D2 = {(X2j , Y2j)}mj=1 with each data point (X2j , Y2j) ∼ P2,j = P2,X × P2,j,Y |X. In
different problems, the responses Y2j of the second sample can be observed or unobserved.

In the classical split conformal prediction, D1 is divided into the training and calibration sets
D1 = DT ∪ DC with index sets T ∪ C = {1, 2, . . . , n}. The training set DT is used to train
a prediction function µ̂(X) for the response Y and construct a non-conformity function V (X, Y )
which measures the similarity between the prediction and the true response. We then apply the
score function to the calibration set DC to compute calibration scores {V1i}i∈C and obtain the quan-
tile threshold

q̂α = Q

(
1− α;

1

|C|+ 1

∑
i∈C

δV1i +
1

|C|+ 1
δ∞

)
. (2.1)

The split conformal prediction interval is defined as PI(X2j) = {y : V (X2j , y) ≤ q̂α} . If D1 ∪
{(X2j , Y2j)} are exchangeable, the prediction interval PI(X2j) is finite-sample valid in the sense
that Pr(Y2j ∈ PI(X2j)) ≥ 1− α.

However, calibrating marginally with (2.1) does not account for the local information of the test
point. Guan (2023) proposed the localized conformal prediction by calibrating with the quantile of
a weighted empirical distribution

q̂∗α̂,L = Q

(
1− α̂;

∑
i∈C

H∗(X1i,X2j)δV1i
+H∗(X2j ,X2j)δ∞

)
,

where H∗(x,x′) = H(x,x′)∑
k∈C H(X1k,X2j)+H(X2j ,X2j)

for some kernel function H(·, ·) characterizing
the similarity between its two arguments. Here α̂ is the adjusted level to guarantee finite-sample
coverage. Despite its efficiency, the LCP method needs to compute the adjusted level α̂, which is
complex and computationally inefficient. As an improvement, Hore & Barber (2024) proposed a
randomization technique to circumvent level adjustment. Their method first samples X̃2j from the
distribution H(X2j , ·), takes the threshold as

q̂α,L = Q

(
1− α;

∑
i∈C

H̃∗(X1i, X̃2j)δV1i
+ H̃∗(X2j , X̃2j)δ∞

)
,

and define the prediction interval as
PIL(X2j) = {y : V (X2j , y) ≤ q̂α,L} , (2.2)
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where H̃∗(x,x′) = H(x,x′)∑
k∈C H(X1k,X̃2j)+H(X2j ,X̃2j)

. If {(X2j , Y2j)} ∪ D1 are exchangeable, we can

compute the density ratio of X2j and X1i conditional on X̃2j as

dP2,X|X̃2j

dP1,X
(x) =

f2,X(x)H(x, X̃2j)

f1,X(x)
∫
X H(·, X̃2j) dP2,X(x)

= c ·H(x, X̃2j) ∝ H(x, X̃2j), (2.3)

which matches the weights in the empirical distribution up to a constant c. By
the weighted exchangeability in Tibshirani et al. (2019), the randomly localized confor-
mal prediction interval is finite-sample valid in the sense that Pr (Y2j ∈ PIL(X2j)) =

E
{
Pr
(
V (X2j , Y2j) ≤ q̂α,L | X̃2j

)}
≥ 1− α.

2.2 FROM PREDICTION INTERVALS TO p-VALUES

Motivated by the capability of (randomly) localized conformal prediction to capture local informa-
tion, we invert these prediction intervals to construct the localized conformal p-value. Due to its
simplicity, we follow Hore & Barber (2024) and take the randomization technique as in (2.2).

Let H(x,x′) = 1
hdK

(
x−x′

h

)
be a bi-variate kernel function with bandwidth h, where K(·) is a

kernel density function and d is the dimension of the feature vector x under consideration. HereK(·)
can be taken as the Gaussian kernel, the box kernel or any other nonparametric kernel function as
long as it is a symmetric density function. Define the localized conformal p-value for (X2j , Y2j) ∈
D2 as

pL,j =

∑
i∈C H(X1i, X̃2j)I{V2j ≤ V1i}+ ξj ·H(X2j , X̃2j)∑

i∈C H(X1i, X̃2j) +H(X2j , X̃2j)
, (2.4)

where ξj ∼ U[0, 1] is an independent random variable and X̃2j is randomly sampled from density
H(X2j , ·). The non-conformity score V may depend on both X and Y or only on X, contingent
on the specific problem. The pL,j can be viewed as a localized counterpart of the conformal p-
value investigated by Bates et al. (2023) by using weighted empirical distributions. To simplify
terminology, we will use CP and LCP to refer to the unweighted conformal p-value and our localized
conformal p-value, respectively in the rest of the article. Since we do not discuss prediction intervals,
this should not lead to confusion.

2.3 BASIC PROPERTIES

In this section we state some basic properties of the localized conformal p-value. The first property
is its finite-sample validity.
Lemma 1 (Finite-sample validity). For all 0 ≤ α ≤ 1, under the condition P1 = P2,j , the localized
conformal p-value satisfies Pr(pL,j ≤ α) ≤ α. Furthermore, if the score V (X, Y ) has a continuous
distribution, then Pr(pL,j ≤ α) = α.

This lemma is a direct corollary of the weighted exchangeability of {(X2j , Y2j)}∪C given X̃2j . By
leveraging this property, the LCP can be used for multiple testing to guarantee finite-sample FDR or
FWER control.

By the nature of the local-weighting scheme, the LCP can adapt to potential covariate shifts. The
following lemma is an analog of the robustness result in Hore & Barber (2024).
Lemma 2 (Robustness against covariate shift). Under the condition P1,Y |X = P2,j,Y |X, denote the
covariate density ratio as g(x) := dP2,X

dP1,X
(x). The LCP satisfies

Pr(pL,j ≤ α) ≤ α+ ∥f1,X∥∞EX∼PH,X,U∼K(·) {|g(X+ hU)− g(X)|} ,

where the distribution PH,X has a density function fH,X(x) = EX∼P1,X
{H(X,x)}.

This lemma gives a deviation bound of the distribution of LCP from uniform distribution under
covariate shift. The excess term will be small with a small h when the density ratio function g
satisfies some regularity conditions. For example, if g is Lipchitz continuous, the excess term will
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be of order O(h) vanish as h → 0. For another example, if we want to perform conditional testing
on some fixed region B ⊂ X , we can take g(x) = I{x ∈ B}/Pr(X ∈ B) with the shifted covariate
distribution being P1,X conditional on B. The excess term is then dominated by Pr(d(X, ∂B) ≤ h),
which is also an O(h) term. This indicates the LCP is approximately valid conditional on any fixed
region B.

As an indirect power characterization, the next lemma studies the point-wise limit of the LCP func-
tion which is defined as

pL(x, y) =

∑
i∈C H(X1i, X̃)I{v ≤ V1i}+ ξ ·H(x, X̃)∑

i∈C H(X1i, X̃) +H(x, X̃)
,

where v = V (x, y) and X̃ is sampled from H(x, ·). With a score function V chosen properly
based on the specific problem, a larger score value v will indicate stronger evidence against the pre-
specified null hypothesis. Our defined p-value therefore reflects evidence against the null contained
in a single data point. For the p-value to be powerful, the value of pL(X, Y ) should be small if
(X, Y ) is sampled under the alternative. Therefore, for a fixed score value v under the alternative,
we can regard a p-value function to be asymptotically more powerful than another if its limit function
takes smaller value at v.

We need some regularity conditions which are commonly used in nonparametric estimations.
Assumption 1. The following conditions hold for (X, Y ) ∼ P1:

• V (X, Y ) has a continuous distribution with bounded density;

• The conditional distribution of the score V = V (X, Y ) satisfies

∥FV |X=x(v)− FV |X=x′(v)∥∞ ≤ L · ∥x− x′∥β2
for some constant L > 0, 0 < β ≤ 1. That is, the conditional distribution function FV |X=x

varies smoothly with x.

• The density function f1,X(x) is continuous, and the conditional density function f1(y | x)
is continuous in x.

Lemma 3 (Asymptotic behavior). Assume Assumption 1 holds and the split ratio |C|/|D1| = γ for
some constant γ > 0, then the LCP function converges in probability

|pL(x, y)− (1− FV |X=x(v))| = Op

(√
h2β +

1

nhd

)
for any fixed (x, y), as h→ 0, nhd → ∞.

By the weak law of large number, the unweighted CP function satisfies

pCP(x, y) =

∑
i∈C I{v ≤ V1i}+ 1

|C|+ 1

p→ 1− FV (v),

where FV (·) is the marginal distribution function of score V . If we take h such that h→ 0, nhd →
∞, the LCP function converges to 1−FV |X=x(v) in probability. Comparing the power then amounts
to comparing the value of 1−FV |X=x(v) and 1−F (v). For a score value v under the alternative, our
conditional testing problem can generally ensure a uniformly small value of 1 − FV |X=x(v) since
the signal lies in the deviation of the conditional distribution. In contrast, the value of 1 − FV (v)
could be quite large for (x, y) pairs with a small conditional scale V | X = x, even if these pairs are
sampled under the alternative. Although not uniformly more powerful, the LCP can identify signals
in these regions of X with a small conditional scale V | X = x, which tends to be missed by the
CP. This property further motivates us to apply the LCP on conditional testing problems.

3 APPLICATIONS ON CONDITIONAL TESTING

In this section, we apply the LCP on several conditional testing problems. We first provide a straight-
forward application on sample selection problem in Section 3.1. Then in Section 3.2 we study the
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conditional outlier detection problem and adopt the conditional calibration technique to achieve
finite-sample FDR control. In Section 3.3 we introduce a novel conditional label screening problem
and leverage the LCP to design a screening procedure with FWER control. Our application on the
two-sample conditional distribution testing problem is deferred to Appendix C due to space limits.

3.1 WARM-UP: BALANCED DATA SELECTION

Consider the sample selection problem which was investigated by Jin & Candès (2023b) and Wu
et al. (2023). The test sample D2 = {X2j}mj=1 is unlabeled. The goal is to select test samples
satisfying a pre-specified rule Y ∈ A. Therefore, whether to select the jth sample amounts to
conducting the following hypothesis test:

H0j : Y2j /∈ A, versus H1j : Y2j ∈ A.

In this case, the CP can be accordingly defined as

pj =

∑
i∈C,Y1i /∈A I{V2j ≤ V1i}+ ξj

|{i ∈ C : Y1i /∈ A}|+ 1
,

and if pj ≤ α we select X2j . Such methods directly controls the per selection error rate (PSER),
say

Pr(X2j selected | Y2j /∈ A) ≤ α.

