
Published as a conference paper at ICLR 2021

A NOTATION

Symbol Meaning
d, di vector dimension of layers
s number of labels for classification
` linear layer of a neural network, equal to a function Rd1 → Rd2
ν tropical rational function Rd → R
(νi)i tropical rational map Rd → Rs
W weight matrix
Wj jth row of W
W•i ith column of a weight matrix W
Wpos positive part of a matrix defined by entries wpos

ij = max{0, wij}
Wneg negative part of a matrix defined by entries wneg

ij = max{0,−wij}
c bias vector
σ activation function
N neural network function N
x vector describing data sample or input to layer of a neural network
xj vector components of x in R
X , N X = {x1, . . . ,xN} data set of N samples
y output of layer or activation of neural network, y = Wx+ c or y = σ(x)
p, q tropical polynomial
p
q tropical rational function
peval,

(
p
q

)
eval evaluation of tropical polynomials/rational functions

R real numbers
R≥0 non-negative real numbers
T tropical semiring, (R ∪ {−∞},⊕,�)
T[x1, . . . , xn] semiring of tropical polynomials in n variables
T(x1, . . . , xn) semifield of tropical rational functions in n variables
(A,a), (B,b) matrix representation of a tropical polynomial
⊕ tropical addition, tropical matrix addition
� tropical multiplication, tropical matrix multiplication
� or •• tropical division, tropical matrix division
(A,a)s tropical array-vector pair (A,a) to the tropical power of s
(A+, a+)/(A−, a−) matrix representation of a tropical rational function
(νj)j list of tropical array-vector-pairs indexed by subscripts(
ν+
i

ν−i

)
j

array of tropical rational functions representing a tropical rational map

Ai• ith row of A
A•1:d first d columns of A
νeval,

(
ν+

ν−

)
eval tropical evaluation of tropical matrices

ν(x) evaluation of ν at x, equal to νeval(x)
µ ◦ ν tropical function representing the composition µeval ◦ νeval
[A]x , [a]x rows of A and a, respectively, whose evaluations on x are maximal
Amax row vector of the maxima of all but the last column of a pair of tropical matrices A+,A−

K row vector in Rd1 ensuring that a fraction of trop matrices is represented in T+
d1

Td set of array-vector pairs, where the array contains only positive elements.
The product of the number of dimensions (apart from the first one) of of the array is equal to d.

∼ equivalence relation on Td defined by equivalence of the evaluation function
Td T/ ∼
Frac(Td) (semi-) field of fractions of Td

12

Published as a conference paper at ICLR 2021

B EQUIVALENCE BETWEEN TROPICAL MATRICES AND TROPICAL
POLYNOMIALS

B.1 BASICS OF TROPICAL ALGEBRA

We introduce necessary notions of tropical algebra, an area previously connected with ReLU networks
by (Zhang et al., 2018; Charisopoulos & Maragos, 2018). A more detailed basic introduction to
tropical algebra can be found there.
Definition B.1. The tropical semiring T is the triple T := {R ∪ {−∞},⊕,�}, where ⊕ and
� denote tropical addition (ordinary maximum) and tropical multiplication (ordinary addition),
respectively.
In ordinary notation, 1� 23 ⊕ 4� 56 just means max{1 + 3 · 2, 4 + 6 · 5} = max{7, 34} = 34.
Definition B.2. A (generalized)7 tropical monomial in d variables x1, . . . , xd is an expression of
the form c � xa11 � x

a2
2 � · · · � x

ad
d where c, a1, . . . , ad ∈ R≥0. As a convenient shorthand, we

will also write a tropical monomial as cxa11 x
a2
2 . . . xadd and in multiindex notation as cxα, where

α = (a1, . . . , ad) ∈ Rd≥0 and x = (x1, . . . , xd). Note that xα = 0 � xα as 0 is the tropical
multiplicative identity.
In ordinary notation, c� xa11 � x

a2
2 � · · · � x

ad
d is a linear function c+ a1x1 + a2x2 + · · ·+ adxd.

Definition B.3. A (generalized)4 tropical polynomial p(x) = p(x1, . . . , xd) is a finite tropical sum
of tropical monomials

p(x) = c1x
α1 ⊕ . . .⊕ crxαr , (4)

where αi = (ai1, . . . , aid) ∈ Rd≥0 and ci ∈ T for 1 ≤ i ≤ r. We will assume that a monomial of a
given multiindex appears at most once in the sum, i.e. αi 6= αj for any i 6= j.
In ordinary notation, a tropical polynomial is a maximum of linear functions.
Definition B.4. A tropical rational function is a standard difference, or, equivalently, a tropical
quotient of two tropical polynomials p(x) and q(x):

p(x)− q(x) = p(x)� q(x).
We will denote a tropical rational function by ν = p� q, where p and q are understood to be tropical
polynomial functions.
In ordinary notation, a tropical rational function is a difference of two maxima of linear functions.
Definition B.5. If ν : Rd → Rs is given by x = (x1, . . . , xd)→ (ν1(x), . . . , νs(x)), where each νi
is a tropical rational function, then we call ν a tropical rational map.
Notation B.6. Let p denote a tropical polynomial. We denote its evaluation function Rd → R by
peval. We say that two tropical polynomials p, p′ are equal if and only if their evaluation functions
are equal. Two tropical rational functions p � q and p′ � q′ are defined to be equal if and only if
p� q′ = q � p′.

B.2 TROPICAL MATRIX OPERATIONS

In this section, we formally define tropical matrices equipped with tropical operations as an efficient
representation of tropical polynomials. This allows us to derive Table 1 and Algorithm 3.1. Therefore,
this section lays the conceptual framework and notations for all proofs in these supplements.
A lookup table for our choices of notation can be found in Section A.

Indeed, it turns out that we can treat tropical polynomials like matrix-vector pairs if we define tropical
matrix addition and tropical matrix multiplication in a certain way. A map from Rd → Rk will be
represented by a list of k many pairs of tropical matrices of type r × d together with k many pairs of
vectors in Rr encoding possible bias terms. Since some neural network layers such as convolutional
layers or maxpooling activation operate on multi-dimensional arrays instead of vectors, we will
more generally define the notions for multi-dimensional arrays in Rr×n1×···×nt

≥0 and refer to the first
dimension as “rows". The possibility to equivalently consider flattened versions of input and output
to layers justifies the terminology of tropical “matrices" also in this general case. We will at first
present the definitions and then show that the representation with tropical arrays is equivalent to the
polynomial representation.

7We note that our terminology diverges from the one used in Zhang et al. (2018), where only integer
exponents are allowed.

13

Published as a conference paper at ICLR 2021

Notation B.7. Let us fix some d ∈ N. We denote by Td the set of pairs ν = (A,a) with A ∈
Rr×n1×···×nt

≥0 ,a ∈ Rr for some r and with d = n1 · · · ·nt.
Definition B.8. Let ν = (A,a), µ = (B,b) ∈ Td have with r1 and r2 rows, respectively. We define
tropical matrix addition ⊕ : Td ×Td → Td by ν ⊕ µ := (A⊕B,a⊕ b), where

A⊕B :=

(
A
B

)
; a⊕ b :=

(
a
b

)
.

For any array A ∈ Rr×n1×···×nt

≥0 , denote by Ai• ∈ Rn1×···×nt

≥0 the sub-array corresponding to index
i in the first dimension. We define tropical matrix multiplication � : Td ×Td → Td by

(A�B)i+(j−1)r1• := Ai• +Bj•, (a� b)i+(j−1)r1• := ai• + bj•; 1 ≤ i ≤ r1, 1 ≤ j ≤ r2.

For any s ∈ R≥0, we define the tropical power of a matrix by

(A,a)s := (s ·A, s · a)

where · denotes the usual scalar multiplication.

The definition of tropical matrix addition says that A ⊕ B ∈ R(r1+r2)×n1×···×nt

≥0 is obtained by
stacking A and B along the first dimension. The first dimension of A⊕B is r1 + r2. The definition
of tropical matrix multiplication says that A�B ∈ R(r1r2)×n1×···×nt

≥0 is the array for which the new
rows are given by the sums of any rows of A with any row of B. The first dimension of A�B is
r1 · r2.
Definition B.9. A semiring (resp. semifield) has the same algebraic structure as a ring (resp. field)
but without assuming the existence of additive inverses.
Lemma B.10. The sets Td together with tropical matrix addition⊕ and tropical matrix multiplication
� forms a semiring.

