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A Proofs

A.1 Proof of Theorem 1

It suffices to verify that the KKT conditions hold for BAA* (M), i.e. that O is in the subdifferential. By
(ii) it follows that the indices .A$. in the subdifferential contain zero. That leaves us only to show

that V£ (5" (X); X) , = Asign (B (V) .-

VBN ()i X) 4
= Xﬁy (y - XA)\* BA* ()‘)AA*)

* * -1 . *
=XJ. (y = Xa B )4y — (A = X)X (X4, X, ) signB(A )AM>

= V(B (N) 4. — (A = A)sign B(A7) .
= )\signB()\*)AA*,

which by (i) equals Asign(3*"(\)) 4,. -

B Algorithms

In this section we present the algorithms for efficiently updating the Hessian and its inverse (Algo-
rithm 1) and the full algorithm for the Hessian screening method (Algorithm 2).

C Singular or Ill-Conditioned Hessians

In this section, we discuss situations in which the Hessian is singular or ill-conditioned and propose
remedies for these situations.

Inversion of the Hessian demands that the null space corresponding to the active predictors A
contains only the zero vector, which typically holds when the columns of X are in general position,
such as in the case of data simulated from continuous distributions. It is not, however, generally the
case with discrete-valued data, particularly not in when p > n. In Lemma C.1, we formalize this
point.

Lemma C.1. Suppose that we have e € RP such that Xe = 0. Let B()\) be the solution to the
primal problem (1) and £ = {i : e; # 0}; then |3(N\)g| > 0 only if there exists a z € R? where
ze € {1, 1} such that z"e = 0.
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Algorithm 1 This algorithm provides computationally efficient updates for the inverse of the Hessian.
Note the slight abuse of notation here in that £ is used both for X and Q. It is implicitly understood
that Q¢¢ is the sub-matrix of () that corresponds to the columns £ of X.

Input: X, H = X1X,,Q:=H ', AB
C:=A\B
D:=B\A
if C # o then
E=ANB
Q = Qee — QeecQzle.QFc.
A=E&

end if
if D # & then
S = X%XD — X%XAQXiXD
Q= Q+ QXﬂXDS*ngXAQ fQXﬁXDS*1
’ —S‘ngXAQ S-1
end if

Return H*

Algorithm 2 The Hessian screening method for the ordinary least-squares lasso

Input: X e R"*P,y € R", A € {R} : A\; = Apas M1 > A2 > - > A}, e >0
Initalize: k < 1, 3% < 0,¢ « [[y|3. W+ 3, A+ 3,5 + 2,G + {1,2,...,p}

1: while k¥ < m do

2 B {BeRMI:G(B, (y — XwB)/ max(Ag, [ X (y — XwB)|le)) < Ce}

Biye < 0
A—{j:B; # g}
r<—y—XWﬁu(/\}
Ve {jeS\W:laTr| > M}
if V = @ then

0 < r/max (A, | X2 7] s0)
9: if G(ﬂ(k)79) < g then

PR kW

> Check for violations in Strong set

> Compute dual-feasible point

10: Update H and H ! via Algorithm 1

11: W {5 e Nes1)| < Mp1fUA > Hessian rule screening
12: S {5 :1%Nes1)] < Apsr} > Strong rule screening
13: Initialize ﬁffﬂ) using (7) > Hessian warm start
14: G+ {1,2,...,p} > Reset Gap-Safe set
15: k+—k+1 > Move to next step on path
16: else

17: G+ {j €G:[xT0 =1~ ||z QG(ﬁ(k),Q)/)\i} > Gap-Safe screening
18: Ve {jeg\(Suw): lz]r] > A} > Check for violations in Gap-Safe set
19: W«wng

20: S+8SNgG

21: end if

22:  endif

23 W<+ WuV > Augment working set with violating predictors
24: end while

25: return S




Proof. 3} ;c¢xje; = 0 by assumption. Then, since B(X) is the solution to the primal problem, it
follows that x]TVf(Xﬁ) = sign(p;)A forall j € £. Hence