Analogously, we can apply our proposed localized conformal p-value instead to achieve certain
improvement in terms of conditional performance. The LCP is defined as

prL,j =

∑
i∈C,Y1i /∈AH(X1i, X̃2j)I{V2j ≤ V1i}+ ξj ·H(X2j , X̃2j)∑

i∈C,Y1i /∈AH(X1i, X̃2j) +H(X2j , X̃2j)
,

where V is a non-conformity score function depending on A. We use δj = 1, 0 to indicate selecting
X2j or not, where δj = I{prL,j ≤ α}. As a corollary of Lemmas 1-2, the following theorem
provides the marginal and conditional properties of this simple selection rule.
Theorem 1 (Finite-sample PSER control and conditional PSER bound). Suppose {(X1i, Y1i)}ni=1
and {(X1i, Y1i)}mj=1 are exchangeable, the selection rule δj = I{prL,j ≤ α} can ensure finite-
sample marginal PSER control Pr(δj = 1 | Y2j /∈ A) ≤ α. Moreover, the conditional PSER
inflation bound is given by

Pr(δj = 1 | Y2j /∈ A,X2j ∈ B) ≤ α+ 2∥f1,X,A∥∞
PrX∼PH,X,A,U∼K(·)(∥U∥2 ≥ h−1d(X, ∂B))

Pr(X2j ∈ B | Y2j /∈ A)
,

where f1,X,A is the conditional density of X1i | Y1i /∈ A, PH,X,A has a density function
fH,X,A(x) = EX∼f1,X,A{H(X,x)} and ∂B is the boundary set of B.

The second result is obtained by taking the function g(x) = I{x ∈ B}/Pr(X2j ∈ B) in Lemma 2
and simplifying the deviation term. For general sets B of regular form (e.g., balls or hypercubes),
the excess term will be small with a small h. This indicates that using the LCP for data selection
can lead to a more balanced selection result since the PSER inflation for different sub-groups is
bounded. For instance, by choosing an appropriate B, we can expect that the burden of incorrect
selection probability (PSER) will be more evenly distributed among different genders and races via
our LCP. A related issue is addressed by Rava et al. (2021), which focuses on controlling group-wise
error rates to mitigate imbalances, aligning closely with our objectives.

3.2 CONDITIONAL OUTLIER DETECTION

In the conditional outlier detection problem, the available data consists of clean data D1 and test
data D2 with potential outliers. Both samples are labeled with observed responses. The inliers in
D2 have the same conditional distribution P2,j,Y |X = P1,Y |X with D1 while the outliers may have
different conditional distributions from each other. Detecting conditional outliers can be formulated
as the following multiple testing problem:

H0j : P2,j,Y |X=x = P1,Y |X=x for almost all x, versus H1j : otherwise, (3.1)
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where (X2j , Y2j) ∈ D2 is an inlier if H0j holds and outlier if H1j holds. Our goal is to determine
the detection set (or the rejection set equivalently) R ⊆ {1, 2, . . . ,m} based on the observed data
D1 and D2. Denote I,O ⊆ {1, 2, . . . ,m} as the index sets of inliers and outliers. The rejection set
R should contain as many indices in O as possible while guaranteeing finite-sample false discovery
rate (FDR) control

FDR = E(FDP) = E
(
|I ∩ R|
|R| ∨ 1

)
≤ α.

Bates et al. (2023) utilized the conformal p-value to test for marginal outliers by applying the BH
procedure on conformal p-values computed on the test data. However, this is generally not effective
when testing for conditional outliers. As discussed in the previous section, the classical CP targets
on the joint distribution of (X, Y ) rather than Y | X, and thus cannot identify all information in the
conditional distribution of score variables. In light of the capability of the LCP to capture deviations
in conditional distributions, we can take it as a refinement to detect conditional outliers.

As proved by Bates et al. (2023), the unweighted conformal p-values based on the same calibration
set is positive regression dependent on a subset (i.e., PRDS), under which the BH procedure can still
guarantee finite-sample FDR control. This property, however, does not hold for the weighted con-
formal p-values. In order to achieve the finite-sample property, we adopt the conditional calibration
technique (Fithian & Lei, 2022) to prune the rejection set output by the BH procedure.

To perform multiple testing with the LCP, we first train the non-conformity score function V (x, y)
on DT and then compute scores {V1i}i∈C and {V2j}mj=1 on DC and D2, respectively. After sampling
X̃2j for each X2j , the LCP’s {pL,j}mj=1 are computed as in Eq. (2.4). Define the auxiliary p-values
as

p
(l)
L,j =

∑
i∈C H(X1i, X̃2j)I{V2j ≤ V1i}+ ξj ·H(X2j , X̃2j)I{V2j ≤ V2l}∑

i∈C H(X1i, X̃2j) +H(X2j , X̃2j)
. (3.2)

for l ∈ {1, 2, . . . ,m} \ {j}. Let R̂j→0 be the rejection set of the BH procedure applied on
{p(j)L,1, . . . , p

(j)
L,j−1, 0, p

(j)
L,j+1, . . . , p

(j)
L,m} and Rinit = {j : pL,j ≤ α|R̂j→0|/m} be the initial re-

jection set. We determine the final rejection set by generating independent ζ1, . . . , ζm ∼ U[0, 1] and
pruning Rinit into

R =

{
j : pL,j ≤

α|R̂j→0|
m

, ζj |R̂j→0| ≤ r∗

}
, (3.3)

where r∗ = max
{
r :
∑m

j=1 I
{
pL,j ≤ α|R̂j→0|/m, ζj |R̂j→0| ≤ r

}
≥ r
}

.

The outlier detection procedure is summarized in Algorithm 1 in Appendix D.

The following theorem shows that our detection procedure can guarantee finite-sample FDR control
if the distribution of the covariates does not change.
Theorem 2 (Finite-sample FDR control). Under the condition that P1,X = P2,X, the final output
R given by Algorithm 1 ensures FDR ≤ α.
Remark 1. Since the condition P1,X = P2,X together with the null hypothesis P1,Y |X = P2,j,Y |X
lead to the equality of the joint distribution of (X, Y ), our method is not an exact testing procedure
for (3.1). Instead, it can be viewed as an extended marginal outlier detection approach with remark-
ably boosted power on conditional outliers. This aligns with our motivation, as the classical CP
often fails to detect conditional outliers effectively.

3.3 CONDITIONAL LABEL SCREENING

In the conditional label screening problem, the response variable is multivariate with Y =
(Y1, Y2, . . . , YS) for some random variable S. The first sample D1 is the labeled data while the
second sample D2 is unlabeled. The response vectors are denoted as Yℓi = (Yℓi,1, . . . , Yℓi,Sℓi

)
for ℓ = 1, 2. Our goal is to determine whether each component of the unobserved response
Y2j = (Y2j,1, . . . , Y2j,S2j

) satisfies a pre-specified rule for each X2j ∈ D2. For each entry s,
we define the screening rule as Y2j,s ∈ As with pre-chosen sets As. This can be formulated as a
multiple testing problem for each test sample

H0j,s : Y2j,s /∈ As, versus H1j,s : Y2j,s ∈ As, 1 ≤ s ≤ S2j . (3.4)
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For example, Mohri & Hashimoto (2024); Cherian et al. (2024) considered using conformal predic-
tion techniques to improve the output factuality of large language models (LLM). Specifically, they
transform the output of the LLM into a set of claims and aim to construct a filtered claim set that
contains no false claims with high probability. Such application can be framed into our conditional
label screening problem stated above. The covariate X2j includes the input prompt P2j , the out-
put R2j of the LLM model and a claim vector C2j of length S2j summarized by another language
model. The response vector is a 0-1 vector with Y2j,s = 1 or 0 indicating whether the corresponding
claim is correct or not. Here we can take As = {1} for every 1 ≤ s ≤ S2j to screen out false claims.

To ensure reliability of the screening procedure, we seek to control the probability of failing to
screen out any component of Y2j that does not meet the rule. Let δj,s = 1 or 0 indicate whether
Y2j,s is retained after screening. This can be rigorously formulated as

Pr

S2j∑
s=1

I{Y2j,s /∈ As, δj,s = 1} > 0

 ≤ α, (3.5)

say, controlling the FWER for (3.4). However, the marginal FWER might not be sufficient in real
problems. We can use the localization technique to improved conditional validity while still guaran-
teeing marginal FWER control.

Since the test data D2 is unlabeled in the current problem, the non-conformity score function V
should depend only on the covariate X. We can use the training data DT to estimate the probability
Pr(Y2j,s ∈ As). This can be achieved by training classification models for each component of Y if
the length S is a fixed constant or fitting a joint classification model that outputs a probability vector.
In both scenarios, we can define the score vector

V (X2j) = (V2j,1, V2j,2, . . . , V2j,S2j
)⊤,

where each V2j,s approximates Pr(Y2j,s ∈ As). By this definition, we should reject H0j,s if V2j,s is
large, and controlling the FWER amounts to examining the distribution of max{V2j,s : Y2j,s /∈ As}.
This motivates us to define the localized p-value

pL,j,s =

∑
i∈C H(X1i, X̃2j)I{V2j,s ≤ V̄1i}+ ξj ·H(X2j , X̃2j)∑

i∈C H(X1i, X̃2j) +H(X2j , X̃2j)
, (3.6)

where V̄1i = max{V1i,s : Y1i,s /∈ As}. We can show that the pL,j,s’s satisfy the group super-
uniform property, i.e.,

Pr

 ⋃
Y2j,s /∈As

{pL,j,s ≤ α}

 ≤ α,

and thus we can screen out components of Y2j with pL,j,s ≤ α. We summarize our label screening
procedure in Algorithm 2 in Appendix D.

We have the following result.
Theorem 3 (Finite-sample FWER control). Suppose {(X1i,Y1i, S1i)}i∈C ∪{(X2j ,Y2j , S2j)}mj=1
are exchangeable, then the label screening procedure given by Algorithm 2 ensures finite-sample
FWER control

FWER = Pr

S2j∑
s=1

I{Y2j,s /∈ As, pL,j,s ≤ α} > 0

 ≤ α.

Regarding the conditional property, we can also establish the finite-sample conditional FWER devi-
ation bound for our procedure.
Theorem 4 (Conditional FWER bound). Suppose the assumptions in Theorem 3 hold. For any fixed
set B ⊂ X with Pr(X2j ∈ B) > 0, the conditional FWER has the following bound

Pr

S2j∑
s=1

I{Y2j,s /∈ As, pL,j,s ≤ α} > 0
∣∣∣ X2j ∈ B


≤ α+ 2∥f1,X∥∞

PrX∼PH,X,U∼K(·)(∥U∥2 ≥ h−1d(X, ∂B))
Pr(X2j ∈ B)

,

where ∂B is the boundary of set B.
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In this theorem, the inflation bound is similar to that in the second result of Theorem 1. By a similar
rationale, this demonstrate the advantage of our method to mitigate conditional error rate inflation.

4 EXPERIMENTS AND EVALUATION

We provide synthetic and real-data experiment results to show the validity and efficiency of our
proposed methods for two main applications, respectively in Sections 4.1-4.2. More comprehensive
experiments for all our applications on conditional testing are detailed in Appendix E.

4.1 SYNTHETIC-DATA RESULTS FOR CONDITIONAL OUTLIER DETECTION

Data Description. For the conditional outlier detection problem, we consider a heterogeneous linear
regression model with label Y in which the data are generated as follows:

Scenario A1: the covariate vector consists of X = (X1, . . . , Xd∗−1)
⊤ ∈ Rd∗−1 with d∗ = 10

and an additional time feature t ∈ R. The model is Y = Xβ + (3 + 2 · sin(2π · t)) · ε, with
X1, . . . , Xd∗−1 ∼ U[−1, 1], t ∼ U[0, 1] and ε ∼ N(0, 1) independently. The coefficient vector is
β = (0.5,−0.5, 0.5,−0.5, 0.5, 0, 0, 0, 0). The test data contains 10% outliers following the model
Y = Xβ+(3+2·sin(2π·t))·ε+r(t)·ξ, where r(t) = 3·(3+1.5 sin(2π·t)) and Pr(ξ = ±1) = 1/2.
We also consider a scenario without label Y in Appendix E.1 (Scenario B1).

