
Policy Optimization for Markov Games: Unified
Framework and Faster Convergence

Runyu Zhang∗
Harvard University

runyuzhang@fas.harvard.edu

Qinghua Liu∗

Princeton University
qinghual@princeton.edu

Huan Wang
Salesforce Research

huan.wang@salesforce.com

Caiming Xiong
Salesforce Research

cxiong@salesforce.com

Na Li
Harvard University

nali@seas.harvard.edu

Yu Bai
Salesforce Research

yu.bai@salesforce.com

Abstract

This paper studies policy optimization algorithms for multi-agent reinforcement
learning. We begin by proposing an algorithm framework for two-player zero-sum
Markov Games in the full-information setting, where each iteration consists of a
policy update step at each state using a certain matrix game algorithm, and a value
update step with a certain learning rate. This framework unifies many existing and
new policy optimization algorithms. We show that the state-wise average policy of
this algorithm converges to an approximate Nash equilibrium (NE) of the game, as
long as the matrix game algorithms achieve low weighted regret at each state, with
respect to weights determined by the speed of the value updates. Next, we show that
this framework instantiated with the Optimistic Follow-The-Regularized-Leader
(OFTRL) algorithm at each state (and smooth value updates) can find an Õ(T−5/6)
approximate NE in T iterations, and a similar algorithm with slightly modified
value update rule achieves a faster Õ(T−1) convergence rate. These improve over
the current best Õ(T−1/2) rate of symmetric policy optimization type algorithms.
We also extend this algorithm to multi-player general-sum Markov Games and show
an Õ(T−3/4) convergence rate to Coarse Correlated Equilibria (CCE). Finally, we
provide a numerical example to verify our theory and investigate the importance of
smooth value updates, and find that using “eager” value updates instead (equivalent
to the independent natural policy gradient algorithm) may significantly slow down
the convergence, even on a simple game with H = 2 layers.

1 Introduction

Policy optimization, i.e. algorithms that learn to make sequential decisions by local search on
the agent’s policy directly, is a widely used class of algorithms in reinforcement learning [40, 44,
45]. Policy optimization algorithms are particularly advantageous in the multi-agent reinforcement
learning (MARL) setting (e.g. compared with value-based counterparts), due to their typically
lower representational cost and better scalability in both training and execution. A variety of policy
optimization algorithms such as Independent PPO [14], MAPPO [56], QMix [42] have been proposed
to solve real-world MARL problems [4, 39, 43]. These algorithms share a same high-level structure
with iterative value updates (for certain value estimates) and policy updates (often independently
with each agent) using information from the value estimates and/or true rewards.

∗The two authors contributed equally to this work.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

While policy optimization for MARL has been studied theoretically in a growing body of work,
there are still gaps between algorithms used in practice and provably-efficient algorithms studied in
theory—Algorithms in practice generally follow two natural design principles: symmetric updates
among all agents, and simultaneous learning of values and policies [59, 56]. By contrast, policy
optimization algorithms studied in theory often diverge from these principles and incorporate some
tweaks, such as (i) asymmetric updates, where one agent takes a much smaller learning rate than the
others (two time-scale) [11] or waits until the other agents learn an approximate best response [62];
and (ii) batch-like learning, where policies are optimized to sufficient precision with respect to the
current value estimate before the next value update [8]. There is so far a lacking of systematic studies
on the performance of the more vanilla policy optimization algorithms following the above two
principles, even under the setting where full-information feedback from the game is available.

Towards bridging these gaps, this paper studies policy optimization algorithms for Markov games,
with a focus on algorithms with symmetric updates and simultaneous learning of values and policies.
Our contributions can be summarized as follows:

• We propose an algorithm framework for two-player zero-sum Markov games in the full-
information setting (Section 3). This framework unifies many existing and new policy op-
timization algorithms such as Nash V-Learning, Gradient Descent/Ascent, as well as seemingly
disparate algorithms such as Nash Q-Learning (Section 3.2). We prove that the state-wise
average policy outputted by the above algorithm is an approximate Nash Equilibrium (NE), so
long as suitable per-state weighted regrets are bounded (Section 3.1). This generic result can be
instantiated in a modular fashion to derive convergence guarantees for the many examples above.

