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A BIAS-VARIANCE BOUND ANALYSIS

In this section, we prove the bias-variance bound used in FairDP.
Theorem 1. Suppose the function f is L-Lipschitz smooth, for the t-th iteration of differentially
private SGD with learning rate µt, batch size n, clipping threshold parameter C and noise scale σ,
we have the clipping bias bounded by
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Lemma 1. The Gamma Distribution has the scaling property. That is, if X ∼ Γ(α, β), then Y =
cX follows Γ(α, cβ), where c is a positive and real constant.

Proof. Let the random variable X has the Γ(α, β) with probability density function
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which is the probability density function of Γ(α, cβ).
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If xi ∼ N (0, σ2C2), then

xi
σC
∼ N (0, 1)

x2
i

σ2C2
∼ X 2(1) ∼ Γ(

1

2
, 2)

x2
i ∼ σ2C2Γ(

1

2
, 2) ∼ Γ(

1

2
, 2σ2C2)∑

i

x2
i ∼

∑
i

Γ(
1

2
, 2σ2C2) ∼ Γ(

|I|
2
, 2σ2C2),

where the gamma distribution uses scale parameterization.
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For the ease of exposition, we assume that gt(xi) are arranged in ascending order based on their
L2-norm. For any C,
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Here, the desired result is obtained. The clipping bias is bounded by
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The noise-addition variance is
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B DESCRIPTION OF DATASETS

• We use two census datasets, Adult (Dua & Graff, 2017) and Dutch (Kamiran & Calders,
2011). For both datasets, we consider “Sex” as the protected attribute and “Income” as
decision. For unprotected attributes, we convert categorical attributes to one-hot vectors
and normalize numerical attributes to [0,1] range. After preprocessing, we have 13 unpro-
tected attributes (103 dimension) for Adult and 10 unprotected attributes (59 dimension) for
Dutch. The instances with unknown values are removed from Adult dataset (train=30162,
test=15060). The Dutch dataset is close to balanced with 30,273 males and 30,147 females.
We split the Adult and Dutch dataset into 80% training data and 20% testing data.

• We use MNIST dataset (LeCun et al., 1998) and replicate the setting in (Bagdasaryan et al.,
2019). The original MNIST dataset is a balanced dataset with 60,000 training samples and
each class has about 6,000 samples. Class 8 has the most false negatives, hence we choose
it as the artificially underrepresented group (reducing the number of training samples from
5,851 to 500) in the unbalanced MNIST dataset. We compare the underrepresented Class
8 with the well-represented Class 2 that shares the fewest false negatives with Class 8 and
therefore can be considered independent. The testing dataset has 10,000 testing samples
with about 1,000 for each class.

C COMPARISON METHODS

• SGD computes a separate gradient for each training example and averages them per class
on each batch.

• DPSGD (Abadi et al., 2016): The gradients of all the parameters are clipped before grouped
together to compute the norm. (also known as “flat clipping”)

• DP-FedAvg (McMahan et al., 2018): Per-layer clipping C =
√∑m

j=1 Cj
2, Cj = C√

m
,

where the model has m layers; when m = 1, DP-FedAvg degenerates to DPSGD.

• Opt-Q (abbreviation for Optimal-Quantile in this paper, adapted from (Amin et al., 2019),
see proof in Appendix C.1, we further improve their performance by refining C into

classes):
(

1−
√

2
π ·

σ
e

)
-quantile;

• Dpsgd-F (Xu et al., 2020): Ck = C0 × (1 +
pk

qk
p
q

), where pk

qk
represents the fraction of

instances in the class with gradients greater than hyper-parameter C0.

C.1 OPTIMAL QUANTILE (OPT-Q)

(Amin et al., 2019) tries to do influence limitation by applying the Laplace mechanism. We follow
their example to do this by applying the Gaussian machansim.

Theorem 2. Opt-Q says that the limit we should impose on instance contributions is the(
1−

√
2
π ·

σ
e

)
-quantile of the gradients themselves.
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Proof. Recall that the noise added to ∇f(θt) follows a Gaussian distribution with scale parameter
σC. We can decompose the expected error of the estimate gt(xt) into a variance term (due to the
noise) and a bias term (due to the contribution limit):
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2
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(
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√

2
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σ
e

)
-quantile of the gradients

themselves.