Benchmarks. We abbreviate our method as LCP-od (outlier detection) and compare it with a bench-
mark method abbreviated as CP. The CP method is implemented by computing the unweighted
conformal p-values as defined in Bates et al. (2023) and then applying the BH procedure. For the
LCP-od and CP methods, we use two score functions: CQR scores and absolute residual scores, and
apply various regression or classification algorithms, which are detailed in Appendix E.1.

Results. The average FDP above nominal level and power across 500 replications for Scenario A1
are shown in Figure 1. It can be seen that both the LCP-od method and the CP method accurately
control the FDR around the nominal level, which validates their finite-sample FDR control property.
In terms of power, the LCP-od method demonstrates higher power than the CP benchmark with
both two score functions when the sample size n is relatively large. Compared with the absolute
residual score, the CQR score leads to relatively higher power due to its adaptivity to the conditional
distribution of Y | X. However, the power gain is still significant after applying the LCP-od method,
illustrating the advantage of local weighting. Moreover, the power of the LCP-od method grows
significantly with the sample size n, while the power of the CP method only rises slightly. As
discussed in the Section 2.3, the unweighted CP cannot identify those outliers with small conditional
variance of the score. This explains why the power of the CP method remains “stuck” around the
same value. In contrast, the power of the LCP-od method approaches 1 as the sample size increases,
demonstrating the full identifiability of the LCP-od method in testing for conditional outliers.

CQR−QNN CQR−QRF Res−RF Res−SVM
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Figure 1: FDP above the nominal level and power under different clean sample sizes n for Scenario
A1. The test sample size is fixed at m = 2000 and the nominal level is fixed at α = 0.15.
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4.2 CONDITIONAL LABEL SCREENING ON HEALTH DATA

Dataset. We utilize the health indicators dataset from Kaggle (Kaggle, 2021) to demonstrate the
performance of our conditional label screening method. The dataset comprises n = 70, 692 samples
and 22 variables, including demographic attributes (e.g., sex, age, BMI), lifestyle-related features,
as well as several binary health indicators. These indicators capture whether an individual has con-
ditions such as diabetes, coronary heart disease, or has experienced a myocardial infarction, among
others. Accordingly, we define the response variable Y as these disease-related binary labels, with
the goal of predicting the risk of these conditions in test data. More specifically, the response vector
Y = (Y1, Y2, Y3) ∈ {0, 1}3 is set as follows:

• Y1: Indicates whether an individual has diabetes.
• Y2: Indicates whether an individual has coronary heart disease or myocardial infarction.
• Y3: Indicates whether an individual has experienced a stroke.

Consequently, the label screening targets are Ys ∈ As = {1} for s = 1, 2, 3. We fix the size of
the labeled data D1 at n = 500 and the test data D2 at m = 2, 000, randomly sampling them from
the original dataset without replacement in each replication. We fix the nominal level at α = 0.05,
and apply two different algorithms to compute the score vectors: linear logistic regression (LL) and
random forest (RF).

Benchmarks and performance measures. We compare our conditional label screening method via
the LCP (abbreviated as LCP-ls) with the thresholding procedure without weighting (abbreviated as
THR). The THR method is performed by only replacing the LCP by the classical unweighted CP.
We calculate the empirical marginal FWER and conditional FWER (conditional on X ∈ B for a
specific set B) for the screening procedure via LCP-ls and the simple thresholding rule, respectively,
where B = {X : sex = female and BMI > 30}. The precise definitions of two measures are
detailed in Section 3.3.

Results. We show the average of measures for all m test samples across 500 repetitions. The results
are reported in Table 1. We observe that both benchmarks can ensure valid marginal FWER control,
while only the label screening procedure via the LCP-ls is capable of controlling both conditional
and marginal FWER simultaneously.

Table 1: Empirical conditional FWER (cFWER) and marginal FWER (mFWER) under nominal level α =
0.05 for health indicator dataset across 500 replications by using LL and RF algorithms, respectively. The
bracket contains the standard error.

Method cFWERLL cFWERRF mFWERLL mFWERRF

LCP-ls 0.0329 (0.018) 0.0372 (0.018) 0.0487 (0.009) 0.0507 (0.009)
THR 0.0740 (0.028) 0.0887 (0.029) 0.0500 (0.011) 0.0538 (0.012)

5 CONCLUDING REMARKS

We conclude the paper with two remarks. Firstly, the localized conformal prediction is efficient in
capturing local or conditional information, but this comes at the cost of a much smaller effective
sample size. In our simulation experiments, the power of localized methods grows significantly as
the sample size increases in many scenarios. However, when the sample size is small, our proposed
methods often exhibit lower power compared to other methods. Therefore, it would be beneficial to
increase the effective sample size by utilizing additional data or modifying the definition of the LCP.

Secondly, we define the LCP with a random sampling step for each test point to achieve finite-sample
validity. However, the random sampling step introduces external randomness, which degrades the
stability of the related methods. Additionally, the LCP is defined by computing the similarity be-
tween covariates of the calibration data and the sampled covariate X̃ instead of the test point X itself.
Although these two issues are equivalent asymptotically, they generally differ in finite-samples. This
makes the LCP not effective enough in characterizing local information. A potential solution is to
use a different definition for the localized conformal p-value to ensure finite-sample validity without
randomization, which warrants further consideration.
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REPRODUCIBILITY STATEMENT

Code for implementing our methods and reproducing the experiments and figures in our paper is
available at https://github.com/lulin2023/LCP-testing. For details of our imple-
ments, please see the pseudo-codes for our all proposed algorithms in Appendix D and the imple-
mentation details in Appendix E. Proofs of all theoretical results are included in Appendix F.
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Supplementary Material for “Conditional Testing based on
Localized Conformal p-values”

This supplementary material contains:

• Preliminary terms for self-containment (Appendix A).
• Additional related works (Appendix B).
• An application on the two-sample conditional distribution test (Appendix C).
• Additional details of our algorithms (Appendix D).
• Additional experiments and implementation details (Appendix E).
• Proofs of all the theoretical results (Appendix F).

A PRELIMINARY TERMS FOR SELF-CONTAINMENT

Here, we list the preliminary terms we use in the paper for the sake of clarity and self-containment.

• FDR (Benjamini & Hochberg, 1995), false discovery rate, a widely-adopted error rate
notion in the field of multiple testing, is defined as the expected proportion of incorrectly
rejected null hypotheses as follows:

FDR = E
[
|H0 ∩R|
|R| ∨ 1

]
,

where H0 is the unknown set of true null hypotheses, R represents the set of rejected null
hypotheses and then H0 ∩R is the set of false discoveries.

• FWER, family-wise error rate, is defined as the probability of falsely rejecting more or
equal to one hypothesis testing:

FWER = Pr(V > 0),

where V is the number of false discoveries (or rejections).
• PCER (PSER), per comparison (selection) error rate, is defined as follows:

PCER = E(V )/n,

where n is the total number of hypotheses.

B ADDITIONAL RELATED WORKS

Outlier detection. Classical outlier detection methods include multivariate outlier detection meth-
ods that use model assumptions to identify outliers (Riani et al., 2009; Cerioli, 2010), and ma-
chine learning algorithms (Liu et al., 2008; Erfani et al., 2016). Most existing works on conditional
outlier detection fall into these two categories (Song et al., 2007; Catterson et al., 2010; Hong &
Hauskrecht, 2015). Recent studies have used the conformal inference framework to test for outliers
with advanced machine learning models (Bates et al., 2023; Marandon et al., 2024; Liang et al.,
2024). Although these methods ensure finite-sample FDR control, they focus primarily on marginal
cases and do not address outlier detection in conditional distributions.

Data selection and subsampling. Our introduced label screening problem is similar to label-based
data selection (Jin & Candès, 2023a;b; Rava et al., 2021; Huo et al., 2024) and subsampling problems
(Wu et al., 2023). These works consider a semi-supervised setting where the selection or sampling
rule is based on the value of the response variable. The key difference in our problem is that we
focus on screening within the multivariate response vector for each data point, rather than selecting
different data points from the unlabeled dataset. Additionally, existing works do not account for the
conditional properties of their methods, which is the main concern of our paper.

Two-sample conditional distribution test. Most existing works focus on testing the equality of
two conditional moments (Hall & Hart, 1990; Dette & Neumeyer, 2003), which is less stringent than
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testing for equality of distributions. A notable contribution is Hu & Lei (2023), which proposed a
U-statistic based on the conformal inference framework by aggregating conformal p-values. Chen
& Lei (2024) improved this method by de-biasing the functions estimated using machine learning
algorithms. Our porposed test statistic, a kernel-weighted U-statistic, is closely related to Hu & Lei
(2023) by aggregating localized conformal p-values instead.

C APPLICATION ON TWO-SAMPLE CONDITIONAL DISTRIBUTION TEST

In the two-sample conditional testing problem, the second sample D2 is labeled and i.i.d. following
a potentially different distribution (X2j , Y2j) ∼ P2,X × P2,Y |X from the first sample D1. The
conditional distribution test can be formulated as

H0 : P1,Y |X=x = P2,Y |X=x for almost all x, versus H1 : otherwise. (C.1)

Hu & Lei (2023) proposed a two-sample conditional distribution test based on the conformal infer-
ence framework. To be specific, they first split both samples as D1 = DT1∪DC1 and D2 = DT2∪DC2

with |DC1 | = |DC2 | = n1, |DT1 | = |DT2 | = n2. For notation convenience, we perform an equal-
sized sample splitting with n1 = n2 and let C1 = C2 = {1, . . . , n1} in this section. Thereafter, the
score function and density ratio estimator

V (x, y) =
̂f1(y | x)

f2(y | x)
, ĝ(x) =

̂f2,X(x)

f1,X(x)

are trained on DT1 ∪DT2 by fitting classification models to distinguish DT1 and DT2 . After comput-
ing scores {V1i}i∈C1 and {V2j}j∈C2 , the weighted conformal p-values are obtained as

p̂j =
n−1
1

∑
i∈C1

ĝ(X1i)D̂
∗
ij

n−1
1

∑
i∈C1

ĝ(X1i)
, j ∈ C2.

The test statistic T̂ =
1
2−

1
n1

∑
j∈C2

p̂j

σ̂ , is constructed by averaging these p-values, where D̂∗
ij =

I{V2j < V1i} + ξjI{V2j = V1i} and σ̂2 is the variance estimator. Under the null hypothesis,
they proved that

√
n1T̂ is asymptotically normally distributed and the rejection region is given by

√
n1T̂ > Φ−1(1− α).