• We instantiate our framework to show that a new algorithm based on Optimistic Follow-The-
Regularized-Leader (OFTRL) and smooth value updates finds an Õ(T−5/6) approximate NE
in T iterations (Section 4). This improves over the current best rate of Õ(T−1/2) achieved by
symmetric policy optimization type algorithms. In addition, we also propose a slightly modified
OFTRL algorithm that further improves the rate to Õ(T−1), which matches with the known best
rate for all policy optimization type algorithm.

• We additionally extend the above OFTRL algorithm to multi-player general-sum Markov games
and show an Õ(T−3/4) convergence rate to Coarse Correlated Equilibria (CCE), which is
also the first rate faster than Õ(T−1/2) for policy optimization in general-sum Markov games
(Section 4.1).

• We perform simulations on a carefully constructed zero-sum Markov game with H = 2 layers to
verify our convergence guarantees. The numerical tests further suggest the importance of smooth
value updates: the Independent Natural Policy Gradient algorithm (as one instantiation of our
algorithm framework with “eager” value updates) appears to converge much slower (Section 5).

1.1 Related work

Two-player zero-sum MGs Markov games (MGs) [30] (also known as Stochastic Games [47])
is a widely studied model for multi-agent reinforcement learning. In the most basic setting of two-
player zero-sum MGs, algorithms for computing the NE have been extensively studied in both the
full-information setting [31, 20, 19] and the sample-based/online setting [6, 52, 22, 48, 58, 2, 55,
3, 33, 25, 21, 57, 10, 34]. Our algorithm framework incorporates (the full-information version of)
several algorithms in this line of work.

Policy optimization for zero-sum MGs Policy optimization for single-agent Markov Decision
Processes has been extensively in a recent line of work, e.g. [1, 5, 32, 46, 37, 35, 7, 15, 54] and
the many references therein. For two-player zero-sum MGs, the Nash V-Learning algorithm of Bai
et al. [3] (originally proposed for the sample-based online setting) can be viewed as an independent
policy optimization algorithm, and can be adapted to the full-information setting with Õ(T−1/2)
convergence rate. Daskalakis et al. [11] prove that the independent policy gradient algorithm with
an asymmetric two time-scale learning rate can learn the NE (for one player only) with polynomial
iteration/sample complexity. Zhao et al. [62] show that another asymmetric algorithm that simulates
a policy gradient/best response dynamics converges to NE with Õ(1/T) rate. Cen et al. [8] use
a symmetric optimistic (extragradient) subroutine for matrix games to learn zero-sum MGs in a
layer-wise fashion (the matrix games at each state are learned to sufficient precision before the

2

backup, more like a Value Iteration type algorithm), and also derive an Õ(1/T) convergence rate.
The closest to our work is Wei et al. [53] which proves that Optimistic Gradient Descent/Ascent
(OGDA), combined with smooth value updates at all layers simultaneously, converges to an NE with
Õ(T−1/2) rate for both the average duality gap and the last iterate. The Õ(T−5/6) rate of our OFTRL
algorithm improves over [53] and is the first such faster rate for symmetric, policy optimization type
algorithms. The Õ(1/T) rate of our modified OFTRL algorithm matches with rates in [62, 7], while
still maintaining symmetric update and simultaneous learning of values and policies.

Multi-player general-sum MGs A recent line of work shows that a generalization of the V-
learning algorithm to the multi-player general-sum setting can learn Coarse Correlated Equilibria
(CCE) [49, 24, 36] and Correlated Equilibria (CE) [49, 24]. The algorithmic designs in these works
are specially tailored to the sample-based setting, where the best possible rate is Õ(T−1/2).2 In
contrast, this paper considers the full-information setting and proposes new algorithms achieving the
faster Õ(T−3/4) for learning CCE in general-sum MGs. The complexity of computing or learning
a Markovian or stationary Markovian CCE has been studied in [13, 26]. Another recent line of
work considers learning NE in Markov Potential Games [60, 29, 49, 16, 61], which can be seen as a
cooperative-type subclass of general-sum MGs.