Z ijVf(XB)ej = Z sign(B;)Ae; = A Z sign(B;)e; =0

Jje€ JjEE je€

and zgc = 0, zg = sign(Be). O

In our opinion, the most salient feature of this result is that if all predictors in £ except i are known
to be active, then predictor i is active iff e; = jesn +e;. If the columns of X are independent

and normally distributed, this cannot occur and hence one will never see a null space in X 4. Yet if
X;j € {0,1}, one should expect the null space to be non-empty frequently. A simple instance of this
occurs when the columns of X are duplicates, in which case |e| = 2.

Duplicated predictors are fortunately easy to handle since they enter the model simultaneously. And
we have, in our program, implemented measures that deal efficiently with this issue by dropping them

from the solution after fitting and adjust B accordingly.

Dealing with the presence of rank-deficiencies due to the existence of linear combinations among the
predictors is more challenging. In the work for this paper, we developed a strategy to deal with this
issue directly by identifying such linear combinations through spectral decompositions. During our
experiments, however, we discovered that this method often runs into numerical issues that require
other modifications that invalidate its potential. We have therefore opted for a different strategy.

To deal with singularities and ill-conditioned Hessian matrices, we instead use preconditioning. At
step k, we form the spectral decomposition

Hy, = QAQT.
Then, if min; (diag(A)) < a, we add a factor « to the diagonal of H 4, . Then we substitute
g} =Q"(Ia+4)7'Q
for the true Hessian inverse. An analogous approach is taken when updating the Hessian incrementally
as in Algorithm 1. In our experiments, we have set o := nl0—%

D Computational Setup Details

The computer used to run the experiments had the following specifications:

CPU Intel i7-10510U @ 1.80Ghz (4 cores)
Memory 64 GB (3.2 GB/core)

OS Fedora 36

Compiler GNU GCC compiler v9.3.0, C++17
BLAS/LAPACK OpenBLAS v0.3.8

R version 4.1.3

E Real Data Sets

All of the data sets except arcene, scheetz, and bc_tcga werew retrieved from https://www.csie.
ntu.edu.tw/"cjlin/libsvmtools/datasets/ [1, 2]. arcene was retrieved from https://
archive.ics.uci.edu/ml/datasets/Arcene [3, 4] and scheetz and bc_tcga from https://
myweb.uiowa.edu/pbreheny [5]. Their original sources have been listed in Table 1. In each case
where it is available we use the training partition of the data set and otherwise the full data set.

F Additional Results

In this section, we present additional results related to the performance of the Hessian Screening
Rule.
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Table 1: Source for the real data sets used in our experiments.

Dataset Sources

arcene Guyon et al. [3] and Dua and Graff [4]
bcTCGA National Cancer Institute [6]
colon-cancer Alon et al. [7]
duke-breast-cancer West et al. [8]

€2006-loglp Kogan et al. [9]

e2006-tfidf Kogan et al. [9]

ijennl Prokhorov [10]

madelon Guyon et al. [3]

news20 Keerthi and DeCoste [11]
revl Lewis et al. [12]

scheetz Scheetz et al. [13]

YearPredictionMSD  Bertin-Mahieux et al. [14] and Dua and Graff [4]

Least-Squares Least-Squares Logistic Logistic
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Figure 1: The time in seconds required to fit a full regularization path with length given on the x axis.

F.1 Path Length

Using the same setup as in Section 4 but with n = 200, p = 20 000 for the high-dimensional setting,
we again benchmark the time required to fit a full regularization path using the different methods
studied in this paper. The results (Figure 1) show that the Hessian Screening Method out-performs the
studied alternatives except for the low-dimensional situation and a path length of 10 As. The results
demonstrate that our method pays a much smaller price for increased path resolution compared to the
other methods but that the increased marginal costs of updating the Hessian may make the method
less appealing in this case.