B.3 TROPICAL EVALUATION

We will now describe how to evaluate matrix-vector pairs in Td.
Definition B.11. Let ν = (A,a) ∈ Td. We define the tropical evaluation νeval : Rn1×···×nt

≥0 → R of

ν at a point x ∈ Rn1×···×nt by x 7→ max{Aflatxflat +a}, where Aflat ∈ Rr×(n1···nt)
≥0 ,xflat ∈ Rn1···nt

are reshaped versions of the array and the data point and where the maximum is going over the
r-many rows of the column vector Aflatxflat + a. For a tropical quotient ν = ν+/ν−, we define(
ν+

ν−

)
eval

: Rd → R by x 7→ ν+eval(x)− ν
−
eval(x).

In the following, we will simply write ν(x) for νeval(x).

B.4 THE SEMIRING OF TROPICAL MATRICES

We will now define an equivalence relation that helps to represent tropical polynomials as matrices:
Definition B.12. We define an equivalence relation ∼ on Td by ν ∼ µ if and only if νeval = µeval.
We let Td := Td/ ∼ be the set of tropical matrices. We will call an equivalence class of matrix-vector
pairs a tropical matrix.

The equivalence relation identifies matrices that are equal up to reordering of rows and removal of
rows that occur more than once, but less obvious relations exist. For example, we have that((

2 2
4 0

)
,

(
2
0

))
∼

((
2 2
4 0
3 1

)
,

(
2
0
1

))
since the last rows on the right hand side will never be maximal during evaluation (3x + y + 1 >
2x+ 2y + 2 and 3x+ y + 1 > 4x if and only if x− y − 1 > 0 and 0 > x− y − 1).
Lemma B.13. The sets Td inherits well-defined operations ⊕ and � from Td respectively and forms
a semiring under these operations.

14

Published as a conference paper at ICLR 2021

Proof. It is straightforward to show that the map Td → Td, ν 7→ [ν] sending each pair to its
equivalence class is a semiring-homomorphism.

We will, by a slight abuse of notation, also call the operations on Td tropical matrix addition and
tropical matrix multiplication. We also note that if s is a positive integer, then tropical power on Td
agrees with the definition from tropical matrix multiplication, i.e. ν2 = ν � ν (and similarly for
higher powers).

We denote the semiring of tropical polynomials in d variables as in Definition B.3 by T[x1, . . . , xd]
and the semifield of tropical rational functions by T(x1, . . . , xd). By definition, two tropical poly-
nomials are equal if and only if they are equal as functions. The following theorem motivates the
definition of Td.

Theorem B.14. There is an isomorphism f : Td
∼−→ T[x1, . . . , xd] of semirings.

Proof. Let (A = [Aij],a = [ai]) ∈ Td. Let us define f by [(A,a)] 7→
⊕

i aix
Ai1
1 · · ·xAid

d . The
check that this map is a well-defined isomorphism from T+

d to T[x1, . . . , xd] is routine and therefore
left to the reader.

The inverse map is given as follows: Let f(x) = a1x
α1 ⊕ . . .⊕ arxαr denote a tropical polynomial

as in (4) where αi = (Ai1, . . . , Aid) ∈ Rd≥0 and ai ∈ R. Then we represent f as a pair (A,a) ∈
Td.

The theorem above allows us to treat tropical polynomials as matrix-vector pairs equipped with
simple operations, which gives us an efficient representation on the computer.

Corollary B.15. There is an isomorphism T(x1, . . . , xd)→ Frac(Td) between the tropical rational
functions and the semifield of fractions of Td.

The following lemma is easily verified from the definitions.

Lemma B.16. Let p be a tropical polynomial and let ν ∈ Td be its corresponding tropical matrix.
Then peval = νeval. An equivalent statement holds for rational functions and fractions of tropical
matrices.

Notation B.17. We will denote fractions of tropical matrices in Frac(Td) by ν+ � ν− or simply
ν+

ν− for ν+, ν− ∈ Td. Given a list of fractions of tropical matrices
(
ν+
1

ν−1
, . . . ,

ν+
m

ν−m

)
, we will write(

ν+
i

ν−i

)
i
(x) to denote

(
ν+
1

ν−1
(x), . . . ,

ν+
m

ν−m
(x)
)

, which defines a tropical rational map (Def B.5) with the

help of Lemma B.16. More generally, if f is a map into Rn1×···×nt , then we similarly write
ν+
j

ν−j
with

multi-index j = (j1, . . . , jt).

p ν

peval = νeval

eval eval
∼

Figure 6: The relation between poly-
nomials, matrices and their evaluations.
The isomorphism between polynomials
and matrices respects the evaluations.

Function f Polynomial p Matrix ν = (A,a)
Td → T d variables A has d columns
Td → T p� q ν+ � ν−

Td → Tm (p1q1 , . . . ,
pm
qm

) (
ν+
1

ν−1
, . . . ,

ν+
m

ν−m
)

max{f1, f2} p1 ⊕ p2 ν1 ⊕ ν2
f1 + f2 p1 � p2 ν1 � ν2
s · f ps νs

Add. Identity −∞ (−∞ . . . −∞)
Mult. Identity 0 (0 . . . 0)

Figure 7: The correspondences between polyno-
mials and matrices and the functions on the tropical
semiring T = {−∞} ∪ R they represent.

15

Published as a conference paper at ICLR 2021

C DERIVATION OF THE ALGORITHM

C.1 INTRODUCTION

Let N = (Ni)1≤i≤s denote a neural network for classification into s classes. Then maxiNi(x) is a
tropical rational function by the results of (Zhang et al., 2018). Thus it can be written as

Ni(x) = max{a+i1(x), . . . , a
+
in(x)} −max{a−i1(x), . . . , a

−
im(x)},

with affine functions a+ij , a
−
ij or, using Section B, as a fraction of positive tropical matrices (ν

+
i

ν−i
)1≤i≤s.

This section contains the derivation of the algorithm for (i) finding this representation and (ii)
extracting the linear terms (or rows of the tropical matrices) that are maximized (or used in the
evaluation) on N training points in a data set X .

The general strategy for the derivation of the algorithm is as follows: Using Section B, we encode
each activation in a network as a tropical rational map, i.e., in terms of fractions of tropical matrices
in Td. Then we take the last layer and represent the maximal entry of the network output as the
evaluation function of a fraction of tropical matrices. We additionally keep track of the index of the
maximal entry. Then, we iteratively merge earlier layers to a common representation as a tropical
rational function. This leads to the whole network being represented by a fraction of tropical matrices.
This theoretically possible representation, however, is not practically feasible due to the gigantic
number of linear regions of a network. Therefore, we show that it is possible to extract only those
rows used in the tropical evaluation on specific points in a given data set. In other words, following
Definition B.11 of tropical evaluation, we extract those rows of the positive tropical matrices that are
maximal on the points in the data set. The key insight allowing this extraction is that it can happen
layer-wise during the merging operation. This section is organized as follows:

• Section C.2 proves the preliminary Lemma 3.2 presented in the main part of the paper.
• Section C.3 describes how to describe (Leaky) ReLU and Maxpooling activation as a tropical

rational map.
• Section C.4 shows how to merge a layer with a tropical rational function that represents all

later layers. The derived computations are such that a successive use of merging operations
is possible.

• Section C.5 shows that a selection of rows is possible while merging layers. The necessary
calculations to find suitable rows are also derived.

• Section C.6 treats the last layer.
• Finally, Section C.7 puts things together, proving Theorem 3.3 that Algorithm 3.1 performs

the desired extraction of linear terms from a representation of the network function as a
topical rational function.

C.2 PROOF OF LEMMA 3.2

As a first application of the framework of tropical matrices with tropical operations, we prove
Lemma 3.2.

Lemma 3.2 Let N : Rd → Rs be the function of a ReLU neural network for classification with s
output neurons. Then there are affine functions a+ij , a

−
j such that

N (x) =

max{a+11(x), . . . , a
+
1n1

(x)}
...

max{a+1s(x), . . . , a
+
1ns

(x)}

−max{a−1 (x), . . . , a−m(x)},

where the maxima of the a−i (x) on the right is subtracted from each entry of the vector on the left.

Proof. From (Zhang et al., 2018) we have that each component Ni of N has a representation
Ni(x) = max{a+i1(x), . . . , a

+
in(x)}−max{a−i1(x), . . . , a

−
im(x)}, with linear functions a+ij , a

−
ij with

positive coefficients. (Without loss of generality all maxima have the same number of linear terms,

16

Published as a conference paper at ICLR 2021

which can always be achieved by repeating linear terms.) We use Corollary B.15 to represent Ni as a

tropical fraction ν+
i

ν−i
of tropical matrices ν+i , ν

−
i ∈ Td.