Optimistic algorithms in normal-form games Technically, our accelerated rates build on the
recent line of work on faster rates for optimistic no-regret algorithms in normal-form games [50,
41, 9, 12]. Specifically, our Õ(T−5/6) rate for two-player zero-sum MGs builds upon a first-order
smoothness analysis of [9], our improved Õ(T−1) rate in the same setting (achieved by the modified
OFTRL algorithm) leverages analysis of [41, 50] on bounding the summed regret over the two players,
and our Õ(T−3/4) rate for multi-player general-sum MGs follows from the RVU-property [50,
Definition 3]. Our incorporation of these techniques involves non-trivial new components such as
weighted first-order smoothness bounds and handling changing game rewards.

2 Preliminaries

We consider the tabular episodic (finite-horizon) two-player-zero-sum Markov games (MGs), which
can be denoted asM(H,S,A,B,P, r), where H is the horizon length; S is the state space with |S| =
S; A,B are the action space of the max-player and min-player respectively, with |A| = A, |B| = B;
P = {Ph}Hh=1 is the transition probabilities, where each Ph(s

′|s, a, b) gives the probability of
transition to state s′ from state-action (s, a, b); r = {rh}Hh=1 are the reward functions, such that
rh(s, a, b) is reward3 of the max-player and −rh(s, a, b) is the reward of the min-player at time step
h and state-action (s, a, b). In each episode, the MG starts with a deterministic initial state s1. Then at
each time step 1 ≤ h ≤ H , both players observes the state sh, the max-player takes an action ah ∈ A,
and the min-player takes an action bh ∈ B. Then, both players receive their rewards rh(sh, ah, bh)
and −rh(sh, ah, bh), respectively, and the system transits to the next state st+1 ∼ Ph(·|sh, ah, bh).
Policies & value functions A (Markov) policy µ of the max-player is a collection of policies
µ = {µh : S → ∆A}Hh=1, where each µh(·|sh) ∈ ∆A specifies the probability of taking action ah at
(h, sh). Similarly, a (Markov) policy ν of the min-player is defined as ν = {νh : S → ∆B}. For any
policy (µ, ν) (not necessarily Markov), we use V µ,ν

h : S → R and Qµ,ν
h : S ×A×B → R to denote

the value function and Q-function at time step h, respectively, i.e.

V µ,ν
h (s) := Eµ,ν

[∑H
h=h′ rh′(sh′ , ah′ , bh′) | sh = s

]
, (1)

Qµ,ν
h (s, a, b) := Eµ,ν

[∑H
h=h′ rh′(sh′ , ah′ , bh′) | sh = s, ah = a, bh = b

]
. (2)

For notational simplicity, we use the following abbreviation: [PhV](s, a, b) := Es′∼Ph(·|s,a,b)V (s′)
for any value function V . By definition of the value functions and Q-functions, we have the following
Bellman equations

Qµ,ν
h (s, a, b) =

(
rh + PhV

µ,ν
h+1

)
(s, a, b),

2Even if we specialize their algorithms to the full-information setting, the attained rates are no better than
Õ(T−1/2) because the bandit subroutines they deployed in V-learning converge no faster than Ω(T−1/2) even
in the simplest setting of full-information matrix games.

3This assumes deterministic rewards; our results can be generalized directly to the case of stochastic rewards.

3

V µ,ν
h (s, a, b) = Ea∼µh(·|s),b∼νh(·|s)[Q

µ,ν
h (s, a, b)] = ⟨Qµ,ν

h (s, ·, ·), µ(·|s)× ν(·|s)⟩ .
The goal for the max-player is to maximize the value function, whereas the goal for the min-player is
to minimize the value function.

Best response & Nash equilibrium For any Markov policy µ of a max-player, there exists a best
response for the min-player, which can be taken as a Markov policy ν†(µ) such that V µ,ν†(µ)

h (s) =

infν V
µ,ν
h (s) for all (s, h) ∈ S × [H]. For simplicity we define V µ,†

h := V
µ,ν†(µ)
h . By symmetry, we

can also define µ†(ν) and V †,ν
h . It is known (e.g. [17]) that there exist Markov policies (µ⋆, ν⋆) that

perform optimally against best responses. These policies are also equivalent to Nash Equilibria (NEs)
of the game, where no player can gain by switching to a different policy unilaterally. It can also be
shown that any NE (µ⋆, ν⋆) satisfies the following minimax equation

supµ infν V
µ,ν
h (s) = V µ⋆,ν⋆

h (s) = infν supµ V
µ,ν
h (s).