F.2 Convergence Tolerance

To better understand if and how the stopping threshold used in the solver affects the performance
of the various methods we test, we conduct simulations where we vary the tolerance, keeping the
remaining parameters constant. We use the same situation as in the high-dimensional scenario (see
Section 4) but use n = 200, p = 20 000. We run the experiment for tolerances 10*3, 10~%,107°, and
1075, The results (Figure 2) indicate that the choice of stopping threshold has some importance for
convergence time but that the gap between our method and the alternatives tested never disappears.

F.3 The Benefit of Augmenting Heuristic Methods with Gap Safe Screening

To study the effectiveness of augmenting the Hessian Screening and working methods with a gap-safe
check, we conduct experiments using the high-dimensional setup in Section 4 but with n = 200 and
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Figure 2: Time required to fit a full regularization path for the high-dimensional scenario setup in
Section 4 for both ¢; -regularized least-squares and logistic regression, with n = 200 and p = 20 000.
Both the x and y axis are on a log, scale.

p = 20000, either enabling this augmentation or disabling it. We also vary the level of correlation, p.
Each combination is benchmarked across 20 iterations.

The results indicate that the addition of gap safe screening makes a definite, albeit modest, contribution
to the performance of the methods, particularly in the case of the working strategy, which is to be
expected given that the working strategy typically runs more KKT checks that the Hessian method
does since it causes many more violations.
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Figure 3: Average time in seconds required to fit a full regularization path for the high-dimensional
scenario setup in Section 4 for ¢; -regularized least-squares regression, with n = 200 and p = 20 000,
using the Hessian and working set methods with or without the addition of Gap Safe screening. The
bars represent ordinary 95% confidence intervals.

F.4 Effectiveness and Violations

To study the effectiveness of the screening rule, we conduct as experiment using the setup in Section 4
but with n = 200 and p = 20000. We run 20 iterations and average the number of screened
predictors as well as violations across the entire path.

Looking at the effectiveness of the screening rules, we see that the Hessian screening rule performs as
desired for both ¢;-regularized least-squares and logistic regression (Figure 4), leading to a screened
set that lies very close to the true size. In particular, the rule works much better than all alternatives in
the case of high correlation,
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Figure 4: The number of predictors screened (included) for each given screening rule, as well as the
minimum number of active predictors at each step as a dashed line. The values are averaged over 20
repetitions in each condition. Note that the y-axis is on a log;, scale.

In Table 2, we show the average numbers of screened (included) predictors and violations for the
heuristic screening rules across the path. We note, first, that EDPP never lead to any violations and
that the Strong rule only did so once throughout the experiments. The Hessian rule, on the other hand,
leads to more violations, particularly when there is high correlation. On the other hand, the Hessian
screening rule successfully discards many more predictors than the other two rules do. And because
the Hessian method always checks for violations in the strong rule set first, which is demonstrably
conservative, these violations are of little importance in practice.

F.5 Detailed Results on Real Data

In Table 3 we show Table 1 with additional detail, including confidence intervals and higher figure
resolutions. Please see Section 4 for commentary on these results, where they have been covered in
full.

F.6 Additional Results on Simulated Data

In Figure 5, we show results for the ordinary least-squares lasso for the Sasvi, Gap Safe, and EDPP
methods, which were not included in the main paper.

F.7 Gamma

In this section we present the results of experiments targeting -, the parameter for the Hessian rule
that controls how much of the unit bound (used in the Strong Rule) that is included in the correlation
vector estimate from the Hessian rule.



Table 2: Numbers of screened predictors and violations averaged over the entire path and 20 iterations
for simulated data with n = 20 000 p = 200 and correlation level equal to p.