We extend the above strategy by aggregating the localized conformal p-values computed on the
second sample. Since p-values are no longer necessary to be finite-sample valid in this case, here
we use a simplified variant of the localized conformal p-value without randomization

pSL,j =

∑
i∈C H(X1i,X2j)I{V2j ≤ V1i}+ ξj ·H(X2j ,X2j)∑

i∈C H(X1i,X2j) +H(X2j ,X2j)
, (C.2)

and our proposed test statistic is defined as

T̂w =
1
n1

∑n1

i=1
1
n1

∑n1

j=1H(X1i,X2j)D̂ij

σ̂w
, (C.3)

where D̂ij = 1/2 − I{V2j < V1i} − ξjI{V2j = V1i} and σ̂2
w is the variance estimator. This test

statistic is constructed by averaging unnormalized LCP’s in Eq. (C.2) and performing standardiza-
tion. From a different perspective, it is also related to the classical U-statistic for model checking
problems (Zheng, 1996; Gao & Gijbels, 2008) in which the D̂ij’s are replaced by the residuals. In-
herited from the nice property of conformal techniques, our method enjoys model-agnostic features
and allows us to employ state-of-the-art algorithms to construct efficient score function V that is
able to better measure the discrepancy between two conditional distributions.

We need the following technical assumptions to establish the asymptotic normality of T̂w. We also
make the same regularity assumptions to those in Hu & Lei (2023) without further declaration in
theorems, which guarantee identifiability of the problem.
Assumption 2. Let V ∗(x, y) = f2(y|x)/f1(y|x) be the true conditional density ratio. Denote
the oracle statistics as V ∗

1i = V ∗(X1i, Y1i), V
∗
2j = V ∗(X2j , Y2j) and Dij = 1/2 − I{V ∗

1i <
V ∗
2j} − ξjI{V ∗

1i = V ∗
2j}. Suppose that
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• V ∗
2j has a continuous distribution;

• E{H(X1i,X2j)(D̂ij −Dij)} = op(1/
√
n1).

Recall that we use classification to construct the score function V (x, y) to approximate the true
conditional density ratio V ∗(x, y) in this problem. This assumption requires the approximation
error is sufficiently small after local-weighting. A similar assumption has been made in Hu & Lei
(2023) withH(X1i,X2j) replaced by ĝ(X1i). These two assumptions are introduced both to ensure
a vanishing asymptotic bias and achieve asymptotic normality in the presence of covariate shift.

Theorem 5 (Asymptotic normality). Under the null hypothesis, suppose Assumption 1 holds for
P1, P2 and h→ 0, n1h

d → ∞. Further assume P1,X = P2,X or Assumption 2 holds. Then the test
statistic (C.3) is asymptotically normally distributed

T̂w =
1
n1

∑n1

i=1
1
n1

∑n1

j=1H(X1i,X2j)D̂ij

σ̂w

d→ Z ∼ N(0, 1),

where the variance estimator is given by

σ̂2
w =

1

n21

n1∑
i=1

 1

n1

n1∑
j=1

H(X1i,X2j)D̂ij


2

+
1

n21

n1∑
j=1

{
1

n1

n1∑
i=1

H(X1i,X2j)D̂ij

}2

− 1

n41

n1∑
i=1

n1∑
j=1

H(X1i,X2j)
2D̂2

ij −
2

n1

 1

n21

n1∑
i=1

n1∑
j=1

H(X1i,X2j)D̂ij


2

.

Note that the convergence of the score function is only needed under covariate shift settings. Given
the asymptotic normality property, we can construct our testing procedure as summarized in Algo-
rithm 3.

Theorem 6 (Behavior under local alternatives). Suppose Assumption 1 holds for P1, P2, Assumption
2 holds, and n1σ̂2

w
p→ σ2

w > 0. Then we have

T̂w =

√
n1δw
4σw

(1 + op(1)) + Z + op(1),

where δw = EX∼P2,X,Y,Y ′∼P2,Y |X{f1,X(X)|V ∗(X, Y )− V ∗(X, Y ′)|} and Z ∼ N(0, 1).

This theorem is similar to Proposition 1 in Hu & Lei (2023). The main difference lies in the form of
“signal strength” δw, which is δ = E(X,Y ),(X′,Y ′)∼P2

{|V ∗(X, Y ) − V ∗(X′, Y ′)|} in their article.
In comparison, the difference term in δw is based on the same covariate value and therefore better
captures the deviation in conditional distribution. This reflects the superiority of our proposed test
statistic in the two-sample conditional testing problem.

D ADDITIONAL DETAILS OF OUR ALGORITHMS

Figure 2 displays our workflow. We also provide the detailed pseudo-codes for our three algorithms
in Algorithm 1-Algorithm 3 below for the problems of conditional outlier detection in Section 3.2,
conditional label screening in Section 3.3, and two-sample conditional distribution test in Appendix
C, respectively.

E ADDITIONAL EXPERIMENTS RESULTS AND IMPLEMENTATION DETAILS

In this section, we provide implementation details and additional experiments results for our three
conditional testing applications, including: (1) more synthetic and real-data results for conditional
outlier detection in Appendix E.1 and E.4; (2) synthetic data results for conditional label screening
in Appendix E.2; and (3) synthetic and real-data results for two-sample conditional distribution test
in Appendix E.3 and E.5.
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Figure 2: A flow chart of our work.

Algorithm 1 Conditional Outliers Detection via the LCP
Input: Clean data D1 = {(X1i, Y1i)}ni=1 and test data D2 = {(X2j , Y2j)}mj=1; FDR target level

α ∈ (0, 1); Kernel function H(·, ·)
1: Randomly split D1 into DT ∪ DC , train the non-conformity score function V (x, y) on DT and

compute score values {V1i}i∈C and {V2j}mj=1 on DC and D2

- Outlier detection -
2: for j = 1, . . . ,m do
3: Sample X̃2j from density H(X2j , ·), sample ξj ∼ U[0, 1] and construct the LCP pL,j as in

(2.4)
4: Compute auxiliary p-values p(ℓ)L,j as in (3.2)

5: (BH procedure) Compute r∗j = max
{
r : 1 +

∑
ℓ ̸=j I{p

(ℓ)
L,j ≤ αr/m} ≥ r

}
6: Compute R̂j→0 = {j} ∪ {ℓ ̸= j : p

(ℓ)
L,j ≤ αr∗j /m}

7: end for
8: Compute the first-step rejection set Rinit = {j : pL,j ≤ α|R̂j→0|/m}
9: Prune the initial set Rinit and obtain the final rejection set R as in (3.3)

Output: Detected conditional outlier set R

Algorithm 2 Conditional Label Screening via the LCP
Input: Labeled data D1 = {(X1i, Y1i)}ni=1 and test data D2 = {X2j}mj=1; FWER target level

α ∈ (0, 1); Kernel function H(·, ·)
1: Randomly split D1 into DT ∪ DC and train the non-conformity score function, compute score

vectors {V (X1i)}i∈C , {V (X2j)}mj=1 on DC , D2 and summary scores {V̄1i}i∈C

- Screening -
2: for j = 1, . . . ,m do
3: Sample X̃2j from density H(X2j , ·) and ξj ∼ U[0, 1]
4: for s = 1, . . . , S2j do
5: Construct the LCP pL,j,s as in (3.6)
6: Determine the screening decision δj,s = I{pL,j,s ≤ α}
7: end for
8: end for

Output: Screening decision vectors δj = (δj,1, . . . , δj,s)
⊤ for each 1 ≤ j ≤ m
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Algorithm 3 Two-sample conditional distribution test via aggregation of simplified LCP’s
Input: Two samples D1 and D2; density ratio estimation subroutines A1,A2, kernel densityH(·, ·),

the nominal type I error level α ∈ (0, 1)
1: Randomly split the two samples as D1 = DT1 ∪ DC1 and D2 = DT2 ∪ DC2

2: ĝ(·) = A1[{X1i, i ∈ T1,X2j , j ∈ T2}]
3: v(·, ·) = A2[{(X1i, Y1i), i ∈ T1, (X2j , Y2j), j ∈ T2}]
4: for j ∈ C2 do
5: Sample ξj ∼ U[0, 1], independently
6: Calculate D̂ij = 1/2− I{V1i < V2j} − ξjI{V1i = V2j}
7: Calculate the kernel weights H(X1i,X2j), i ∈ C1
8: end for
9: Calculate the variance estimator σ̂2

ω and obtain the weighted statistic T̂ω as in (C.3)
10: Reject H0 if Φ(T̂ω) ≥ 1− α
Output: The decision for two-sample conditional distribution test

E.1 ADDITIONAL SYNTHETIC-DATA RESULTS FOR CONDITIONAL OUTLIER DETECTION

Implementation details. Since our goal is to test for outliers conditional on t or s in Scenarios A1
and B1, we only use these variables when computing the weights. For both scenarios, the kernel
function of the LCP-od method is taken as the Gaussian kernel H(x, x′) = (2πh2)−d/2 exp{−∥x−
x′∥22/(2h2)} with bandwidth h = (n/2)−1/(d+2) for d = 1, 2 in Scenarios A1 and B1. This
corresponds to the optimal convergence rate for β = 1. For Scenario A1, we consider two kinds
of score functions: the CQR score and the absolute residual of different regression algorithms.
Similar to Romano et al. (2019), for the CQR score, we consider using quantile neural networks
(CQR-QNN) and quantile random forests (CQR-QRF). For the absolute residual score, we take
two regression algorithms: random forest (Res-RF), and support vector machine (Res-SVM). For
Scenario B1, we use one-class classifiers for both the LCP-od and CP methods. We take three kinds
of one-class classification algorithms: the isolation forest (IOF), k-Nearest-Neighbor (k-NN) with
k = 5 and one-class support vector machine (one-class SVM).

We consider either fixing α = 0.1 or 0.15,m = 2000 and varying n ∈
{800, 1600, 2400, 3200, 4000} or fixing the sample size n = m = 2000 and varying α ∈
{0.05, 0.1, 0.15, 0.2}.

Results. The FDP above the nominal level and power under different nominal levels α for Scenario
A1 are shown in Figure 3. The pattern is quite similar to Figure 1 in the main text. The exception
here is that the CP method also has its power increasing with the nominal level α. This is reasonable
since all methods will reject more hypotheses when the nominal error level increases.

We also consider a scenario without label Y.

• Scenario B1 (without label Y ): Another example which does not include the label Y . To
fit our problem, we consider a spatial setting with X = (s,X∗) where s is the spatial vari-
able and X∗ contains the remaining features. We consider X ∈ Rd∗

with s = (s1, s2) ∈ R2

and X∗ ∈ Rd∗−2 with d∗ = 50:

X∗ | s ∼ N(0, r(s) · Id∗−2), r(s) = 0.2 + 0.9∥s∥22

where s1, s2 ∼ U[−1, 1] independently. The test data contains 10% outliers with the same
distribution for s and a different conditional distribution

X∗ | s ∼ N(0, 4 · r(s) · Id∗−2).

Results. The results for Scenario B1 are shown in Figure 4-5. In Scenario B1, the power of the LCP-
od method grows significantly with the sample size n and the nominal level α, while the power of
the CP method only rises slightly. Our discussion for Scenario A1 also applies to these results. The
only exception that here the CP method has a relatively higher fixed power than those in Scenario
A1.
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Figure 3: FDP above the nominal level and power under different nominal levels α for Scenario A1.
The sample sizes are fixed at n = m = 2000.
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Figure 4: FDP above the nominal level and power under different sample sizes n for Scenario B1.
The test sample size is fixed at m = 2000 and the nominal level is fixed at α = 0.1.

