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We start by introducing the notations that will be used in the proofs of Lemma 5.1 and Theorem 5.3. As the proofs are for
each individual agent n, without confusion, we drop the subscript n in some notations for brevity.

Recall that Gt the σ-algebra generated by the history information of all agents till round t, i.e., Gt :=
σ
(
{a1n, r1n, . . . , atn, rtn}n∈N

)
and let Et[·] := E[·|Gt] be the expectation conditioned on the history information by the end

of round t. Recall that yta := 1− ut
n(a;At

−n) is the instantaneous loss function if agent n plays arm a ∈ An in round t, and

thus Y t
a,a′ :=

1[at
n=a′]pt

aq
t
a,a′y

t
a′

pt
a′

and Ŷ t
a,a′ =

Y t
a,a′

qt
a,a′+γt

. Denote by L̂t
a :=

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′ and LT

a :=
T∑

t=1

∑
a′∈An

Y t
a,a′ .

A PROOF OF LEMMA 5.1

Proof. Recall that Ỹ t
a,a′ := 1[atn = a]yta′ . We first prove that the process {Zt}t≥0, where Zt :=

exp

{
t∑

s=1

∑
a∈An

∑
a′∈An

βs
a,a′

(
Ŷ s
a,a′ − Ỹ s

a,a′

)}
for t > 0 and Z0 = 1, is a supermartingale with respect to filtration {Gt}t≥0

for all a ∈ An, i.e., E [Zt|Gt−1] ≤ Zt−1. Denote by At
−n the actions of all agents except for agent n in round t. Then, we

have that

Et−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − Ỹ t

a,a′

)}]
= Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ỹ t

a,a′

}
 = Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′1[atn = a]yta′

}


= Et−1

Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′1[atn = a]yta′

} | At
−n


 ≤ Et−1


Et−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}
| At

−n

]

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
 ,

(11)
where the third equality is due to the law of total expectation, and the fourth equality is due to that yta′ is de-
termined given At

−n and βt
a,a′ is Gt−1-measurable. Denote by En,t−1[·] := Et−1

[
· | At

−n

]
. Then, we show that

En,t−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}]
≤ exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
as follows:
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En,t−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}]
= En,t−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

pta1[a
t
n = a′]qta,a′yta′

pta′(qta,a′ + γt)

}]

≤ En,t−1

[ ∑
a∈An

pta exp

{ ∑
a′∈An

βt
a,a′

1[atn = a′]qta,a′yta′

pta′(qta,a′ + γt)

}]
≤ En,t−1

[ ∑
a∈An

pta exp

{ ∑
a′∈An

βt
a,a′

2γt

2γt1[a
t
n = a′]qta,a′yta′

pta′(qta,a′ + γt1[atn = a′]qta,a′yta′)

}]

= En,t−1

[ ∑
a∈An

pta exp

{ ∑
a′∈An

βt
a,a′

2γt

2γt1[a
t
n = a′]yta′/pta′

1 + γt1[atn = a′]yta′/pta′

}]
≤ En,t−1

[ ∑
a∈An

pta exp

{ ∑
a′∈An

βt
a,a′

2γt
log(1 + 2γt1[a

t
n = a′]yta′/pta′)

}]

≤ En,t−1

[ ∑
a∈An

pta exp

{ ∑
a′∈An

log(1 + βt
a,a′1[atn = a′]yta′/pta′)

}]
= En,t−1

[ ∑
a∈An

pta
∏

a′∈An

(1 + βt
a,a′1[atn = a′]yta′/pta′)

]
.

where the first inequality is due to Jensen’s inequality, the second inequality is due to that 0 ≤ 1[atn = a′]qta,a′yta′ ≤ 1,
the third inequality is due to the fact that z

1+z/2 ≤ log(1 + z) for all z > 0, and the last inequality is due to the inequality
x log(1 + y) ≤ log(1 + xy) for all y > −1 and x ∈ [0, 1]. As 1[atn = a′]1[atn = a′′] = 0 for any a′ ̸= a′′, the last term in
above equation can be further processed as follows:

En,t−1

[ ∑
a∈An

pta
∏

a′∈An

(1 + βt
a,a′1[atn = a′]yta′/pta′)

]
= En,t−1

[ ∑
a∈An

pta(1 +
∑

a′∈An

βt
a,a′1[atn = a′]yta′/pta′)

]

= En,t−1

[
1 +

∑
a∈An

∑
a′∈An

ptaβ
t
a,a′1[atn = a′]yta′/pta′

]
= 1 +

∑
a∈An

∑
a′∈An

ptaβ
t
a,a′yta′ ≤ exp

{∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
,

where the inequality is due to 1 + x ≤ exp{x} for any x ∈ R. Therefore, we have shown that

En,t−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}]
≤ exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
, which indicates that (11) is bounded by 1.