Model p  Method Screened Violations
Least-Squares 0 Hessian 112 0.081
Least-Squares 0 Strong 203 0
Least-Squares 0 EDPP 11928 0
Least-Squares 0.4  Hessian 103 0.099
Least-Squares 0.4  Strong 238 0
Least-Squares 0.4 EDPP 10561 0
Least-Squares 0.8  Hessian 66 0.37
Least-Squares 0.8  Strong 897 0.0010
Least-Squares 0.8 EDPP 10652 0
Logistic 0 Hessian 102 0.020
Logistic 0 Strong 201 0
Logistic 0.4 Hessian 7 0.033
Logistic 0.4 Strong 173 0
Logistic 0.8 Hessian 49 0.051
Logistic 0.8 Strong 297 0
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Figure 5: Additional results on simulated data for methods not included in the main article. The
results correspond to the ordinary (least-squares) lasso with n = 400, p = 40 000 and varying levels
of pairwise correlation between predictors, p.

We run 50 iterations of the high-dimensional setup from Section 4 and measure the number of
predictors screened (included) by the Hessian screening rule, the number of violations, and the time
taken to fit the full path. We vary v from 0.001 to 0.3.

The results are presented in Figure 6. From the figure it is clear that the number of violations in fact
has a slightly negative impact on the speed at which the path is fit. We also see that the number of
violations is small considering the dimension of the data set (p = 40 000) and approach zero at v
values around 0.1 for the lowest level of correlation, but have yet to reach exactly zero at 0.3 for the
highest level of correlation. The size of the screened set increase only marginally as ~y increases fro
0.001 to 0.01, but eventually increase rapidly at v approaches 0.3. Note, however, that the screened
set is still very small relative to the full set of predictors.

F.8 Ablation Analysis

In this section we report an experiment wherein we study the effects of the various features of the
Hessian screening method by incrementally adding them and timing the result.

We add features incrementally in the following order, such that each step includes all of the previous
features.

1. Hessian screening



Table 3: Time to fit a full regularization path of ¢;-regularized least-squares and logistic regression
to real data sets. Density and time values are rounded to two and four significant figures respectively.
The estimates are based on 20 repetitions for arcene, colon-cancer, duke-breast-cancer, and ijcnnl
and three repetitions otherwise. Standard 95% confidence levels are included.