E.2 SYNTHETIC-DATA RESULTS FOR CONDITIONAL LABEL SCREENING

For the conditional label screening problem, we consider a nonlinear regression scenario:

• Scenario A2 (nonlinear regression): We take a constant S = 2 and the response Y =
(Y1, Y2) with Y1 = −2X1+7X2

2+3 exp(X3+2X2
4 )+ε, Y2 = −6X1+5X2

2+3 exp(2X3+
X2

4 ) + ε, X ∼ U [−1, 1]4 and ε ∼ N (0, 1). The screening target is Ys ∈ As = [as,+∞)
where as is the 70% quantile of Ys for s = 1, 2, respectively.

Implementation details. We fix the sample sizes n = 500,m = 2000 and vary α ∈
{0.05, 0.1, 0.15, 0.2}. We apply three different algorithms to train a probability prediction func-
tion for each component of Y: linear logistic regression (LL), neural network (NN) and random
forest (RF).

Benchmarks. We compare our conditional label screening method via the LCP (abbreviated as
LCP-ls) as summarised in Algorithm 2 with the thresholding procedure without weighting (abbrevi-
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Figure 5: FDP above the nominal level and power under different nominal levels α for Scenario B1.
The sample sizes are fixed at n = m = 2000.

ated as THR). The THR method is performed by only replacing the LCP by the classical unweighted
CP.

Results. We calculate the empirical marginal FWER and four kinds of conditional FWER’s (condi-
tional on X ∈ B for four different sets B). The evaluation measures are defined as follows:

• (Marginal FWER): mFWERj = Pr
(∑S2j

s=1 I{Y2j,s /∈ As, δj,s = 1} > 0
)

• (Conditional FWER): cFWERij = Pr
(∑S2j

s=1 I{Y2j,s /∈ As, δj,s = 1} > 0 | X ∈ Bi

)
for

i ∈ {1, 2, 3, 4} and j ∈ {1, . . . ,m}, where B1 = {X ∈ Rd : X1 < 0 and X3 < 0},
B2 = {X ∈ Rd : X1 > 0 and X3 < 0}, B3 = {X ∈ Rd : X1 < 0 and X3 > 0}, and
B4 = {X ∈ Rd : X1 > 0 and X3 > 0}.
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LL
N

N
R

F

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

α

Method LCP−ls THR

Figure 6: Conditional FWER (cFWER) and marginal FWER (mFWER) above α under different
nominal levels α for Scenario A2. The sample size is fixed at n = 500,m = 2000.
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The results for Scenario A2 are reported in Figure 6. As theoretically ensured, both methods control
the marginal FWER at nominal levels. However, the LCP-ls is much more robust against condition-
ality and exhibit a much smaller conditional FWER inflation than the THR method on subsets B3

and B4. Accordingly, the conditional FWER of the THR method on B2 approaches 0 as the nominal
level α increases, while the conditional error rate of the LCP-ls remains much closer to the nominal
level. These results suggest that the LCP-ls method offers a more balanced screening result.

E.3 SYNTHETIC-DATA RESULTS FOR TWO-SAMPLE CONDITIONAL DISTRIBUTION TEST

We consider three different scenarios for the problem of two-sample conditional distribution test,
which are analogous to those in Hu & Lei (2023). Since the whole covariate vector X needs to be
conditioned on in this problem, we have d∗ = d here.

Scenario A3: Let Y1i = α1+X⊤
1iβ+ ε1i, i = 1, . . . , n and Y2j = α2+X⊤

2jβ+ ε2j , j = 1, . . . ,m,

where X1i
iid∼ N(0, Id),X2j

iid∼ N(µ, Id) with µ = (1, 1,−1,−1, 0)⊤ and ε1i, ε2j
iid∼ N(0, 1)

independently. We set α1 = α2 = 0 under the null and α1 = 0, α2 = 0.5 under the alternative.

Scenario B3: Let Y1i = α1+β1X1i,1+β2X1i,2+β3X
2
1i,3+β4X

2
1i,4+β5X

3
1i,5+ε1i, i = 1, . . . , n

and Y2j = α2j + β1X2j,1 + β2X2j,2 + β3X
2
2j,3 + β4X

2
2j,4 + β5X

3
2j,5 + ε2j , j = 1, . . . ,m, where

X1i
iid∼ 0.5N(0, Id) + 0.5N(µ, Id) with µ = (0.5, 0.5,−0.5,−0.5, 0)T , X2i

iid∼ 0.5N(0, Id) +
0.5N(0, 1.5Id) and ε1i, ε2j

iid∼ t(5) independently. We set α1 = α2 = 0 under the null and α1 =
0, α2j = 0.8× (1− 0.1 · ∥X2i∥22) under the alternative.

Scenario C3: Let Y1i = θ(X1i) + ϵ1i, i = 1, . . . , n and Y2j = θ(X2j) + ϵ2j , j = 1, . . . ,m, where

θ(X) = E(y | x) is an additive function of B-splines, and X1i
iid∼ 0.5N(0, Id) + 0.5N(µ, Id) with

µ = (0.5, 0.5,−0.5,−0.5, 0)T , X2i
iid∼ 0.5N(0, Id)+0.5N(0, 1.5Id) and we set εℓi

iid∼ N(0, 4/(1+

X2
ℓi(1))) under the null and ε1i

iid∼ N(0, 4/(1 +X2
1i(1))), ε2i

iid∼ N(0, 1.5/(1 +X2
2i(1))) under the

alternative.

Implementation details. Under each scenario, we fix d = 5 and consider different sample sizes
n = m ∈ {200, 400, 600, 800, 1000} with equal splitting. The coefficient β in model A and B
are taken as β = (1, 1, 1,−1,−1)⊤. For our localized conformal test (LCT) method, we take
the Gaussian kernel function and choose the same bandwidth h = (n/2)−1/(d+2). For all three
scenarios, we use three different probabilistic classification models to estimate density ratios: linear
logistic (LL), random forest (RF) and neural network (NN). The type I error (size) under the null
and the power under the alternative are calculated for each scenario across 500 replications with
nominal type I error level α = 0.05.

Benchmarks. We compare our localized conformal test (LCT) as summarised in Algorithm 3 with
the following two tests:

• CT: Hu & Lei (2023)’s conformal test as described in Appendix C.
• DCT: Chen & Lei (2024)’s de-biased conformal test, where they formulate the covariate

shift problem within the nonparametric framework and utilize the doubly-robust theory to
correct the bias of the test statistic.

Results. The results for all three scenarios are summarised in Figure 7. Regarding type I error,
the CT method is only valid when the training model is correctly specified and exhibits a severely
inflated type I error rate under mis-specified models. The DCT method is more robust than the CT
method and controls the type I error rate under the nominal level for most scenarios and training
models. This corresponds to its doubly-robust property, which relaxes the requirement on accuracy
of the estimated density ratios. In contrast, the LCT method controls the type I error rate accu-
rately around the nominal level for any combination of scenario and training model. This shows the
robustness and wide applicability of our proposed test statistic.

In terms of power, the CT method is not valid with misspecified training models, so we only discuss
the DCT and LCT methods. In Scenarios A3 and B3, the LCT method exhibits significantly higher
power than the DCT method especially when the sample size is large. In Scenario C3, the LCT
is more powerful than the DCT under the NN algorithm and the two methods perform similarly
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when using the LL or RF algorithm. In general, the power improvement is more significant when
the classification algorithm can distinguish the two populations better. Except for the numerical
performance, the DCT method involves not only data splitting but also a cross-fitting step. The LCT
test does not require the latter and is therefore much easier to implement and computationally more
efficient.
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Figure 7: Results for two-sample conditional distribution test: Type I error (size) under H0 and
power under H1 across different sample sizes n = m ∈ {200, 400, 600, 800, 1000}. The red dashed
lines denote the nominal level α = 0.05. Shading represents error bars of one standard error above
and below.
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E.4 CONDITIONAL OUTLIER DETECTION ON SPATIAL DATA

Dataset. We consider using the House Sales in the King County, USA dataset (Kaggle, 2016)
to demonstrate the performance of our method on the spatial scenario with label Y , which has
n = 21613 individuals with 21 attributes including two spatial features: longitude (s1) and latitude
(s2). The response Y is the price of houses.

Implementation details. We randomly sample three parts of the data from the whole dataset: ntr =
2, 000 training data, ncal = 2, 000 calibration data and nte = 3, 000 test data. Since the original
dataset contains no conditional outliers, we create synthetic outliers and apply different methods for
detection. We randomly sample 10% of the testing data to be outliers. For the outliers, we add a
random noise εi to the original response Yi. We consider two kinds of synthetic outliers.

• Conditional quantile-based outlier:

Ỹi = Yi + εi, εi = 0.75 · Quantile0.9(Yi | s2) · ξ,

where Quantile0.9(Y | s2) is the 90% conditional quantile of Y given s2 and Pr(ξ =
±1) = 1/2.

• Conditional variance-based outlier:

Ỹi = Yi + εi, εi = 2 ·
√

Var(Yi | s2) · ξ,

where Var(Y | s2) is the conditional variance of Y given s2 and Pr(ξ = 2) = Pr(ξ =
−1) = 1/2.

All results are based on 500 replications.

Results. We compare the LCP-od and the CP methods with the CQR score constructed by two dif-
ferent algorithms: quantile random forest (QRF) and quantile neural network (QNN). The empirical
FDR and power for conditional outlier detection are reported in Table 2-3. The result is similar to
the simulation part, where all methods control the FDR below the nominal. While the advantage is
not as significant as before, the LCP-od method still enjoys the highest power in all cases.

Table 2: Empirical FDR and power for the House Sales dataset with quantile-based outliers. Bold numbers
represent the best results. The brackets contain the standard errors.

α
Method LCP-od CP
Score CQR-QNN CQR-QRF CQR-QNN CQR-QRF

0.15 FDR 0.139 (0.087) 0.131 (0.030) 0.128 (0.047) 0.145 (0.036)
Power 0.657 (0.096) 0.871 (0.048) 0.593 (0.037) 0.858 (0.070)

0.2 FDR 0.177 (0.033) 0.175 (0.030) 0.174 (0.049) 0.175 (0.037)
Power 0.882 (0.131) 0.913 (0.021) 0.824 (0.078) 0.907 (0.022)

Table 3: Empirical FDR and power for the House Sales dataset with variance-based outliers. Bold numbers
represent the best results. The brackets contain the standard errors.

α
Method LCP-od CP
Score CQR-QNN CQR-QRF CQR-QNN CQR-QRF

0.15 FDR 0.141 (0.051) 0.127 (0.029) 0.142 (0.043) 0.128 (0.035)
Power 0.520 (0.168) 0.628 (0.092) 0.480 (0.085) 0.581 (0.119)

0.2 FDR 0.181 (0.036) 0.176 (0.038) 0.196 (0.034) 0.186 (0.030)
Power 0.630 (0.084) 0.722 (0.056) 0.597 (0.099) 0.692 (0.106)

E.5 TWO-SAMPLE CONDITIONAL DISTRIBUTION TEST ON AIRFOIL DATA

Dataset. Refer to previous related works (Hu & Lei, 2023; Chen & Lei, 2024), we consider using
the airfoil dataset (Brooks et al., 2014) from the UCI Machine Learning Repository to demonstrate
the effectiveness of our proposed LCT on real data. This dataset investigates the sound pressure
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of various airfoils with n = 1503 observations of the response Y : the scaled sound pressure and
the covariates X with d = 5 dimensions: log frequency, angle of attack, chord length, free-stream
velocity, and suction side log displacement thickness.