D CODE APPENDIX

D.1 COMPUTING INFRASTRUCTURE FOR RUNNING EXPERIMENTS

D.1.1 HARDWARE

GPU: NVIDIA GeForce RTX 2080Ti

GPU model: The peak memory usage of the neural network with 2 convolutional layers and 2
fully-connected layers for MNIST dataset is 1509MB.

CPU: Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz

CPU model: The peak memory usage of the logistic regression for Adult and Dutch datasets is
285MB.

D.1.2 SOFTWARE LIBRARIES AND FRAMEWORKS

We use PyTorch 1.6.0 to implement all the methods. Our code depend on Opacus library 5 It enables
vectorized per-sample gradient computation that is 10x faster than microbatching.

We use the privacy testing library in TensorFlow 6 to assess the privacy properties of SGD, DPSGD
and FairDP under membership attack. The accumulated privacy budget ε for each setting is com-
puted using the privacy moments accounting method. We use Rényi DP only to estimate privacy
loss. This does not change the DPSGD algorithm of (Abadi et al., 2016) but rather provides tighter
bounds on privacy loss, allowing to reduce the amount of added noise. The TensorFlow Privacy tool
7 enables estimation of ε given the input parameters (dataset size, number of epochs, batch size, `2
noise, delta) before starting the training.

D.2 SEEDS TO ALLOW REPLICATION OF RESULTS / THE NUMBER OF ALGORITHM RUNS

The private learning methods (i.e., DPSGD, DP-FedAVG, Opt-Q, DPSGD-F, and Fair-DP) depend
on randomness. In our experiments, we set seeds from 0 to 9 and run the algorithms 10 times
repeatedly to compute each reported result.

5https://github.com/pytorch/opacus
6https://github.com/tensorflow/privacy/tree/master/tensorflow_privacy/

privacy/membership_inference_attack
7https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/

privacy/analysis/compute_dp_sgd_privacy.py
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D.3 HYPER-PARAMETERS FOR EACH MODEL

For the Adult and Dutch datasets, we use a logistic regression model with regularization parameter
0.01, learning rate 1√

T
, batch size 256, and training epochs 20.

For the MNIST dataset, we use a neural network with 2 convolutional layers and 2 linear layers with
431K parameters in total. We use learning rate 0.01, batch size 256 and 128 respectively, and the
number of training epochs 60, σ = 1.0.

D.4 SUMMARY OF PERFORMANCE

D.4.1 SUMMARY OF FAIRNESS

To draw an analogy between machine learning and the problem of resource allocation, one can
think of the model as a resource that is meant to serve the classes. In this sense, it is natural to ask
questions about the fairness of the model performance for classes.

We take “performance” to be the testing accuracy of applying the trained model on the test data for
each class. Our definition can be seen as a relaxed version of accuracy parity (Zafar et al., 2017), in
that we optimize for similar accuracy reduction but not necessarily identical performance for each
class.

There are many ways to mathematically evaluate the uniformity of the performance. In this work,
we use four indexes (Bureau, 2016), including Atkinson Index, Gini index, Mean Log Deviation, and
Theil Index.

Atkinson Index = 1− 1
ȳ

(∏`
k=1 y

Gk
k

)1/G
, where ȳ =

∑̀
k=1

ykGk.
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2ȳG2

∑̀
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∑̀
k′=1

GkGk′ |yk − yk′ |.

Mean Log Deviation (MLD) = 1
G
∑`
k=1 Gk ln ȳ

yi
.

Theil Index: The Theil T index TT = T1 = 1
G
∑`
k=1

yi
ȳ ln

(
yi
ȳ

)
; the Theil L index TL = T0 =

1
G
∑`
k=1 ln

(
ȳ
yi

)
. In this paper, we choose T1 to compensate the other indexes’ observation.

D.4.2 SUMMARY OF PRIVACY

The vulnerability score (or memorization potential) is measured via the Area Under the ROC-Curve
(AUC) and max |rfp − rtp| (advantage) of the attack classifier.

E DUTCH

Figure 7, 8 and 9 show the sensitivity of compared private methods on learning rate, batch size and
noise on Dutch dataset (supplementary to Section 4.3). Opt-Q and DPSGD have higher accuracy on
Class “Female” at the cost of decline on Class “Male” that already has lower accuracy in non-private
learning.
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Figure 7: Effect of learning rate on training
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Figure 8: Effect of batch size on training
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Figure 9: Effect of noise on training
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