95% CI
Dataset n p Density Loss Method Time (s) Lower Upper
arcene 100 10000 5.4 x 10~ Logistic Blitz 4.42 4.39 4.45
arcene 100 10000 5.4 x 10~%  Logistic Celer 3.99 3.98 3.99
arcene 100 10000 5.4 x 10~ Logistic Hessian 4.35 4.32 4.38
arcene 100 10000 5.4 x 107¢ Logistic Working 3.27 3.25 3.28
bcTCGA 536 17322 1 Least-Squares  Blitz 11.7 11.5 11.8
bcTCGA 536 17322 1 Least-Squares  Celer 10.6 10.5 10.7
bcTCGA 536 17322 1 Least-Squares  Hessian 3.00 2.85 3.14
bcTCGA 536 17322 1 Least-Squares ~ Working 7.67 7.57 777
colon-cancer 62 2000 1 Logistic Blitz 0.177 0.176 0.178
colon-cancer 62 2000 1 Logistic Celer 0.169 0.168 0.170
colon-cancer 62 2000 1 Logistic Hessian 0.0542 0.0534 0.0550
colon-cancer 62 2000 1 Logistic Working 0.134 0.132 0.136
duke-breast-cancer 44 7129 1 Logistic Blitz 0.251 0.248 0.253
duke-breast-cancer 44 7129 1 Logistic Celer 0.262 0.260 0.264
duke-breast-cancer 44 7129 1 Logistic Hessian 0.111 0.110 0.112
duke-breast-cancer 44 7129 1 Logistic Working 0.210 0.209 0.212
€2006-loglp 16087 4272227 1.4 x 1072  Least-Squares Blitz 756 749 764
€2006-loglp 16087 4272227 1.4 x107° Least-Squares  Celer 835 831 839
€2006-loglp 16087 4272227 1.4 x 1073  Least-Squares Hessian 205 203 207
€2006-loglp 16087 4272227 1.4x 1073 Least-Squares ~ Working 438 434 441
€2006-tfidf 16 087 150360 8.3 x 1072  Least-Squares  Blitz 277 275 280
€2006-tfidf 16 087 150360 8.3 x 1072 Least-Squares Celer 335 334 337
€2006-tfidf 16 087 150360 8.3 x 1073 Least-Squares  Hessian 14.3 14.3 14.4
€2006-tfidf 16 087 150360 8.3 x 1073 Least-Squares ~ Working 143 139 146
ijennl 35000 22 1 Logistic Blitz 4.68 3.82 5.53
ijennl 35000 22 1 Logistic Celer 3.50 3.42 3.58
ijennl 35000 22 1 Logistic Hessian 0.939 0.869 1.01
ijennl 35000 22 1 Logistic Working 5.53 4.57 6.48
madelon 2000 500 1 Logistic Blitz 240 223 258
madelon 2000 500 1 Logistic Celer 247 243 251
madelon 2000 500 1 Logistic Hessian 48.2 43.2 53.1
madelon 2000 500 1 Logistic Working 232 227 238
news20 19996 1355191 3.4 x 10~ Logistic Blitz 2230 2230 2240
news20 19996 1355191 3.4 x 1074 Logistic Celer 2170 2160 2180
news20 19996 1355191 3.4 x 10™%  Logistic Hessian 1290 1290 1290
news20 19996 1355191 3.4 x 10™%  Logistic Working 1620 1610 1630
revl 20242 47236 1.6 x 1072 Logistic Blitz 384 380 387
revl 20242 47236 1.6 x 1072 Logistic Celer 378 373 384
revl 20242 47236 1.6 x 1073 Logistic Hessian 132 127 137
revl 20242 47236 1.6 x 1072 Logistic Working 266 258 275
scheetz 120 18975 1 Least-Squares  Blitz 0.706 0.689 0.722
scheetz 120 18975 1 Least-Squares ~ Celer 0.801 0.777 0.826
scheetz 120 18975 1 Least-Squares  Hessian 0.369 0.354 0.383
scheetz 120 18975 1 Least-Squares  Working 0.643 0.639 0.647
YearPredictionMSD 463 715 90 1 Least-Squares  Blitz 706 704 707
YearPredictionMSD 463 715 90 1 Least-Squares  Celer 712 711 714
YearPredictionMSD 463 715 90 1 Least-Squares  Hessian 78.8 78.1 79.5
YearPredictionMSD 463 715 90 1 Least-Squares ~ Working 541 516 565
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Figure 6: The number of predictors screened (included), the number of violations, and the time taken
to fit the full path. All measures in the plots represent means across combinations of p and ~ over 50
iterations. The time recorded here is the time relative to the mean time for each level of p. The choice
of v in this work, 0.01, is indicated by a dotted line in the plots. Note that z is on a log, scale.

2. Hessian warm starts
3. Effective updates of the Hessian matrix and its inverse using the sweep operator

4. Gap safe screening

We then run an experiment on a design with n = 200 and p = 20 000 and two levels of pairwise
correlation between the predictors. The results (Figure 7) show that both screening and warm starts
make considerable contributions in this example.

Note that these results are conditional on the order with which they are added and also on the specific
design. The Hessian updates, for instance, make a larger contribution when min{n, p} is larger and
n and p are more similar. And when n > p, the contribution of the warm starts dominate whereas
screening no longer plays as much of a role.

10 Vanilla

Hessian Screening

Hessian Warm Starts

Time (s)

Hessian Updates

Gap Safe

[T -

0

P

Figure 7: Incremental contribution to the decrease in running time from Hessian screening, Hessian
warm starts, our effective updates of the Hessian and its inverse, and gap safe screening. In other
words, Gap Safe, for instance, includes all of the other features, whilst Hessian Warm Starts includes
only Hessian Screening. Vanilla does not include any screening and only uses standard warm starts
(from the solution at the previous step along the path). The example shows an example of ordinary
(least-squares) lasso fit to a design with n = 200 and p = 20 000 with pairwise correlation between
predictors given by p. (See Section 4 for more details on the setup). The error bars indicate standard
95% confidence intervals. The results are based on 10 iterations for each condition.