Implementation details. We use part of the rules in Hu & Lei (2023) to split the observations into
two samples as follows:

(i) Random partition. Randomly partition the dataset into two groups with sizes |D1| = 751
and |D2| = 752.

(ii) Exponential tilting. First randomly partition the data into D1, D̃2. Then construct D2 by
sampling 25% of the points from D̃2 with replacement, with probabilities proportional to
ω(x) = exp(xTα), where α = (−1, 0, 0, 0, 1).

(iii) Partition along the response. Split the data according to the value of response, where the
first group contains the samples with smaller response values.

In the first two partitions, the two samples satisfy the null hypothesis. The first partition has samples
from the same distribution, while the second shows a non-trivial covariate shift. In the last partition,
the covariate shift assumption is not satisfied and the alternative hypothesis holds. For all three
cases, we use the linear logistic (LL) and neural network (NN) to estimate the density ratios.

Results. Similar to Hu & Lei (2023), we use out-of-sample marginal classification error as a proxy
of the accuracy of marginal density ratio estimation for all cases (i-iii). The percentage of rejections
for cases (i-ii) across 500 repetitions are summarised in Table 4. We can see the rejection proportions
of both LCT and DCT are close to the desired level when using LL or NN algorithms, while the CT
test fails to control type I error when using NN algorithm due to its low accuracy. For case (iii), we
only have a single deterministic generation of the training and testing data. The median p-values
across 500 random splits for case (iii) are reported in Table 5. While all three tests correctly reject
the null in this case, the LCT test gives the smallest p-value and is therefore most powerful.

Table 4: Percentage of rejections (PR) and average error of estimating g (Err) in Airfoil dataset for cases (i–ii)
using algorithms LL and NN over 500 repetitions, with nominal level α = 0.05 for LCT, CT and DCT. The
bracket contains the standard error.

Cases Method PRLL PRNN ErrLL ErrNN

Case (i)
LCT 0.054 (0.0325) 0.053 (0.0374)

0.429 0.608CT 0.058 (0.0289) 0.441 (0.0610)
DCT 0.053 (0.0299) 0.066 (0.0268)

Case (ii)
LCT 0.067 (0.0323) 0.066 (0.0390)

0.213 0.367CT 0.056 (0.0320) 0.135 (0.0405)
DCT 0.056 (0.0327) 0.035 (0.0250)

Table 5: Median p-values (Pval) and average error of estimating g (Err) in Airfoil dataset for case (iii) using
algorithms LL and NN over 500 random splits, with nominal level α = 0.05 for LCT, CT and DCT.

Cases Method PvalLL PvalNN ErrLL ErrNN

Case (iii)
LCT 0.000 0.000

0.279 0.429CT 0.000 0.022
DCT 0.000 0.018

F TECHNICAL DETAILS

F.1 PROOF OF THE DENSITY RATIO IN EQUATION (2.3)

Proof. We calculate the density ratio of X2j and X1i conditional on X̃2j here for the sake of
complement. This proof refers to the proof of Proposition 1 in Hore & Barber (2024).
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Note that by the sampling step, we have X̃2j | (X2j , Y2j) ∼ H(X2j , ·). The joint distribution of
(X2j , Y2j , X̃2j) is as follows: 

X2j ∼ P2,X ,

Y2j | X2j ∼ PY |X(· | X2j),

X̃2j | (X2j , Y2j) ∼ H(X2j , ·).

A direct calculation then yields (X2j , Y2j) | X̃2j ∼
(
P2,X ◦H(·, X̃2j)

)
× P2,j,Y |X by Bayesian’s

theorem, where P2,X ◦H(·, X̃2j) = P̃2,X , which is the distribution P2,X reweighted by H(·, X̃2j).

That is, P̃2,X(A) = (P2,X ◦H(·, X̃2j))(A) =
∫
A

H(·,X̃2j) dP2,X(x)∫
X H(·,X̃2j) dP2,X(x)

for all A ⊆ X .

This is an instance of a covariate shift problem: the distribution of X2j | X̃2j ̸= P2,X , but the
conditional distribution distribution of Y2j remains the same as for the training data. i.e., P2,j,Y |X .

Hence, by the definition of covariate shift, the density ratio of X2j and X1i conditional on X̃2j is

dP2,X|X̃2j

dP1,X
(x) =

f2,X(x)H(x, X̃2j)

f1,X(x)
∫
X H(·, X̃2j) dP2,X(x)

=
H(x, X̃2j)∫

X H(·, X̃2j) dP2,X(x)
= c ·H(x, X̃2j),

where c = 1/
∫
X H(·, X̃2j) dP2,X(x) is a constant, which completes the proof.

F.2 PROOF OF LEMMA 2

Proof. Denote P1,X̃, P2,X̃ as the marginal distribution of X̃ if we fist sample X from P1,X or
P2,X and then sample X̃ from H(X, ·). The distributions of the calibration and test points are
P1,(X,Y )|X̃×P1,X̃ and P2,(X,Y )|X̃×P2,X̃ where P1,(X,Y )|X̃ and P2,(X,Y )|X̃ denote the correspond-
ing conditional distributions of calibration and test data points.

Notice that the super-uniform property still holds if the conditional distribution P1,(X,Y )|X̃ =

P2,(X,Y )|X̃. Therefore, the super-uniform bound holds for an independent tuple (X∗, Y ∗, X̃∗) ∼
P1,(X,Y )|X × P2,X̃. That is

p∗L =

∑
i∈C H(X1i, X̃

∗)I{Ṽ ∗ ≤ V1i}+ ξ∗ ·H(X∗, X̃∗)∑
i∈C H(X1i, X̃∗) +H(X∗, X̃∗)

,

Pr(p∗L ≤ α) ≤ α.

The probability for (X2n+j , Y2n+j , X̃2n+j) is then upper bounded by

Pr(pL,j ≤ α) ≤α+ EX̃∼P2,X̃

{
dTV

(
P1,(X,Y )|X̃, P2,(X,Y )|X̃

)}
=α+ EX̃∼P2,X̃

{
dTV

(
P1,X|X̃, P2,X|X̃

)}
.

For a fixed X̃ we have

dTV

(
P1,X|X̃, P2,X|X̃

)
=
1

2
EX∼P1,X̃|X

{∣∣∣∣∣dP2,X|X̃(X)

dP1,X|X̃(X)
− 1

∣∣∣∣∣
}

=
1

2
EX∼P1,X̃|X

{∣∣∣∣∣ g(X)

EX′∼P1,X|X̃
{g(X′)}

− 1

∣∣∣∣∣
}

≤
EX,X′∼P1,X|X̃

{|g(X)− g(X′)|}
2EX∼P1,X|X̃

{g(X)}

=EX,X′∼P1,X|X̃
{|g(X)− g(X′)|}

EX∼P1,X
{H(X, X̃)}

2EX∼P1,X
{g(X)H(X, X̃)}

.
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Taking expectation with respect to X̃ we have

EX̃∼P2,X̃

{
dTV

(
P1,X|X̃, P2,X|X̃

)}
≤
∫

EX∼P1,X
{g(X)H(X,x)}EX,X′∼P1,X|X̃=x

{|g(X)− g(X′)|}
EX∼P1,X

{H(X,x)}
2EX∼P1,X

{g(X)H(X,x)}
dx

=
1

2

∫
EX,X′∼P1,X|X̃=x

{|g(X)− g(X′)|}EX∼P1,X
{H(X,x)}dx

=
1

2

∫
EX,X′∼P1,X|X̃=x

{|g(X)− g(X′)|}EX∼P1,X
dPH,X

where PH,X has a density function fH,X(x) = EX∼P1,X
{H(X,x)}.

By integration

EX,X′∼P1,X|X̃=x
{|g(X)− g(X′)|}

=

∫
1

h2d
K

(
x′ − x

h

)
K

(
x′′ − x

h

)
f1,X(x′)f1,X(x′′)|g(x′)− g(x′′)|dx′dx′′

=

∫
K(u)K(v)|g(x+ hu)− g(x+ hv)|f1,X(x+ hu)f1,X(x+ hv)dudv

≤2∥f1,X∥∞EU∼K(·){|g(x+ hU)− g(x)|}.

Combining the results above we conclude

Pr(pL,j ≤ α) ≤α+ EX̃∼P2,X̃

{
dTV

(
P1,X|X̃, P2,X|X̃

)}
≤α+ ∥f1,X∥∞EX∼PH,X,U∼K(·){|g(X+ hU)− g(X)|}.

F.3 DISCUSSION ON LEMMA 3

The deviation bound in Lemma 3 has two terms corresponding to the bias and variance of p-value
functions. This is different from Lemma 2 in which we only need h→ 0 to eliminate bias and ensure
validity. Fixing the sample size n and taking h → 0, the LCP will degenerate to the independent
uniform random variable ξ, which remains valid but does not contain any information of the data.
Otherwise if we take h → ∞ it will degenerate to the unweighted CP. Therefore, the bandwidth h
controls the trade-off between the conditional validity of the LCP and the effective sample size.

F.4 PROOF OF LEMMA 3

Proof. Remember the definition of the RBF and box kernel

HRBF(x,x
′) =

1

Vd,RBFhd
exp

{
−∥x− x′∥22

2h2

}
, Hbox(x,x

′) =
1

Vd,boxhd
I{∥x− x′∥2 ≤

√
2h}

where Vd,RBF, Vd,box are normalizing constants.

The LCP function is

pL(x, y) =

∑
i∈C H(X1i, X̃)I{v ≤ V1i}+ ξ ·H(x, X̃)∑

i∈C H(X1i, X̃) +H(x, X̃)
. (F.1)

For the difference we have

|pL(x, y)− (1− FV |X=x(v))|

=

∣∣∣∣∣
∑

i∈C H(X1i, X̃)[I{v ≤ V1i} − {1− FV |X=x(v)}] + [ξ − {1− FV |X=x(v)}] ·H(x, X̃)∑
i∈C H(X1i, X̃) +H(x, X̃)

∣∣∣∣∣
≤

∣∣∣∣∣
∑

i∈C H(X1i, X̃)[I{v ≤ V1i} − {1− FV |X=x(v)}]∑
i∈C H(X1i, X̃)

∣∣∣∣∣+
∣∣∣∣∣ ∥H(x,x′)∥∞∑

i∈C H(X1i, X̃)

∣∣∣∣∣
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For the denominator nH =
∑

i∈C H(X1i, X̃), first notice for the RBF kernel

nRBF =
∑
i∈C

1

Vd,RBFhd
exp

{
−∥X1i − X̃∥22

2h2

}

≥ exp{−1} Vd,box
Vd,RBF

∑
i∈C

1

Vd,boxhd
I{∥X1i − X̃∥2 ≤

√
2h}

= exp{−1} Vd,box
Vd,RBF

· nbox.