Thus,

Et−1 [Zt] = Et−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − Ỹ t

a,a′

)}]
· Zt−1 ≤ Zt−1,

which shows that {Zt}t≥0 is a supermartingale with respect to filtration {Gt}t≥0. Thus, we have E [ZT ] ≤ E [ZT−1] . . . ≤
E [Z0] = 1. By the Markov inequality, we have

Pr

(
T∑

t=1

βt
a,a′

∑
a∈An

∑
a′∈An

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≥ ϵ

)
≤ E

[
exp

{
T∑

t=1

βt
a,a′

∑
a∈An

∑
a′∈An

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≥ ϵ

}]
· exp{−ϵ}

≤ exp{−ϵ}.

Then, the lemma follows by solving exp{−ϵ} = δ for ϵ.

B PROOF OF THEOREM 5.3

Proof. By the relationship between P t
n and Qt

a, we have the following equation held:

∑
a∈An

LT
a =

∑
a∈An

T∑
t=1

∑
a′∈An

Y t
a,a′ =

T∑
t=1

∑
a′∈An

∑
a∈An

1[atn = a′]ptaq
t
a,a′

pta′
yta′

=

T∑
t=1

∑
a′∈An

1[atn = a′]yta′ =

T∑
t=1

∑
a∈An

1[atn = a]yta,

(12)



The regret defined in (3) can be rewritten in the loss form and can be decomposed as follows:

Rswa
n (T,F) = max

F∈F

T∑
t=1

∑
a∈An

1[atn = a]yta −
T∑

t=1

∑
a∈An

1[atn = a]ytF (a)

= max
F∈F

∑
a∈An

LT
a −

∑
a∈An

L̃T
a,F (a) =

∑
a∈An

(LT
a − L̂T

a )︸ ︷︷ ︸
=:(a)

+
∑
a∈An

(L̂T
a − L̂T

a,F (a))︸ ︷︷ ︸
=:(b)

+
∑
a∈An

(L̂T
a,F (a) − L̃T

a,F (a))︸ ︷︷ ︸
=:(c)

,
(13)

where the second equality is due to (12) and the definition of L̃T
a,F (a) :=

T∑
t=1

1[atn = a]ytF (a).

We first show how to bound (a). By definition of LT
a and L̂T

a , we have that

LT
a − L̂T

a =

T∑
t=1

∑
a′∈An

Y t
a,a′ −

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′ =

T∑
t=1

∑
a′∈An

Y t
a,a′

(
1−

qta,a′

qta,a′ + γt

)
=

T∑
t=1

γt
∑

a′∈An

Ŷ t
a,a′ .

Thus, (a) is bounded by
T∑

t=1
γt
∑

a∈An

∑
a′∈An

Ŷ t
a,a′ .

Then, we show how to bound (b). Let W t
n :=

∏
a∈An

∑
a′∈An

exp (−ηt+1L̂
t
a,a′), and we have that W 0

n =
∏

a∈An

∑
a′∈An

exp (0) =

(Kn)
Kn . Note that WT

n = W 0
n

W 1
n

W 0
n
. . .

WT
n

WT−1
n

= (Kn)
Kn

T∏
t=1

W t
n

W t−1
n

. Then we have

exp (−
∑
a∈An

ηT+1L̂
T
a,F (a)) =

∏
a∈An

exp (−ηT+1L̂
T
a,F (a)) ≤

∏
a∈An

∑
a′∈An

exp (−ηT+1L̂
T
a,a′) = (Kn)

Kn

T∏
t=1

W t
n

W t−1
n

,

(14)
where the inequality is due to that exp (−ηT L̂

T
w,w′) ≥ 0. Then, by the definition of qtw,w′ in (5), we obtain that

W t
n

W t−1
n

=

∏
a∈An

∑
a′∈An

exp (−ηtL̂
t−1
a,a′) exp (−ηtŶ

t
a,a′)∏

a∈An

∑
a′∈An

exp (−ηtL̂
t−1
a,a′)