F.9 /,-Regularized Poisson Regression

In this experiment, we provide preliminary results for /1 -regularized Poisson regression. The setup is
the same as Section 4 except for the following remarks:

* The response, y, is randomly sampled such that y; ~ Poisson (exp(:ciTﬁ)).

* We set € in the convergence criterion to n + Y., log(y;!).
* We do not use the line search procedure from Blitz.

* Due to convergence issues for higher values of p, we use values 0.0, 0.15, and 0.3 here.
Tackling higher values of p would likely need considerable modifications to the coordinate
descent solver we use.

* The gradient of the negative Poisson log-likelihood is not Lipschitz continuous, which
means that Gap safe screening [15] no longer works. As a result, we have excluded the
Blitz and Celer algorithms, which rely on Gap safe screening, from these benchmarks, and
deactivated the additional Gap safe screening from our algorithm.

The results from the comparison are shown in Figure 8, showing that our algorithm is noticeably
faster than the working algorithm also in this case.

n = 10000, p = 100 n =400, p = 40000
5
4
°
>
3
) D Hessian
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0
0 0.15 0.3 0 0.15 0.3
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Figure 8: Time to fit a full regularization path for ¢; -regularized Poisson regression to a design with
observations, p predictors, and pairwise correlation between predictors of p. Time is relative to the
minimal mean time in each group. The error bars represent ordinary 95% confidence intervals around
the mean.

F.10 Runtime Breakdown Along Path

In this section we take a closer look at the running time of fitting the full regularization path and study
the impact the Hessian screening rule and its warm starts have on the time spent on optimization of
the problem using coordinate descent (CD).

To illustrate these cases we take a look at three data sets here: e2006-tfidf, madelon, and rcvi. The
first of these, e2006-tfidf, is a sparse data set of dimensions 16 087 x 150 360 with a numeric response,
to which we fit the ordinary lasso. The second two are both data sets with a binary response, for
which we use ¢, -regularized logistic regression. The dimensions of madelon are 2000 x 500 and the
dimensions of rcvl are 20 242 x 47 236.

We study the contribution to the total running time per step, comparing the Hessian screening rule
with the working+ strategy. For the working+ strategy, all time is spent inside the CD optimizer and
in checks of the KKT conditions. For the Hessian screening rule, time is also spent updating the
Hessian and computing the correlation estimate &7.

Beginning with Figure 9 we see that the Hessian strategy dominates the Working+ strategy, which
spends most of its running time on coordinate descent iterations, which the Hessian strategy ensures
are completed in much less time.

10
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Figure 9: Relative contribution to the full running time when fitting a complete regularization path to
the e2006-tfidf data set.

In Figure 10, we see an example of ¢;-regularized logistic regression. In this case updating the
Hessian exactly (and directly) dominates the other approaches. The size of the problem makes the
cost of updating the Hessian negligible and offers improved screening and warm starts, which in turn
greatly reduces the time spent on coordinate descent iterations and consequently the full time spent
fitting the path.

Finally, in Figure 11 we consider the rcvi data set. In contrast to the case for madelon, the cost of
directly forming the Hessian (and inverse) proves more time-consuming here (although the benefits
still show in the time spent on coordinate descent iterations).

As a final remark, note that the pattern by which predictors enter the model (bottom panels) differ
considerably between these three cases (Figures 9 to 11). Consider, for instance, madelon viz-a-viz
e2006-tfidf. In Approximate Homotopy (Section 3.3.6), we discuss a remedy for this solution that is
readily available through our method.
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Figure 11: Relative contribution to the full running time when fitting a complete regularization path
to the rcv/ data set.
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