Define n∗box =
∑

i∈C I{∥X1i − X̃∥2 ≤
√
2h}, for constants 0 < λ, ϵ < 1 we have

Pr
(
E(n∗box)− n∗box ≥ λE(n∗box) | X̃

)
=Pr

(
exp {E(n∗box)− n∗box} ≥ exp {λE(n∗box)} | X̃

)
≤E

[
exp {E(n∗box)− n∗box} | X̃

]
exp {−λE(n∗box)}

=E
[
exp

{
I{X′ ∈ B√

2h(X̃)} − Pr(X′ ∈ B√
2h(X̃))

}
| X̃
]|C|

exp {−λE(n∗box)}

=
[
Pr(X ∈ B√

2h(X̃)) exp
{
Pr(X /∈ B√

2h(X̃))
}
+ Pr(X /∈ B√

2h(X̃)) exp
{
−Pr(X ∈ B√

2h(X̃))
}]|C|

· exp {−λE(n∗box)}

≤
[
Pr(X ∈ B√

2h(X̃)) exp{1}+ {1− Pr(X ∈ B√
2h(X̃))}{1− ϵ · Pr(X ∈ B√

2h(X̃))}
]|C|

exp {−λE(n∗box)}

=
[
1 + (e− 1− ϵ) Pr(X ∈ B√

2h(X̃)) + ϵPr(X ∈ B√
2h(X̃))2

]|C|
exp

{
−λ|C|Pr(X′ ∈ B√

2h(X̃))
}

≤ exp
{
−|C|(1 + ϵ+ λ− e) Pr(X ∈ B√

2h(X̃)) + ϵ|C|Pr(X ∈ B√
2h(X̃))2

}
and

2Cdh
df(x) ≥ Cdh

d{f(x) + o(1)} ≥ Pr(X ∈ Bh(X̃)) ≥ Cdh
d{f(x)− o(1)} ≥ Cdh

df(x)

2

for sufficiently large n, where Cd > 0 only depends on d. Taking ϵ = λ = 0.9 we have

Pr

(
nbox ≥ |C|f(x)

20Vd,box

)
≥ 1− exp

{
−2.8− e

2
nhdγCdf(x) + 3.6nh2dγC2

df(x)
2

}
→ 1.

Therefore with probability tending to 1 we have nH ≥ C · |C|f(x) for some fixed constant C > 0.
Then

|pL(x, y)− (1− FV |X=x(v))|

≤ 1

Cf(x)

{∣∣∣∣∣
∑

i∈C H(X1i, X̃)[I{v ≤ V1i} − {1− FV |X=x(v)}]
|C|

∣∣∣∣∣+
∣∣∣∣ 1

nhdγVd,H

∣∣∣∣
}
.

(F.2)

For the first term

E

{
(
∑

i∈C H(X1i, X̃)[I{v ≤ V1i} − {1− FV |X=x(v)}])2

|C|2

}

=
1

|C|
E
(
H(X1i, X̃)2[I{v ≤ V1i} − {1− FV |X=x(v)}]2

)
+

|C| − 1

|C|
E
(
H(X1i, X̃)H(X1j , X̃)[I{v ≤ V1i} − {1− FV |X=x(v)}] · [I{v ≤ V1j} − {1− FV |X=x(v)}]

)
≤ 1

|C|
E
{
H(X1i, X̃)2

}
+ E

{
H(X1i, X̃)H(X1j , X̃)∥FV |X=X1i

− FV |X=x∥∞∥FV |X=X1j
− FV |X=x∥∞

}
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By integration

E
{
H(X1i, X̃)2

}
=E

{∫
1

h2d
K2

(
x′ − X̃

h

)
f1,X(x′)dx′

}

=
1

hd
E
{∫

K2 (u) f1,X(X̃+ hu)du

}
≤∥f1,X∥∞

hd

∫
K2(u)du

E
{
H(X1i, X̃)H(X1j , X̃)∥FV |X=X1i

− FV |X=x∥∞∥FV |X=X1j
− FV |X=x∥∞

}
=E

{∫
1

h2d
K

(
x′ − X̃

h

)
K

(
x′′ − X̃

h

)
∥FV |X=x′ − FV |X=x∥∞∥FV |X=x′′ − FV |X=x∥∞f1,X(x′)f1,X(x′′)dx′dx′′

}

≤∥f1,X∥2∞E
{∫

K (u)K (u′) ∥FV |X=X̃+hu − FV |X=x∥∞∥FV |X=X̃+hu′ − FV |X=x∥∞dudu′
}

≤∥f1,X∥2∞E
{∫

K (u)K (u′) ∥X̃− x+ hu∥β2∥X̃− x+ hu′∥β2dudu′
}

=∥f1,X∥2∞
∫
K (u)K (u′) ∥x̃− x+ hu∥β2∥x̃− x+ hu′∥β2

1

hd
H

(
x̃− x

h

)
dudu′dx̃

=h2β∥f1,X∥2∞
∫
K (u)K (u′)K (u′′) ∥u+ u′′∥β2∥u′ + u′′∥β2dudu′du′′

≤3h2β∥f1,X∥2∞

{(∫
K(u)∥u∥β2du

)2

+

∫
K(u)∥u∥2β2 du

}

As all integrations in the final expressions exist, we have

E

{
(
∑

i∈C H(X1i, X̃)[I{v ≤ V1i} − {1− FV |X=x(v)}])2

|C|2

}

≤CK,1∥f1,X∥∞
nhd

+ CK,2∥f1,X∥2∞h2β .

Together with inequality (F.2) we complete the proof.

F.5 PROOF OF THEOREM 1

Proof. By the construction of the refined LCP’s, they are valid conditional on the event Y2j /∈ A in
finite sample

Pr(prL,j ≤ α) ≤ α,

and marginal PSER control result is proved. For the conditional PSER inflation bound, the proof
is exactly the same to Theorem 4 with the only difference that the distribution of X is replaced by
the conditional distribution of X given the event Y /∈ A. We therefore delay the computation of the
deviation term to the proof of Theorem 4.

F.6 PROOF OF THEOREM 2

Proof. Denote the index set of inliers in D2 as H∗
0, We firstly need a lemma commonly used in

literature relating the conditional calibration technique.
Lemma 4. The pruned rejection set R satisfies

FDR = E

[∑m
j=1 I{j ∈ R, j ∈ H∗

0}
|R| ∨ 1

]
≤

m∑
j=1

E

 I{pL,j ≤ α|R̂j→0|
m , j ∈ H∗

0}
|R̂j→0|

 .
28



Published as a conference paper at ICLR 2025

The proof of Lemma 4 can be found in Jin & Candès (2023a) and is therefore omitted.

Denote Z1i and Z2j as tuples Z1i = (X1i, Y1i),Z2j = (X2j , Y2j) and the index set of calibra-
tion data C = {i1, i2, . . . , inc} where |C| = nc. Let Z = [Z1i1 , . . . ,Z1inc

,Z2j ] be the unordered
value set of Z1i1 , . . . ,Z1inc

,Z2j . Let X̃ = {X̃21, . . . , X̃2m} be the set of all sampled covariates.
Note that the unordered value set [p(j)L,l]l ̸=j are fully determined by X̃ , Z and {Z2l}l ̸=j . More-
over, the p-value pL,j is fully determined by X̃2j , Z and Z2j . As {Z2l}l ̸=j is independent of
{Z1i1 , . . . ,Z1inc

,Z2j} conditional on X̃ , we know pL,j is independent of {p(j)L,l}l ̸=j conditional on

X̃ and Z . By the fact that |R̂j→0| is fully determined by [p
(j)
L,l]l ̸=j , we further have

pL,j ⊥⊥ |R̂j→0|
∣∣∣ X̃ ,Z.

By the independence we have

E

 I{pL,j ≤ α|R̂j→0|
m , j ∈ H0}

|R̂j→0|

∣∣∣ X̃ ,Z
 ≤ E

 I{pL,j ≤ α|R̂j→0|
m }

|R̂j→0|

∣∣∣ X̃ ,Z


=
Pr
(
pL,j ≤ α|R̂j→0|

m

∣∣∣ X̃ ,Z)
|R̂j→0|

≤
Pr
(
p∗L,j ≤

α|R̂j→0|
m

∣∣∣ X̃ ,Z)
|R̂j→0|

.

where

p∗L,j =

∑
i∈C H(X1i, X̃2j)(I{V2j < V1i}+ ξj · I{V2j = V1i}) + ξj ·H(X2j , X̃2j)∑

i∈C H(X1i, X̃2j) +H(X2j , X̃2j)
.

By the weighted exchangeability, p∗L,j | X̃ ,Z ∼ U[0, 1]. Taking the expectation we have

FDR ≤
m∑
j=1

E

E
 I{pL,j ≤ α|R̂j→0|

m }
|R̂j→0|

∣∣∣ X̃ ,Z

 ≤

m∑
j=1

E

Pr
(
p∗L,j ≤

α|R̂j→0|
m

∣∣∣ X̃ ,Z)
|R̂j→0|


=

m∑
j=1

α

m
= α,

which completes the proof.

F.7 PROOF OF THEOREM 3

Define the uncomputable oracle p-value as

p∗L,j =

∑
i∈C H(X1i, X̃2j)I{V̄2j ≤ V̄1i}+ ξj ·H(X2j , X̃2j)∑

i∈C H(X1i, X̃2j) +H(X2j , X̃2j)
.

By Lemma 1, if {(X1i,Y1i, S1i)}i∈C ∪{(X2j ,Y2j , S2j)}mj=1 are exchangeable, this oracle p-value
will be super-uniform

Pr(p∗L,j ≤ α) ≤ α.

Note that V̄2j = max{V2j,s : Y2j,s /∈ As}. This indicates

p∗L,j = min{pL,j,s : Y2j,s /∈ As}.
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By direct tranformation we have

FWER = Pr

S2j∑
s=1

I{Y2j,s /∈ As, pL,j,s ≤ α} > 0


= Pr

 ⋃
Y2j,s /∈As

{pL,j,s ≤ α}


= Pr(p∗L,j ≤ α) ≤ α,

which completes the proof.

F.8 PROOF OF THEOREM 4

Proof. By our screening procedure, the conditional FWER can be transformed as

Pr

S2j∑
s=1

I{Y2j,s /∈ As, δj,s = 1} > 0
∣∣∣ X2j ∈ B

 = Pr

 ⋃
Y2j,s /∈As

{pL,j,s ≤ α}
∣∣∣ X2j ∈ B


= Pr(p∗L,j ≤ α | X2j ∈ B).

Since we assume exchangeability, this is equivalent to the covariate shift setting with g(x) = I{x ∈
B}/Pr(X2j ∈ B). Therefore, we only need to compute the excess term in Lemma 2 with this
specific g. By transformation

EU∼K(·){|g(x+ hU)− g(x)|}

=
1

Pr(X2j ∈ B)

∫
K(u)(I{x+ hu ∈ B,x /∈ B}+ I{x+ hu /∈ B,x ∈ B})du

≤ 2

Pr(X2j ∈ B)

∫
K(u)I{∥u∥2 ≥ h−1d(x, ∂B)}du

=2 ·
PrU∼K(·)(∥U∥2 ≥ h−1d(x, ∂B))

Pr(X2j ∈ B)
.