=
∏

a∈An

∑
a′∈An

exp (−ηtL̂
t−1
a,a′)∑

a′∈An

exp (−ηtL̂
t−1
a,a′)

exp (−ηtŶ
t
a,a′)

=
∏

a∈An

∑
a′∈An

qta,a′ exp (−ηtŶ
t
a,a′) ≤

∏
a∈An

∑
a′∈An

qta,a′ exp (−ηT Ŷ
t
a,a′)

≤
∏

a∈An

( ∑
a′∈An

qta,a′ − ηT
∑

a′∈An

qta,a′ Ŷ t
a,a′ +

η2T
2

∑
a′∈An

qta,a′(Ŷ t
a,a′)

2

)

≤
∏

a∈An

exp

(
−ηT

∑
a′∈An

qta,a′ Ŷ t
a,a′ +

η2T
2

∑
a′∈An

qta,a′(Ŷ t
a,a′)

2

)

= exp

(
−ηT

∑
a∈An

∑
a′∈An

qta,a′ Ŷ t
a,a′ +

η2T
2

∑
a∈An

∑
a′∈An

qta,a′(Ŷ t
a,a′)

2

)
,

(15)

where the first inequality is due to that ηt is a non-increasing parameter, the second inequality is due to that exp (x) ≤
1 + x+ x2

2 for any x ≤ 0, and the third inequality is due to that 1 + x ≤ exp (x) for any x ∈ R. Combining (15) and (14),
and taking the logarithm for both sides of the above inequality, we have that

−
∑
a∈An

ηT L̂
T
a,F (a) ≤ Kn log (Kn)−

∑
a∈An

ηT

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′︸ ︷︷ ︸

=:L̂T
a (by definition of L̂T

a )

+
η2T
2

T∑
t=1

∑
a∈An

∑
a′∈An

qta,a′

(
Ŷ t
a,a′

)2
.



Dividing both sides by ηT > 0, with rearrangement, we have

∑
a∈An

L̂T
a −

∑
a∈An

L̂T
a,F (a) ≤

Kn log(Kn)

ηT
+

ηT
2

T∑
t=1

∑
a∈An

∑
a′∈An

qta,a′

(
Ŷ t
a,a′

)2
≤ Kn log(Kn)

ηT
+

T∑
t=1

ηt
2

∑
a∈An

∑
a′∈An

Ŷ t
a,a′ ,

(16)

where the second inequality is due to that ηt is a non-increasing parameter and the fact that qta,a′ Ŷ t
a,a′ ≤ 1. Combining with

the bound of (a), we have

∑
a∈An

(
LT
a − L̃T

a,F (a)

)
≤ Kn log(Kn)

ηT
+

T∑
t=1

(ηt
2

+ γt

) ∑
a∈An

∑
a′∈An

Ŷ t
a,a′ +

∑
a∈An

(
L̂T
a,F (a) − L̃a,F (a)

)
.

Let γt = ηt/2. By invoking Lemma 5.2, with probability at least 1− δ, we have the following inequality held:

∑
a∈An

(
Lt
a − L̃T

a,a′

)
≤ Kn log(Kn)

ηT
+

T∑
t=1

ηt

(∑
a∈An

∑
a′∈An

Ỹ t
a,a′

)
+ log(

1

δ
) +

1

ηT
log(

KKn
n

δ
)

≤ Kn log(Kn) +Kn log(Kn/δ)

ηT
+

T∑
t=1

ηtKn + log(
1

δ
),

where the last inequality is due to that
∑

a∈An

∑
a′∈An

Ỹ t
a,a′ =

∑
a∈An

∑
a′∈An

1[atn = a]yta′ ≤ Kn and log(
KKn

n

δ ) ≤ Kn log(Kn/δ)

for δ ∈ (0, 1).

Letting ηt =
√

log(Kn)
t , we have

RT
n (T,F) ≤ 2Kn

√
T log(Kn) +Kn

√
log(Kn)

T∑
t=1

√
1

t
+

(
1 +Kn

√
T

logKn

)
log(

1

δ
).

When ηt =
√

log(Kn)+log(Kn/δ)
t , the above inequality becomes

RT
n (T,F) ≤ Kn

√
T (log(Kn) + log(Kn/δ)) +Kn

√
(log(Kn) + log(Kn/δ)

T∑
t=1

1

t
+ log(

1

δ
).

Theorem 5.3 follows by
T∑

t=1

√
1
t ≤ 2

√
T .
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