Expanding each fraction ν+
i

ν−i
by
(⊙

j 6=i ν
−
j

)
does not change the evaluation function. Hence,

by setting µ+
i := ν+i �

(⊙
j 6=i ν

−
j

)
and µ− :=

⊙
i ν
−
i , we obtain a representation

N =
(
µ+
1

µ− ,
µ+
2

µ− , . . . ,
µ+
n

µ−

)
. But this is equivalent to Ni(x) = max{a′+i1 (x), . . . , a

′+
in (x)} −

{a′−1 (x), . . . , a′−n (x)} with affine functions a′+ij , a
′−
j defined by the entries in the tropical matri-

ces µ+
i , µ

−.

The label that a network assigns a data point is the argmax of the entries of N (x). Subtracting the
expression on the right in (3) from each entry, leaves the argmax unchanged, so we can discard this
expression for classification and only use the vector on the left. In terms of our matrices, the label is
then given by

argmax1≤i≤s (A
+
i ,a

+
i)(x).

C.3 CONVERTING ACTIVATIONS INTO THEIR TROPICAL FORM

Let σ : Rn1×···×nt → Rn′1×···×n′t be an activation of a neural network. We remind the reader that we
denote by j = (j1, . . . , jt) a multi-index for multi-dimensional arrays. In the following lemmas, we
will show how to convert the activations from Table 1 into their tropical forms:
Lemma C.1 (Leaky ReLU activation). Let σ : Rn1×···×nt → Rn1×···×nt be a Leaky ReLU activation
with parameter 0 ≤ α < 1. For all j = (j1, . . . , jt) with 1 ≤ jk ≤ nk, let A+

j ∈ R2×n1×···×nt

contain zeros everywhere except for (Aj)
+
1,j = 1 and (Aj)

+
2,j = α. Let A−j ∈ R1×n1×···×nt ,a+j ∈

R2,a−j ∈ R be zero arrays. If ν+j = (A+
j ,a

+
j) and ν−j = (A−j ,a

−
j), then ν+

j /ν−j ,∈ Frac(Td), d =
n1 · · ·nt and

σ(x) =

(
ν+j

ν−j

)
j

(x). (5)

Lemma C.2 (Maxpooling activation). Let σ : R2n1×2n2×n3 → Rn1×n2×n3 be a Maxpooling activa-
tion with a 2× 2 window. For all j = (j1, . . . , jt) with 1 ≤ jk ≤ nk, let A+

j ∈ R4×2n1×2n2×n3 con-
tain zeros everywhere except for (Aj)

+
1,2j1,2j2,j3

= 1, (Aj)
+
2,2j1,2j2+1,j3

= 1, (Aj)
+
3,2j1+1,2j2,j3

=

1, (Aj)
+
4,2j1+1,2j2+1,j3

= 1. Let A−j ∈ R1×n1×n2×n3 ,a+j ∈ R4,a−j ∈ R be zero arrays. If
ν+j = (A+

j ,a
+
j) and ν−j = (A−j ,a

−
j), then ν+

j /ν−j ,∈ Frac(Td), d = n1 · · ·nt and

σ(x) =

(
ν+j

ν−j

)
j

(x). (6)

Proofs for Lemmas C.1 and C.2. These are just simple checks of the definition of tropical evaluation
from Definition B.11.

C.4 MERGING OF TROPICAL LAYERS

Concatenated layers correspond to the evaluation of fractions of tropical matrices. In this section,
we find the corresponding tropical matrices. This will eventually result in Table 1. We begin by
considering the concatenation of a tropical rational map with a tropical polynomial.
Lemma C.3 (Concatenating a tropical rational map with a tropical polynomial). Let (B,b) ∈ Td be

the tropical matrix of a tropical polynomial (according to Theorem B.14) and let ν =

(
(A+

j ,a
+
j)

(A−j ,a
−
j)

)
j

be

the matrix representation of a tropical rational map. Then, using Notation B.17, there is an identity
of maps

(B,b) ◦ ν =
⊕
k

(⊙
j(A

+
j)

Bkj ,bk �
⊙

j(a
+
j)

Bkj)⊙
j(A

−
j)

Bkj ,bk �
⊙

j(a
−
j)

Bkj)

)
.

17

Published as a conference paper at ICLR 2021

Proof. Let x be some point in the domain of ν and let y = ν(x). By definition of the evaluation,

(B,b)(y) =
⊕
k

bk �
⊙
j

y
Bkj

j in T.

Since yj =
(

(A+
j ,a

+
j)

(A−j ,a
−
j)

)
(x), the result now follows from the fact that for positive Bkj,((

(A+
j ,a

+
j)

(A−j ,a
−
j)

)
(x)

)Bkj

=

(
(A+

j ,a
+
j)

(A−j ,a
−
j)

)Bkj

(x).

Note the necessary condition that Bkj ≥ 0 for all j. The following theorems allow us to merge
consecutive layers of a neural network to a single representation. Since we aim to sequentially apply
these theorems in Algorithm 3.1, we require that the resulting tropical rational function is again
represented by an array of fractions of tropical matrices in Td satisfying the necessary condition on
positivity. Starting from the last layer, this then allows to iteratively merge all layers of the network to
obtain a tropical rational function representing the network function. We use the following notation
in Theorem C.7:
Notation C.4. Given a tropical rational function (A+, a+)/(A−, a−), where A+,A− ∈ Rr×n1×···×nt ,
we will denote by Amax ∈ Rn1×···×nt the array with

(Amax)j = max{A+
1j, . . . ,A

+
rj,A

−
1j, . . . ,A

−
rj}.

For arrays v,w ∈ Rn1×···×nt , we will write v ≤ w if there are entry-wise inequalities vj ≤ wj for
all j = (j1, . . . , jt).
Theorem C.5. Let σ : Rn1×···×nt → Rn1×···×nt be a Leaky ReLU activation with parameter
0 ≤ α < 1. Let further ν : Rn1×···×nt → R be a tropical rational function represented by a fraction
of tropical matrices (B+,b+)/(B−,b−) with (B+,b+), (B−,b−) ∈ Td, d = n1 · · ·nt,B+,B− ∈
Rr×n1×···×nt , and Bmax ≤ v. Let C+ ∈ R(2n1···ntr)×n1×···nt be defined in the following way: For
each row (B+)k• and each vector u ∈ {1, α}n1×···×nt define a row in C+

k′• in C+ by

C+
k′,i1,...,it

:= ui1,...,itB
+
k,i1,...,it

.

Define C− ∈ R(2n1···ntr)×n1×···nt in an analogous way, using B− instead of B+. Hence, the rows
of the C-arrays are all rows obtained by multiplying elements in rows of the B-arrays by either 1
or α. Further, for all k′, let (c+)k′ = (b+)k, where k is the row index of B+ used in definition of
(C+)k′• (and analogously for c−). Let w = v. Then the composition ν ◦ σ is represented by the
tropical rational function (C+,c+)

(C−,c−) with (C+, c+), (C−, c−) ∈ Td and Cmax ≤ w.

Theorem C.6. Let σ : R2n1×2n2×n3 → Rn1×n2×n3 be a Maxpooling activation with a 2 × 2
window. Let further ν : Rn1×n2×n3 → R be a tropical rational function represented by a fraction
of tropical matrices (B+,b+)/(B−,b−) with (B+,b+), (B−,b−) ∈ Td2 , d2 = n1n2n3,B

+,B− ∈
Rr×n1×n2×n3 , and Bmax ≤ v. Let C+ ∈ R(4n1n2n3r)×2n1×2n2×n3 be defined in the following way:
For each row (B+)k• and each vector u ∈ {0, 1}2×n1×n2×n3 define a row C+

k′• in C+ as zero
everywhere except for

C+
k′,(2i1+u0,i1,i2,i3

),(2i2+u1,i1,i2,i3
),i3

:= B+
k,i1,i2,i3

.

Define C− ∈ R(4n1n2n3r)×2n1×2n2×n3 in an analogous way, using B− instead of B+. Hence, the
rows of the C-arrays are all rows obtained by taking a row of the corresponding B-array, repeating
its elements by the maxpooling window size and setting 3 of the elements that are covered by the
same window to zero. Further, for all k′, let (c+)k′ = (b+)k, where k is the row index of B+

used in the definition of (C+)k′• (and analogously for c−). Let w ∈ R2n1×2n2×n3 be given by
w2i1+u0,2i2+u1,i3 = vi1,i1,i3 for all u ∈ {0, 1}2. Then the composition ν ◦ σ is represented by

the tropical rational function (C+,c+)
(C−,c−) with (C+, c+), (C−, c−) ∈ Td1 , d1 = (2n1)(2n2)n3 and

Cmax ≤ w.