Following the same proof to Lemma 2 we conclude

Pr

S2j∑
s=1

I{Y2j,s /∈ As, δj,s = 1} > 0
∣∣∣ X2j ∈ B

 ≤ α+2∥f1,X∥∞
PrX∼PH,X,U∼K(·)(∥U∥2 ≥ h−1d(X, ∂B))

Pr(X2j ∈ B)
.

F.9 PROOF OF THEOREM 5

Proof. Remember that we assume n1 = n2 in the main text. We first introduce a lemma about our
defined U-statistic.
Lemma 5. For some kernel function k(z, z′) depending on n1, define the two-sample U-statistic
and its projection as

Un1 =
1

n21

n1∑
i=1

n1∑
j=1

k(Z1i,Z2j)

and

Ûn1 =
1

n1

n1∑
i=1

E{k(Z1i,Z21) | Z1i}+
1

n1

n1∑
j=1

E{k(Z11,Z21) | Z2j} − E{k(Z1i,Z2j)}.

Then if E{k(Z1i,Z2j)
2} = o(n1), Un1

and Ûn1
satisfy

√
n1(Un1 − Ûn1) = op(1).
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This lemma is an extension of Lemma 3.1 in Powell et al. (1989) which constructs a similar result
for one sample U-statistics of degree 2. The proof follows exactly the same and is therefore omitted.

Denote the unnormalized version of T̂w and its projection as T̂ ∗
w and T̂ ∗

w,p. In our defined statistic
k(Z1i,Z2j) = H(X1i,X2j)D̂ij . We first check the condition in Lemma 5. By integration and
D̂ij < 1

E{k(Z1i,Z2j)
2} ≤E{H(X1i,X2j)

2}

=

∫
1

h2d
K

(
x′ − x

h

)
f1,X(x)f2,X(x′)dxdx′

=
1

hd

∫
K(u)2f1,X(x)f2,X(x+ hu)dxdu

≤ 1

hd

∫
K(u)2du.

Together with the assumption n1hd → ∞ we have E{k(Z1i,Z2j)
2} = o(n1).

Define the centralized projection statistics as ψ1,n1(Z1i) = E{k(Z1i,Z21) | Z1i}, ψ2,n1(Z2j) =
E{k(Z11,Z2j) | Z2j} and

ψ1,n1 =
1

n1

n1∑
i=1

E{k(Z1i,Z21) | Z1i} − E{k(Z1i,Z2j)},

ψ2,n1 =
1

n1

m1∑
j=1

E{k(Z11,Z2j) | Z2j} − E{k(Z1i,Z2j)}.

The projection can be decomposed as

ψ1,n1
(Z1i) =E{k(Z1i,Z21) | Z1i}

=

∫
1

hd
K

(
x−X1i

h

)[
1

2
− I{V1i < V (x, y)} − 1

2
I{V1i = V (x, y)}

]
f2,X(x)f2(y | x)dxdy

=

∫
K(u)

[
1

2
− I{V1i < V (X1i + hu, y)} − 1

2
I{V1i = V (X1i + hu, y)}

]
· f2,X(X1i + hu)f2(y | X1i + hu)dudy

=

∫
K(u)

[
1

2
− I{V1i < V̂ ∗(X1i, y)} −

1

2
I{V1i = V̂ ∗(X1i, y)}

]
f2,X(X1i)f2(y | X1i)dudy

+ ψ1,n1,r(Z1i).

=ψ1(Z1i) + ψ1,n1,r(Z1i).

By Assumption 1 and h → 0 we know ψ1,n1,r(Z1i) = op(1). Similar results also hold for
ψ2,n1(Z2j) and ψ2,n1,r(Z2j).

Note that under the null hypothesis v(x, y) ≡ 1. So we have

E{H(X1i,X2j)Dij} = E
{
H(X1i,X2j)

(
1

2
− ξj

)}
= 0

If Assumption 2 holds then

√
n1E{H(X1i,X2j)D̂ij} =

√
n1E{H(X1i,X2j)(D̂ij −Dij)} = op(1)

If P1,X = P2,X then under the null hypothesis we have P1 = P2 and therefore
E{H(X1i,X2j)D̂ij} = 0 by symmetric.
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Now the statistic can be decomposed as

T̂ ∗
w =(T̂ ∗

w − T̂ ∗
w,r) +

1

n1

n1∑
i=1

[ψ1(Z1i)− E{ψ1(Z1i)}] +
1

n1

n1∑
j=1

[ψ2(Z2j)− E{ψ2(Z2j)}]

+
1

n1

n1∑
i=1

[ψ1,n1,r(Z1i)− E{ψ1,n1,r(Z1i)}] +
1

n1

n1∑
j=1

[ψ2,n1,r(Z2j)− E{ψ2,n1,r(Z2j)}]

+ E{H(X1i,X2j)D̂ij}

=
1

n1

n1∑
i=1

[ψ1(Z1i)− E{ψ1(Z1i)}] +
1

n1

n1∑
j=1

[ψ2(Z2j)− E{ψ2(Z2j)}] + op(1/
√
n1).

As ψ1(Z1i) and ψ2(Z2j) are independent random variables not depending on n1, we have

T̂ ∗
w

σn1

d→ N (0, 1) . (F.3)

where

σ2
n1

=
1

n1
Var{ψ1(Z1i)}+

1

n1
Var{ψ2(Z2j)}.

Hereafter we only need to prove the consistency of the variance estimator. Denote σ∗2
n1

= Var(T̂ ∗
w),

the non-asymptotic variance can be decomposed as

σ∗2
n1

=
1

n21
E{H(X1i,X2j)

2D̂2
ij}+

n1 − 1

n21
E
{
H(X1i,X2j)H(X1k,X2j)D̂ijD̂kj

}
+
n1 − 1

n21
E
{
H(X1i,X2j)H(X1i,X2k)D̂ijD̂ik

}
− 2n1 − 1

n21
E
[{
H(X1i,X2j)D̂ij

}]2
By similar integration computation, the cross-term expectation converges to Var{ψ1(Z1i)} and
Var{ψ2(Z2j)} in probability. Removing the vanishing term we have σ∗2

n1
− σ2

n1
= op(1/n1) and

σ∗
n1
/σn1

p→ 1.

The variance estimator σ̂2
w takes the form

σ̂2
w =

1

n21

n1∑
i=1

 1

n1

n1∑
j=1

H(X1i,X2j)D̂ij


2

+
1

n21

n1∑
j=1

{
1

n1

n1∑
i=1

H(X1i,X2j)D̂ij

}2

− 1

n41

n1∑
i=1

n1∑
j=1

H(X1i,X2j)
2D̂2

ij −
2

n1

 1

n21

n1∑
i=1

n1∑
j=1

H(X1i,X2j)D̂ij


2

=
1

n21

 1

n21

n1∑
i=1

n1∑
j=1

H(X1i,X2j)
2D̂2

ij

+
1

n1
· 1

n31

n1∑
i=1

∑
j ̸=k

H(X1i,X2j)H(X1i,X2k)D̂ijD̂ik

+
1

n1
· 1

n31

n1∑
j=1

∑
1̸=k

H(X1i,X2j)H(X1k,X2j)D̂ijD̂kj −
2

n1

 1

n21

n1∑
i=1

n1∑
j=1

H(X1i,X2j)D̂ij


2

It is easy to see that σ̂2
w consists of term-wise approximations of the expectations in σ∗2

n1
. By further

computing the second moments of the estimators and Markov’s inequality we have σ̂2
w − σ∗2

n1
=

op(1/n1). Together with (F.3) we conclude

T̂w =
T̂ ∗
w

σ̂w

d→ N(0, 1).
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F.10 PROOF OF THEOREM 6

Proof. By the same proof with Theorem 5 we know

T̂ ∗
w − E{H(X1i,X2j)D̂ij}

σ̂w

d→ Z ∼ N(0, 1). (F.4)

By Assumption 2 we have E{H(X1i,X2j)(D̂ij −Dij)} = op(1/
√
n1). Combining with the con-

sistency of σ̂w we know
√
n1σ̂w/σw

p→ 1 and

T̂ ∗
w − E{H(X1i,X2j)D̂ij}

σ̂w
= Z +

E{H(X1i,X2j)Dij}
σw/

√
n1

(1 + op(1)) + op(1).

The rest is to compute the bias term E{H(X1i,X2j)Dij}. By integration

E{H(X1i,X2j)Dij}

=

∫
1

hd
K

(
x1 − x2

h

)[
1

2
− I{V ∗(x1, y1) < V ∗(x2, y2)}

]
f1,X(x1)f2,X(x2)f1(y1 | x1)f2(y2 | x2)dx1dx2dy1dy2

=

∫
K (u)

[
1

2
− I{V ∗(x1, y1) < V ∗(x1 + hu, y2)}

]
f1,X(x1)f2,X(x1 + hu)f1(y1 | x1)f2(y2 | x1 + hu)

dx1dudy1dy2

=

(∫ [
1

2
− I{V ∗(x1, y1) < V ∗(x1, y2)}

]
f1,X(x1)f2,X(x1)f1(y1 | x1)f2(y2 | x1)dx1dy1dy2

)
(1 + op(1))

=

(∫ [
1

2
− I{V ∗(x1, y1) < V ∗(x1, y2)}

]
V ∗(x1, y1)f1,X(x1)f2,X(x1)f2(y1 | x1)f2(y2 | x1)dx1dy1dy2

)
(1 + op(1))

=EX∼P2,X

{
f1,X(X)

(
1

2
− EY1,Y2∼P2,Y |X [V ∗(X, Y1)I{V ∗(X, Y1) < V ∗(X, Y2)}]

)}
(1 + op(1))

And by transformation

EY1,Y2∼P2,Y |X [V ∗(X, Y1)I{V ∗(X, Y1) < V ∗(X, Y2)}]

=
1

2
EY1,Y2∼P2,Y |X [V ∗(X, Y1)I{V ∗(X, Y1) < V ∗(X, Y2)}] +

1

2
− 1

2
EY1,Y2∼P2,Y |X [V ∗(X, Y1)I{V ∗(X, Y1) ≥ V ∗(X, Y2)}]

=
1

2
− 1

2
EY1,Y2∼P2,Y |X [{V ∗(X, Y1)− V ∗(X, Y2)}I{V ∗(X, Y1) ≥ V ∗(X, Y2)}]

=
1

2
− 1

4
EY1,Y2∼P2,Y |X{|V

∗(X, Y1)− V ∗(X, Y2)|}.

The bias term is then simplified as

E{H(X1i,X2j)Dij} =
1

4
EX∼P2,X,Y,Y ′∼P2,Y |X{f1,X(X)|V ∗(X, Y )− V ∗(X, Y ′)|}(1 + op(1)).

Combining all the results above we conclude

T̂w =
T̂ ∗
w

σ̂w
= Z +

E{H(X1i,X2j)Dij}
σw/

√
n1

{1 + op(1)}+ op(1) =

√
n1δw
4σw

{1 + op(1)}+ Z + op(1).
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