18

Published as a conference paper at ICLR 2021

Proof. Since the proofs for both of Theorem C.5 and C.6 proceed in the same fashion, we will only
present the first one here and leave the second one to the reader. By symmetry, it suffices to show the
result for C+ and c+. Lemma C.1 gives us a representation of a Leaky ReLU activation as a tropical
rational map (ν+

j /ν−j)j with ν+j = (A+
j , 0), ν

−
j = (0, 0). Applying Lemma C.3, we thus see that

(B+,b+) ◦ ν =
⊕
k

(⊙
j

(A+
j)

B+
kj ,
⊕
j

b+
k

)
.

Applying the definition of tropical matrix addition and multiplication shows that this expression is
identical to that in Theorem C.5, which proves the result.

If a layer is linear, we denote its weight matrix by W ∈ Rd2×d1 and its bias vector by c. For any
matrix M, we denote by Mpos and Mneg its positive and negative part, respectively, i.e. mpos

jk =

max{mjk, 0} and mneg
jk = max{−mjk, 0}.

Theorem C.7. Let ` : Rd1 → Rd2 be a linear layer `(x) = Wx+ c with bias vector c and weight
matrix W. Let further ν : Rd2 → R be a tropical rational function represented by a fraction of
tropical matrices (B+,b+)/(B−,b−) with (B+,b+), (B−,b−) ∈ Td2 and let Bmax ≤ v. Let

K := vWneg (7)

C+ := K�B+W; c+ := B+c+ b+ (8)

C− := K�B−W; c− := B−c+ b− (9)
w := K+ vWpos (10)

Then the composition ν ◦ ` is represented by the tropical rational function (C+,c+)
(C−,c−) with

(C+, c+), (C−, c−) ∈ Td1 and Cmax ≤ w.
Remark C.8. Before giving the proof, we remark that Theorem C.7 is suitably stated for an inductive
use to merge successive layers since the conclusions for C+,C− satisfy the assumptions on B+,B−.
For the same reasons, we considered the vectors v and w and Bmax in Theorem C.5 and Theorem C.6.

Since convolutional layers are linear functions, the previous theorem applies to their corresponding
weight matrices and tropical arrays B flattened to tropical matrices along all but the first dimension.

Proof. By definition of the evaluation,

(C+, c+)

(C−, c−)
(x) = max{C+x+ c+} −max{C−x+ c−}

= max{(Kx�B+Wx) +B+c+ b+} −max{(Kx�B−Wx) +B−c+ b−}
= Kx+max{B+Wx+B+c+ b+} −Kx−max{B−Wx+B−c+ b−}
= max{B+(Wx+ c) + b+} −max{B−(Wx+ c) + b−}

=
(B+,b+)

(B−,b−)
(`(x)),

which shows that the composition ν ◦ ` is represented by (C+,c+)
(C−,c−) .

We now need to show that K ∈ R1×d1 is a sufficiently large row vector such that all entries in C+

and C− are positive and hence give indeed elements in Td. For this, let Kmin denote the vector with
minimal entries for which the matrices in (8) and (9) have only non-negative entries. We need to
show that Kmin ≤ K:

Since the minimal element of the ith columns of C+ and C− are given by mink
∑
j B

+
kjwji and

mink
∑
j B
−
kjwji, respectively, it follows that

Kmin,i = max{−min
k

∑
j

B+
kjwji,−min

l

∑
j

B−ljwji}.

With

wneg
ji =

{
−wji, if wji < 0
0, otherwise

19

Published as a conference paper at ICLR 2021

we calculate

−min
k

∑
j

B+
kjwji = max

k

∑
j

B+
kj(−wji)

≤ max
k

∑
j

B+
kjw

neg
ji

≤
∑
j

(max
k

B+
kj)w

neg
ji

≤
∑
j

vjw
neg
ji

= v ·Wneg
•i .

Analogously, we get −minl
∑
j B
−
ljwji ≤ v ·Wneg

•i and hence Kmin,i ≤ v ·Wneg
•i for all i.

It only remains to show that Cmax ≤ w. The maximal element of the ith columns of C+ and C− for
i ≥ 1 is given by

max

Ki +max
k

∑
j

B+
kjwji, Ki +max

l

∑
j

B−ljwji

 .

With

wpos
ji =

{
wji, wji > 0
0, otherwise ,

we calculate

Ki +max
k

(∑
j

B+
kjwji

)
≤ Ki +max

k

(∑
j

B+
kjw

pos
ji

)
≤ Ki +

∑
j

(max
k

B+
kj)w

pos
ji

≤ Ki +
∑
j

vjw
pos
ji

= Ki + vjW
pos
•i .

Analogously

Ki +max
l

(∑
j

B−ljwji

)
≤ Ki +BmaxW

pos
•i

and hence Cmax ≤ K+BmaxW
pos = w, which completes the proof.

C.5 SELECTION OF TERMS

To prevent the tropical matrices that describe concatenations of several layers to explode in size, we
want to select linear terms during the merge operation. The evaluation of a tropical matrix at a point x
(Definition B.11) searches through its rows for the one that is maximal on x. We give the maximizing
rows names:
Notation C.9. For any tropical matrix ν = (A,a) and data point x, let us denote by [A]x and [a]x
the rows of A and a, respectively, that correspond to the maximal row in Aflatxflat + a.

Suppose that we want to use Theorems C.5, C.6 and C.7 to merge a tropical rational function
(B+,b+)/(B−,b−) with a linear layer ` or an activation σ to obtain (C+, c+)/(C−, c−). We will show
that the rows of the resulting arrays maximal on x are completely determined by the layer or the
activation and by the rows of the B-arrays maximal on `(x) or σ(x).
Theorem C.10. Let σ : Rn1×···×nt → Rn1×···×nt be a Leaky ReLU activation with parameter
0 ≤ α < 1. Let S = {x1, . . . ,xN} denote a data set of N points before layer ` and let T = `(S)
be the set of points having passed through `. Let further ν : Rn1×···×nt → R be a tropical rational

20

Published as a conference paper at ICLR 2021

function represented by a fraction of tropical matrices (B+,b+)/(B−,b−) with (B+,b+), (B−,b−) ∈
Td, with B+,B− ∈ Rr×n1×···×nt , and d = n1n2 . . . nt. Let us suppose that the nth rows of
B+,b+,B−,b− are maximal on yn = `(xn) ∈ T .

Let (C+, c+)/(C−, c−) be given by Theorem C.5 and as before let j = (j1, . . . , jt) denote a multi-index
for 1 ≤ ji ≤ ni. Then (

[C+
]
xn

)j =

{
([B+]xn

)j if (`(xn))j ≥ 0;

α ([B+]xn
)j otherwise;

(11)

(
[C−

]
xn

)j =

{
([B−]xn

)j if (`(xn))j ≥ 0;

α ([B−]xn
)j otherwise.

(12)

Further, [c+]xn
= (b+)n and [c−]xn

= (b−)n. In particular, if we re-order the rows of the C-arrays
and c-vectors such that (C+)n• := [C+]xn

, (C−)n• := [C−]xn
and (c+)n• := [c+]xn

, (c−)n• :=

[c−]xn
, then their nth rows are maximal on xn ∈ S.

Theorem C.11. Let σ : R2n1×2n2×n3 → Rn1×n2×n3 be a Maxpooling activation. Let S =
{x1, . . . ,xN} denote a data set of N points before layer ` and let T = `(S) be the set of points
having passed through `. Let further ν : Rn1×n2×n3 → R be a tropical rational function represented
by a fraction of positive tropical matrices (B+,b+)/(B−,b−) with (B+,b+), (B−,b−) ∈ Td, d =
n1n2n3. Let us suppose that the nth rows of B+,b+,B−,b− are maximal on yn = `(xn) ∈ T .

Let (C+, c+)/(C−, c−) be given by Theorem C.6. Then for all u ∈ {0, 1}2,(
[C+

]
xn

)(2i1+u0),(2i2+u1),i3 =

{
([B+]xn

)i1,i2,i3 if (xn)(2i1+u0),(2i2+u1),i3 = (`(xn))i1,i2,i3 ;

0 otherwise;
(13)(

[C−
]
xn

)(2i1+u0),(2i2+u1),i3 =

{
([B−]xn

)i1,i2,i3 if (xn)(2i1+u0),(2i2+u1),i3 = (`(xn))i1,i2,i3 ;

0 otherwise.
(14)

Further, [c+]xn
= (b+)n and [c−]xn

= (b−)n. In particular, if we re-order the rows of the C-arrays
and c-vectors such that (C+)n• := [C+]xn

, (C−)n• := [C−]xn
and (c+)n• := [c+]xn

, (c−)n• :=

[c−]xn
, then their nth rows are maximal on xn ∈ S.

Proof. Again, since the proofs for both of Theorem C.10 and C.11 apply almost the same argument,
we will only present the one for Leaky ReLU activations. Once more, it is enough to prove the
result for C+ and c+ due to symmetry. Let us fix some data point xn ∈ S and let us denote the
corresponding row defined in equation (11) by (C+)∗. We will show that this row is indeed maximal
on xn:

(C+)∗xn + (b+)n =
∑
j

(C+)∗j (xn)j + (b+)n

≥
∑
j

uj(B
+)nj(xn)j + (b+)n

≥
∑
j

uj(B
+)n′j(xn)j + (b+)n′ ,

for any u ∈ {1, α}n1×···×nt . Here, the first inequality holds because the first line gets maximized
when u agrees with the activation patterns of xn. The second inquality holds by assumption on B+.
Since the evaluation of xn on any row of C+ takes the same form as the last expression, it follows
that xn is maximal on (C+)∗ and (b+)n. This proves the result.

The following theorem extracts the linear terms from the representation of the network function
constructed by Theorem C.7.
Theorem C.12. Let ` : Rd1 → Rd2 be a linear layer, `(x) = Wx+ c with weight matrix W and
bias vector c. Let S = {x1, . . . ,xN} denote a data set of N points before layer ` and let T = `(S)

21

Published as a conference paper at ICLR 2021

be the set of points having passed through `. Let further ν : Rd2 → R be a tropical rational function
represented by a fraction of tropical matrices B+

B− with B+,B− ∈ Td2 . Let us suppose that the nth

rows of B+,B− are maximal on yn = `(xn) ∈ T .

Let C+ and C− be given by the expressions (8) and (9) from Theorem C.7. Then[
C+
]
xn

= K+
(
B+
)
n•W,

[
c+
]
xn

=
(
B+
)
n• c+ (b+)n, (15)[

C−
]
xn

= K+
(
B−
)
n•W,

[
c−
]
xn

=
(
B−
)
n• c+ (b−)n. (16)

In particular, if we re-order the rows of the C-matrices such that (C+)n• := [C+]xn
and (C−)n• :=

[C−]xn
, then their nth rows are maximal on xn ∈ S.

Proof. It suffices to show that the rows of (C+, c+) and (C−, c−) defined as in 15 and 16 are indeed
maximal on xn:

(K+ (B+)n•W)xn + (B+)n•c+ (b+)n = Kxn + (B+)n•(Wxn + c) + (b+)n

= Kxn + (B+)n•yn + (b+)n

≥ Kxn + (B+)n′•yn + (b+)n′

= (K+ (B+)n′•W)xn + (B+)n′•c+ (b+)n′

for any number n′, since B+ and b+ are maximal on xn. Arguing analogously for C− and c−

proves the result.

C.6 CONVERTING THE LAST LAYER INTO A TROPICAL RATIONAL FUNCTION

Lemma C.13. Let ` : RdL−1 → Rs, `(x) = Wx+b be the last linear layer of a ReLU classification
neural network N = (N1, . . . ,Ns) : Rd → Rs into s classes. (If the layer contains a softmax
activation function, we can leave it out because it does not change the ordering of the network
outputs.) Let ν = ((A+

i , a
+
i)/(A−, a−))1≤i≤s be the tropical rational function obtained by lines 1-7 of

Algorithm 3.1. Then ν(x) = `(x) for all x ∈ RdL−1 .

Proof. We have

νi(x) = max{A+
i x+ a+i } −max{A−x+ a+}

= (C+
i x+ c+i)− (C−x+ c−)

= ((Wi +C−)+x+ bi + c−)− (C−x+ c−)

= Wix+ bi

= `i(x),

as required.

C.7 PROOF OF THEOREM 3.3

Let N = (N1, . . . ,Ns) : Rd → Rs be the function of a ReLU neural network for classification into
s classes. Let N (X) be the network obtained from Algorithm 3.1, applied to N using a data set
X = {(xik , i)}1≤i≤s of Di data points xik given label i by N . (There are D points in total).

We want to show (1) for all labels i, N (X)
i (x) = max{a+i1(x), . . . , a

+
iDi

(x)} −
max{a−1 (x), . . . , a

−
D(x)}, where the a+ij and a−j are extracted from a representation of Ni as in

Equation 3; and (2) every data point xk has a neighbourhood Uk on which the maximum of the
extracted function agrees with the maximal network output:

max
1≤i≤s

N (X)
i (x) = max

1≤i≤s
Ni(x) for all x ∈ Uk.

22

Published as a conference paper at ICLR 2021

Proof. Using the correspondence of tropical rational functions and Frac(Td) from Section B it

suffices to find a representation of Ni =
(B+

i ,b
+
i)

(B−,b−) with tropical matrices (B+
i ,b

+
i), (B

−,b−) ∈ Td

and submatrices (A+
i ,a

+
i), (A

−,a−) of (B+
i ,b

+
i), (B

−,b−) respectively by selection of rows
based on the data set X . The tropical matrices (A+

i ,a
+
i), (A

−,a−) ∈ Td then define ν with the
properties as desired.

Lemma C.13 treats the last layer, which is implemented by lines 1-7 of Algorithm 3.1. We can use
Section C.4 to successively merge layers until the whole network function is encoded in tropical
matrices (B+

i ,b
+
i), (B

−,b−) as desired. Theorem C.12 shows how to calculate the selected linear
terms for dense layers to yield tropical matrices (A+

i ,a
+
i), (A

−,a−) as desired. The results for
merging (leaky) ReLU and maxpooling layers follow from Theorems C.10 and C.11. Since batch
normalization and convolutions are linear functions, we can treat them similarly to dense layers.
In particular, if F is the filter of a convolutional layer and WF the matrix of the corresponding
linear function, we have AWF = (WT

FA
T)T = ConvTrans(AT , F)T = ConvTrans(A, F), where

ConvTrans denotes transposed convolution. This shows that Table 1 performs the equations required
by the theorems in Section C.4 and Section C.5.

C.8 USING DIFFERENT VALUES OF K

In Theorem C.7 we derive a value of K which is large enough to guarantee that the resulting C-
matrices are all positive. Algorithm 3.1 uses a slightly different K. Since we extract rows while
merging layers, the resulting tropical matrices have much less rows than the full network would
have. As a consequence, calculating K only from the selected rows may lead to smaller values only
assuring that the extracted rows are all positive. We therefore experimented with larger values of K,
which were just large enough to guarantee that all elements of the A-matrices were positive and did
not notice any significant difference in the performance of the resulting function N (X). However, for
smaller value of K, we do not have a theoretical guarantee that the linear terms in N (X) stem indeed
from a representation of N , so we always used the large value in the reported experiments.

C.9 AN OBSERVATION ON CROSS TERMS

As a result of our algorithm, we have ν(xi) = pi(xi) − qi(xi) for all training samples, i.e., xi
maximizes the ith function in both terms. Other samples x can in theory maximize functions with
differing indices, ν(x) = pi(x)− qj(x) for i 6= j, and the extracted function ν can have up to N2

different linear regions, although a much lower number can be expected. Further, the combination of
maximizing functions pi, qj can be such that the same combination is never possible for the original
network, which could have a serious impact on our results. However, we observe that for all but the
small architectures, pi is maximal on a test data point if and only if qi is maximal on it. Thus we
observe only linear functions that are also seen on training data points and the extraction process does
not create any new linear function pi − qj on the test data that was previously unseen.

23

Published as a conference paper at ICLR 2021

D SETUP OF EXPERIMENTS

All layers use biases and He uniform variance scaling initialisation (He et al., 2015). The “big deep
simple" architecture FCN6 on MNIST is taken from (Claudiu Ciresan et al., 2010). The architecture
Conv is a slightly modified VGG-network (Simonyan & Zisserman, 2015). We employ convolutional
filters of sizes between 1 × 1 and 7 × 7. All convolutional layers use zero padding to leave the
image size unchanged. All maxpooling layers use a 2 × 2 window. All stride layers have a stride
of 2× 2. The convolutional CIFAR-networks are trained using stochastic gradient descent, all the
other networks are trained using Adam (Kingma & Ba, 2015). We train AllCNN for a total of 350
epochs with an initial learning rate of 0.1 that decays by a factor of 0.1 after 200, 250 and 300 epochs.
All the other networks are trained with a learning rate of 0.001 for a maximum of 50 epochs, or
if their accuracy on the test set has stopped improving for 3 epochs. An overview of all network
structures is given in Table 3. For MNIST, the architectures comprise one 4-layer and one 6-layer
fully-connected network, as well as one 4-layer convolutional network. For CIFAR, we use 2-layer,
4-layer and 8-layer fully-connected networks and 8-layer and 9-layer CNNs with/without batchnorm,
maxpooling after convolutions, and dropout (Hinton et al., 2012).

24

Published as a conference paper at ICLR 2021

M
N

IS
T

C
IF

A
R

10
FC

N
4

FC
N

6
C

N
N

-S
td

FC
N

2
FC

N
4

FC
N

8
W

id
e

A
llC

N
N

C
on

v
D

ee
p

N
ar

ro
w

N
ar

ro
w

St
ri

de
N

oM
ax

D
78

4
D

25
00

C
32

+M
D

30
72

D
30

72
D

40
96

D
40

96
C

96
+O

2
C

32
C

32
-7

C
4

C
4

C
8

D
20

0
D

20
00

C
64

S1
0

D
40

0
D

30
72

D
40

96
C

96
C

32
+M

C
64

-5
+M

C
4+

M
C

4+
St

C
16

D
80

D
15

00
C

64
+M

D
12

0
D

20
48

D
40

96
C

64
+O

5
C

64
C

12
8

C
16

C
16

C
16

S1
0

D
10

00
D

64
S1

0
D

10
24

D
40

96
C

19
2

C
64

+M
C

25
6+

M
C

16
+M

C
16

+S
t

C
32

D
50

0
S1

0
D

51
2

D
40

96
C

19
2

C
12

8
C

51
2

C
64

C
64

C
32

S1
0

D
25

6
D

40
96

C
19

2+
O

5
C

12
8+

M
C

10
24

C
64

+M
C

64
+S

t
C

64
D

12
8

D
12

8
C

19
2-

1
D

12
8

D
10

24
D

12
8

D
12

8
D

12
8

S1
0

S1
0

C
10

-1
S1

0
D

12
8

S1
0

S1
0

S1
0

G
A

+S
10

S1
0

Ta
bl

e
3:

N
et

w
or

k
st

ru
ct

ur
es

us
ed

fo
r

tr
ai

ni
ng

.
T

he
re

is
a

R
eL

U
ac

tiv
at

io
n

af
te

r
ev

er
y

de
ns

e
or

co
nv

ol
ut

io
na

ll
ay

er
.

C
-

C
on

vo
lu

tio
na

l;
D

-
D

en
se

;G
A

-
G

lo
ba

l
A

ve
ra

ge
Po

ol
in

g;
M

-
M

ax
po

ol
in

g;
O

-
D

ro
po

ut
;S

-
So

ft
m

ax
;S

t-
St

ri
de

s.
N

um
be

rs
af

te
r

la
ye

r
ty

pe
in

di
ca

te
:

N
o

of
ou

tp
ut

no
de

s
(D

,S
);

no
of

ou
tp

ut
ch

an
ne

ls
(C

);
dr

op
ou

tp
ar

am
et

er
m

ul
tip

lie
d

by
10

(O
).

St
an

da
rd

co
nv

ol
ut

io
na

lfi
lte

rs
iz

e
is

3x
3,

de
vi

at
io

ns
ar

e
in

di
ca

te
d

by
nu

m
be

ra
ft

er
th

e
si

gn
-(

i.e
.7

x7
fil

te
ri

n
C

32
-7

).
A

ll
co

nv
ol

ut
io

na
ll

ay
er

s
in

D
ee

p
ar

e
re

pe
at

ed
tw

ic
e,

w
hi

ch
is

om
itt

ed
du

e
to

la
ck

of
sp

ac
e

(i
.e

.C
51

2
in

co
lu

m
n

D
ee

p
sh

ou
ld

be
re

ad
as

C
51

2,
C

51
2)

.A
dd

iti
on

al
ne

tw
or

k:
B

aN
or

m
is

id
en

tic
al

to
C

on
v

w
ith

ba
tc

h
no

rm
al

iz
at

io
n

ad
de

d
af

te
re

ve
ry

co
nv

ol
ut

io
na

ll
ay

er
.

25

Published as a conference paper at ICLR 2021

E ADDITIONAL EXPERIMENTS

E.1 ACCURACY OF EXTRACTED FUNCTIONS - INDIVIDUAL RESULT FOR EACH
ARCHITECTURE

To investigate how well the coefficients of these linear regions generalize to unseen data, we compare
test accuracy of network and extracted function in Table 2. In Table 4 we show the results for each
individual network structure. The difference between CNNs and FCNs across both data sets and all
architectures is indeed consistent: There is a drastic drop in the test accuracy of the CNNs, as opposed
to a relatively small drop in the accuracy of the FCNs. We repeat that, as predicted by Theorem 3.3,
the maximum of the extracted function N (X) agrees with the maximum of the original network on
all training points for each of our networks. In particular, network and extracted function assign the
same label to each training point.

Name N vs ν N vs true ν vs true

M
N

IS
T FCN4 97.7± 0.1 98.1± 0.1 97.7± 0.1

FCN6 97.7± 0.3 98.1± 0.2 97.5± 0.2
CNN - Std 95.7± 0.3 99.2± 0.1 95.8± 0.2

C
IF

A
R

FCN2 74.4± 3.7 49.1± 0.8 46.0± 0.4
FCN4 52.3± 1.5 51.8± 0.7 40.4± 0.8
FCN8 47.3± 4.4 49.0± 0.4 35.5± 1.9
Wide 57.8± 4.6 46.7± 1.0 38.6± 1.7
AllCNN 32.6± 0.1 86.9± 0.1 32.4± 0.1
BaNorm 27.6± 0.1 70.2± 0.1 27.7± 0.1
Conv 29.4± 0.9 71.8± 0.7 28.6± 1.2
Deep 37.7± 0.6 71.2± 0.5 38.0± 0.8
Narrow 27.5± 3.1 63.1± 0.6 26.5± 2.9
NarrowStride 32.7± 1.6 74.4± 2.6 32.6± 2.0
NoMax 29.9± 2.8 63.2± 0.9 28.4± 3.4

Fa
sh

io
n

M
N

IS
T FCN4 88.3± 0.3 85.2± 0.6 82.9± 0.4

FCN6 88.1± 0.1 85.5± 0.9 83.5± 0.1
FCN8 88.5± 0.2 86.0± 0.8 84.0± 0.6
AllCNN 87.1± 1.0 76.2± 9.7 73.5± 0.8
CNN - Std 86.3± 0.6 89.0± 1.9 83.5± 1.4
Conv 87.5± 0.6 87.5± 0.8 87.8± 0.5

Table 4: Results on test data after extraction of linear terms. Values denote mean value and standard
deviation over 5 networks in percent. Column 1: Agreement of original network N with reduced
function ν. Columns 2&3: Multi-class accuracy for N and ν.

E.2 VISUAL EXPLORATION OF GENERALIZATION

We visually inspect samples that are correctly classified by a network N , but misclassified after
extraction by N (X), i.e., samples that the original network is able to correctly generalize to, but for
which the reduction of linear regions is hurtful. Figure 8 shows five random examples for both a
CNN and an FCN across the first five CIFAR10-labels 1:airplane, 2:automobile, 3:bird, 4:cat, 5:deer,
with the first row showing the test samples and the second row the training images corresponding to
the linear regions in N (X) falsely activated after extraction. Note that by extracting linear terms we
remove the compositional structure of the network function, and the extracted function must rely on
the information encoded in the linear coefficients of linear regions containing training data. Inspecting
samples that were correctly classified by the original network, but misclassified by the extraction,
can give us insight what generalization capabilites were removed by extraction that is not contained
in the linear coefficients. We see that for CNNs, the generalization performance of the extracted
function seems to rely on color distribution and background. This supports our interpretation of
in Section 4 predicting that removal of structure by extraction leads to increased vulnerability to
spurious correlations for CNNs. In contrast, for FCNs, the extracted functions appears to classify
images more according to the global shape present.

26

Published as a conference paper at ICLR 2021

Figure 8: First row: Examples of test images correctly classified by the original network, but
misclassified by the tropical function, Second row: Training images corresponding to the linear region
falsely activated by the test sample. Left: CNN (Conv). Right: Fully-Connected Network (FCN8).

Figure 9: Average agreement with the labels computed by the neural network (left) and average test
accuracy (right) for several CNNs with LeakyReLU activations on CIFAR10 while being transformed
into a tropical function. The convolutional networks are shown as full red (light) lines. Our results
are in line with our observations for standard ReLU activations.

E.3 LEAKY RELU

The results of our additional experiments involving Leaky ReLU activation (with slope 0.3 for negative
input) can be found in Figure 9, confirming that the same observations hold for this activation function.

E.4 EVOLUTION OF TEST ACCURACY DURING EXTRACTION

We show additional plots in Figure 10 and 11 on the comparison of fully-connected and convolutional
networks. We show here for CIFAR10 the agreement of network labels and for MNIST both
agreement with network labels as well as agreement with true test labels.

The results agree with the results presented in the main part of the paper: When extracting linear
regions from a ReLU neural network, we experience a very small drop in test accuracy for fully-
connected networks and a substantial drop for convolutional neural networks.

E.5 SIMILARITY OF ACTIVATION PATTERNS

By counting and comparing linear regions, we found that consistently all training and test data fall into
different linear regions. By comparing angle and Euclidean distance between the linear coefficients
of test region and the training region activated in the extracted function that is only composed of
linear regions from training data, we witnessed a significant difference. We finally measure their
difference also in terms of the similarity of activation patterns to further verify that linear regions of
test data are not similar to linear regions of training data, so that generalization performance of neural
networks cannot be explained by a similar activation pattern either. (Note that for a region with fixed
activation pattern, the network function is linear and defines the corresponding linear region and
its linear coefficients.) Table 5 shows the overlap of activated neurons per layer for a CNN of type
Conv. For each test data point, we record the activation pattern of the network when passing through
this test sample, and compare it to the activation pattern of the network for the training point into
which linear region the test sample falls after extraction. That is, for each ReLU and Maxpooling
(MP) layer, we determine the fraction of neurons that are both active in train and test region or both

27

Published as a conference paper at ICLR 2021

Figure 10: Average agreement with the labels computed by the neural network for all CIFAR10
networks while being transformed into a tropical function. Fully-connected networks as dotted blue
(dark) lines, convolutional networks as full red (light) lines. The curves show a significant difference
between the network types.

Figure 11: Average agreement with the labels computed by the neural network (left) and average
test accuracy (right) for all MNIST networks while being transformed into a tropical function. Fully-
connected networks as dotted blue (dark) lines, convolutional networks as full red (light) lines. The
curves show a significant difference between the network types.

inactive (hence the difference of the value to 1.0 is the fraction where one neuron is active and the
other one inactive.) We record the average, minimum and maximum over all training points, as well
as compute the average only over those test points that are assigned the same label after extraction
and the average over the test points that are assigned a different label. While the maximum shows
the possibility that a test sample induces a similar activation pattern as a training sample, there are
significant differences on average.

E.6 COMPARING NETWORK COEFFICIENTS AFTER NETWORK RETRAINING

Figure 12 shows the similarity between linear coefficients belonging to training data for two separately
trained networks at different stages in training. We train two networks of identical architecture and
apply TropEx to extract the linear regions of all training data. For each training point, we extract the
vector of linear coefficients of its linear region and measure the similarity between the coefficient
vectors of the two networks in terms of (i) angle and (ii) Euclidean distance. The figure shows the
distribution of points in the angle-distance space over all training data. The CNN architecture is
chosen as Conv and the FCN architecture is chosesn as FCN8. While the coefficient vectors for the
CNN before and after re-training are close to orthogonal and relatively far in distance, the angles
for the FCN are clearly shifted to smaller angles and smaller distances, illustrating that linear region
coefficients of two separately trained FCNs are related.

28

Published as a conference paper at ICLR 2021

Figure 12: Angle and distance between coefficients of the linear regions of training data before and
after retraining the neural network. All angles for CNNs (blue) are close to orthogonal, while linear
region coefficients of FCNs (red) are clearly related.

29

Published as a conference paper at ICLR 2021

ReLU ReLU MP ReLU ReLU MP ReLU ReLU MP ReLU
min 0.57 0.56 0.74 0.52 0.65 0.74 0.55 0.77 0.78 0.46
avg 0.79 0.76 0.81 0.68 0.76 0.81 0.69 0.83 0.84 0.72
max 0.97 0.98 0.96 0.96 0.97 0.97 0.97 0.98 0.97 0.99
same 0.81 0.78 0.82 0.71 0.79 0.82 0.73 0.84 0.85 0.78
diff 0.79 0.75 0.81 0.66 0.75 0.8 0.67 0.82 0.83 0.69

Table 5: Fraction of overlap in activation patterns of test linear region with region containing training
data that test samples fall into after extraction. avg: average over all datapoints; min/max: minimal
and maximal fraction of overlap per layer; same: average overlap over all samples that are classified
with the same label as the network after extraction; diff: average overlap of all samples that are
classified by a different label as the network after extraction.

E.7 VISUALIZATION OF COEFFICIENTS

We visualize the coefficients of the linear regions for the convolutional network Conv and the fully-
connected network FCN8 for labeled training samples. Figure 13 shows the mean value of the
linear coefficients over color channels for training samples from CIFAR10 of the classes ’Airplane’,
’Cat’, ’Horse’ and ’Ship’. We notice significant differences between the convolutional and the
fully-connected network, and the fully-connected network partially allows to detect the label on close
inspection, although this visual signal seems small.

Airplane Cat Ship

CN
N

FC
N

Horse

Figure 13: Heatmap of linear coefficients of training samples for the CNN Conv and the fully-
connected network FCN8 for four different classes of CIFAR10. Mean over color channels. Blue
color represents positive and white color negative coefficients.

E.8 EXPLORING THE NEIGHBORHOOD AND ESTIMATING VOLUME AND NUMBER OF LINEAR
REGIONS IN PRACTICE

Since test samples never fall into regions of training samples (Section 4; Counting of Linear Regions)
and since function coefficients of testing regions are significantly different to training samples, in
particular for convolutional networks (Section 4; Examining Function Coefficients), we explore the
following questions:

(i) How smooth is label assignment? - Despite the well-known existence of adversarial examples,
label assignment may be relatively smooth. What is the label assignment of neighboring regions?
(ii) What is the volume of linear regions?
(iii) How many linear regions are there in practice? - The bounds for the maximal number of linear

30

Published as a conference paper at ICLR 2021

regions suggests an astronomically high number of linear regions. Furthermore, the fully-connected
network Wide has the same number of neurons in each layer as the convolutional network Narrow
and NarrowStrides, hence the maximal number of linear regions is higher for the fully-connected
network than for the convolutional network in this case. Is also the number of linear regions observed
in practice higher for the fully-connected network?

We explore these questions by conducting the following experiment to study the neighborhood of
training regions. We sampled training images xtr of the CIFAR10 dataset and picked a random
direction d of length 1. We chose steps s in a range between 10−8 and 30 with exponential increments
and computed the activation patterns and the network label of xtr + s · d. We recorded the smallest
distance at which the activation pattern changed and when the label changed. Note that it is impossible
to miss earlier changes of acitvation patterns as it is impossible that, moving along a line with direction
d, the activation pattern changes and then changes back to a previous activation pattern. This is
different to label assignment since label assignment may possibly switch within a linear region, but
with samples placed densely enough we expect not to miss any label changes.

Table 6 shows for different architecture types the minimal, maximal, (arithmetic) mean and geometric
mean for the distance of witnessing new linear regions and label changes. For label changes, we
observed a few ’adversarial examples’ at small distances. For example, the distance of 0.0034 for the
network Conv corresponds to changing each pixel by less than 1 in the range [0, 255]. But overall, the
label assignment is smooth with an average distance of 8, corresponding to changing each pixel by 37
in the range [0, 255]. In 11.6% of cases the label never changed (Conv). We noticed that the network
assigned the same label to almost all points on the boundary of the image hypercube [0, 1]32x32x3,
explaining why some label assignments never change.

The linear regions already changed at much smaller distances, For example for NarrowStride,
observing new linear regions at mean distances of 10−3 implies that linear regions change before any
pixel can change by 1 in the range of [0,255], casting more doubt on how meaningful the number of
linear regions can be for generalization performance,

Measuring distances to neighboring linear regions also lets us estimate the volume of the linear regions
and therefore estimate the number of linear regions in the image domain. The mean distance to the
boundary of a linear region being α, we estimate the volume of each linear region by (2α)(3·32

2).
Using the average volume, we can fill the image domain [0, 1]32×32×3 by linear regions of that
volume and count how many are necessary (= α−3072), which we also record in Table 6. Of course,
this can only give a rough estimate, for example since linear regions of training samples may differ in
size to other linear regions and since the estimated volume of the regions based on mean distances is
only a sample-based approximate result. We record only the order of magnitude that results from our
calculations, which indeed suggests astronomically high numbers.

Distance to neighboring Distance to new Number linear
regions label assignment linear regions

(arithm) geom. constant (Estimate)
Network mean mean min max mean min label (%)

Conv 2.7e-4 8.4e-5 2.2e-8 2.9e-3 7.7 3.4e-3 12.6 1010,000

Narrow 7.2e-4 2.9e-4 2.3e-6 6.6e-3 6.9 4.6e-2 9.8 108730

NarrowStride 3.2e-3 1.9e-3 3.0e-7 2.1e-2 11.1 5.7e-2 12.4 106745

Wide 7.5e-3 3.6 e-3 1.2e-7 6.9e-2 18.9 5.7e-2 58.8 105610

FCN8 2.0e-2 1.0e-2 9.7e-7 1.2e-1 19.1 9.0e-1 51.4 104285

Table 6: Distance to neighboring linear regions and to new label assignment from training samples
along a random direction. Numbers show the minimum, maximum and mean over 500 samples for
different architectures. Mean distance is used to calculate a rough estimate of the number of regions.

We observe that the number of linear regions are larger for the convolutional networks Conv and
NarrowStride than for the fully-connected networks Wide and FCN8. This is remarkable since
NarrowStride and Wide have the same number of hidden neurons in each layer and hence the
theoretically obtainable maximal number of linear regions is higher for Wide than for NarrowStride.

31

Published as a conference paper at ICLR 2021

Also, we note that the estimated number of linear regions is not always a good measure for network
performance on test data as FCN8 performs better than Wide on CIFAR10 according to Table 4, but
our estimate predicts a larger number of linear regions for Wide.

F EXAMPLE: APPLYING TROPEX TO A TOY NETWORK

x1

x2

x3

x4

logit(C1)

logit(C2)

ReLU ReLU

Weights
W1

Weights
W2

Weights
W3

We present an example of how to apply TropEx to a toy neural network as shown in the figure. The
network has three linear dense layers, with the first two being followed by a ReLU activation. During
training, the last layer is followed by a softmax activation. Since the softmax function does not
change the order of the outputs, we can leave it away without changing the classification results. The
outputs are then the logits of the two classes C1 and C2. Suppose that the weight matrices are

W1 =


1 −1 0 −1
−1 1 0 1
1 0 −1 0
−1 1 −1 0
−1 0 1 1

 ;W2 =


0 1 1 1 0
1 1 1 −1 1
1 −1 0 1 1
0 −1 0 1 0
−1 −1 0 0 0

 ;W3 =

(
1 0 −1 −1 1
1 −1 −1 1 1

)
;

and the bias vectors are given by

b1 =


−1
0
1
−1
0

 ; b2 =


0
0
0
1
0

 ; b3 =

(
−1
0

)
.

Suppose we are given a data set
X = {X1,X2}

containing matrices

X1 =

(−1 0 0 1
−1 1 −1 1
0 1 −1 1

)
; X2 =

 1 1 1 −1
−1 0 0 −1
−1 −1 −1 −1
−1 1 −1 −1


that have 4-dimensional data points of labels 1 and 2, respectively, as their rows. Consequently,

Wneg
3 =

(
0 0 1 1 0
0 1 1 0 0

)
; bneg

3 =

(
1
0

)
.

Summing along the columns gives

C− = (0 1 2 1 0) ; c− = (1) .

Adding these matrices to W3 and b3 gives

C+ =

(
1 1 1 0 1
1 0 1 2 1

)
; c+ =

(
0
1

)
.

32

Published as a conference paper at ICLR 2021

Repeating the C-matrices along the rows gives

A+
1 =

(
1 1 1 0 1
1 1 1 0 1
1 1 1 0 1

)
; a+1 =

(
0
0
0

)
;

A+
2 =

1 0 1 2 1
1 0 1 2 1
1 0 1 2 1
1 0 1 2 1

 ; a+2 =

1
1
1
1

 ;

A− =



0 1 2 1 0
0 1 2 1 0
0 1 2 1 0
0 1 2 1 0
0 1 2 1 0
0 1 2 1 0
0 1 2 1 0

 ; a− =



1
1
1
1
1
1
1

 .

Vertically stacking A+
1 ,A

+
2 and A− and taking the maximum along their columns gives the row

vector
Amax = (1 1 2 2 1) .

Let ` now denote the ReLU activation after the second dense layer. Denoting by ` all of the network
up to and including ` gives us

`(X1) =

(
2 4 0 0 0
6 3 0 0 0
5 3 0 0 0

)
; `(X2) =

1 1 0 1 0
0 0 0 1 0
1 1 0 1 0
4 0 1 2 0

 .

We use the 0-elements of these matrices to set the corresponding elements of the A-matrices to 0.
The result is

A+
1 =

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

)
; a+1 =

(
0
0
0

)
;

A+
2 =

1 0 0 2 0
0 0 0 2 0
1 0 0 2 0
1 0 1 2 0

 ; a+2 =

1
1
1
1

 ;

A− =



0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 1 0
0 0 0 1 0
0 1 0 1 0
0 0 2 1 0

 ; a− =



1
1
1
1
1
1
1

 .

Hence

K = AmaxW
neg
2 = (1 5 0 1 0) ; Amax = K +AmaxW

pos
2 = (4 7 2 6 3) .

Updating the A-matrices according to a = a+Ab2;A = K +AW2 gives us

A+
1 =

(
2 7 2 1 1
2 7 2 1 1
2 7 2 1 1

)
; a+1 =

(
0
0
0

)
;

A+
2 =

1 4 1 4 0
1 3 0 3 0
1 4 1 4 0
2 3 1 5 1

 ; a+2 =

3
3
3
3

 ;

33

Published as a conference paper at ICLR 2021

A− =



2 6 1 0 1
2 6 1 0 1
2 6 1 0 1
2 5 1 1 1
1 4 0 2 0
2 5 1 1 1
3 2 0 4 2

 ; a− =



1
1
1
2
2
2
2

 .

Let ` now denote the ReLU activation after the first dense layer. Denoting by ` all of the network up
to and including ` gives us

`(X1) =

(
0 2 0 0 2
0 3 1 2 1
0 2 2 1 0

)
; `(X2) =

0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 1 1 2 0

 .

We use the 0-elements of these matrices to set the corresponding elements of the A-matrices to 0.
The result is

A+
1 =

(
0 7 0 0 1
0 7 2 1 1
0 7 2 1 0

)
; a+1 =

(
0
0
0

)
;

A+
2 =

0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 3 1 5 0

 ; a+2 =

3
3
3
3

 ;

A− =



0 6 0 0 1
0 6 1 0 1
0 6 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 2 0 4 0

 ; a− =



1
1
1
2
2
2
2

 .

Hence

K = AmaxW
neg
1 = (1 5 0 1 0) ; Amax = K +AmaxW

pos
1 = (4 7 2 6 3) .

Updating the A-matrices according to a = a+Ab1;A = K +AW1 gives us

A+
1 =

(
8 11 9 12
9 12 6 12
10 12 5 11

)
; a+1 =

(
0
1
1

)
;

A+
2 =

17 4 7 4
16 4 8 4
17 4 7 4
9 12 2 7

 ; a+2 =

 4
3
4
−1

 ;

A− =



9 10 9 11
10 10 8 11
11 10 7 10
17 4 7 4
16 4 8 4
17 4 7 4
10 10 4 6

 ; a− =



1
2
2
3
2
3
−2

 ,

which is the output of the algorithm.

34

Published as a conference paper at ICLR 2021

G POTENTIAL FOR FUTURE WORK

• Adversarial Attacks. Since large linear regions add adversarial robustness (Croce et al., 2018) and
TropEx outputs a network function with maximally enlarged linear regions, it may provide a tool for
studying various adversarial attacks. It would also be interesting to see whether adversarial attacks
can harm the performance of the extracted function N (X) on training data.
• Network Pruning. Our experiments show that removing the structure from a network N causes a
significant drop in test accuracy while keeping the training accuracy unchanged. Zhang et al. (2018)
show that tropical rational maps are the same as ReLU networks, so it is possible to obtain a new
architectureN ′ fromN (X). From a perspective of linear regions, TropEx outputs a minimal function
that is unchanged on all training data. Since different network architectures can describe the same
network function, it remains to understand what additional structure needs to be imposed on the
smaller architecture to obtain high test accuracy as well. This opens the possibility for a pruning
technique with unchanged predictions on the data it was trained on.
• Generalization theory. Deep neural networks can learn data perfectly (Zhang et al., 2017), which
results in a network function that correctly classifies any training sample. For such over-parameterized
models, Belkin et al. (2018) study the performance on test data from a viewpoint of interpolation.
Our extracted function N (X) agrees with the network N on the data set X , hence their difference
in generalization must depend on how they interpolate between the training data X . By observing
consistent differences between CNNs and FCNs, our results suggest that the architecture plays a large
role in this interpolation process. Tailored experiments with TropEx can give more insight on the
connection between network architecture and interpolation performance and support the derivation of
bounds on the generalization error for neural networks.

35