Thus, while the NE policy (µ⋆, ν⋆) may not be unique, all of them share the same value functions,
which we denote as V ⋆

h := V µ⋆,ν⋆

h . The Q-function Q⋆
h can be defined similarly. In this paper, our

main goal is to find an approximate NE, which is formally defined below.
Definition 1 (ε-approximate Nash Equilibrium). For any ε ≥ 0, a policy (µ, ν) is an ε-approximate
Nash Equilibrium (ε-NE) if NEGap(µ, ν) := V †,ν

1 (s1)− V µ,†
1 (s1) ≤ ε.

Full-information setting We consider finding an approximate NE under the full-information
setting, where we can query the exact value of rh + PhVh+1 ∈ RS×A×B for any layer h ∈ [H] and
V function Vh+1 ∈ RS . Further, the majority of algorithms are policy optimization algorithms that
only query (rh + PhVh+1)νh ∈ RS×A and (rh + PhVh+1)

⊤µh ∈ RS×B for policies µh, νh. (See
Appendix I.1 for additional discussions.)
Additional notation For any (h, s) ∈ [H]× S and Q function Qh : S ×A× B → R, we define
shorthand [(µh)

⊤Qhνh](s) := ⟨Qh(s, ·, ·), µh(·|s)× νh(·|s)⟩ for any policy (µ, ν). Similarly, we
let [Qhνh](s, ·) := Eb∼νh(·|s)[Qh(s, ·, b)] ∈ RA, and [Q⊤

h µh](s, ·) := Ea∼µh(·|s)[Qh(s, a, ·)] ∈ RB .
We use A ∨B := max{A,B}.

3 An algorithm framework for zero-sum Markov games
We begin by presenting an algorithm framework that unifies many existing and new algorithms for
two-player zero-sum Markov Games, and its performance guarantee that could be specialized to yield
concrete convergence results for many specific algorithms.

Our algorithm framework, described in Algorithm 1, consists of two main components: the policy
update step computing policies (µt, νt), and the value update step computing the Q estimate Qt

h’s.

Policy update via matrix game algorithms In the policy update step (Line 5), for each (h, s),
the two players update policies (µt

h(·|s), νth(·|s)) at (h, s) using some matrix game algorithm
MatrixGameAlg which takes as input all past Q matrices and all past policies of both players.
The MatrixGameAlg offers a flexible interface that allows many choices such as the matrix NE
subroutine over the most recent Q matrix MatrixNE(Qt−1

h (s, ·, ·)), or any independent no-regret
algorithm (for both players), such as Follow-The-Regularized-Leader (FTRL) (10) or projected
Gradient Descent-Ascent (11) considered in the examples later.

Value update with learning rate {βt} For any (h, s, a, b), the value update step (Line 6) updates
Qt

h(s, a, b) by the newest value function rh + Ph[(µ
t
h+1)

⊤Qt
h+1ν

t
h+1] propagated from layer h+ 1,

using a sequence of learning rates {βt}t≥1 which we assume to be within [0, 1] (with β1 := 1). {βt}
controls the speed of the value update, with two important special cases:

(1) Eager value updates, where we set βt = 1 so that Qt
h performs policy evaluation of the current

policy (µt, νt), that is, Qt
h = Qµt,νt

h .

(2) Smooth (incremental) value updates, where we choose βt → 0 as t→∞. In this case, the Qt
h

moves slower (resembling a critic in Actor-Critic like algorithms), and becomes a weighted
average of all past updates. A standard choice that is frequently used is from [23] (and many
subsequent work),

βt = αt := (H + 1)/(H + t). (3)

4

Algorithm 1 Algorithm framework for two-player zero-sum Markov Games

1: Require: Learning rate {βt}t≥1 ⊂ [0, 1] (with β1 = 1); Algorithm MatrixGameAlg.
2: Initialize: Q0

h(s, a, b)← H − h+ 1 for all (h, s, a, b) ∈ [H]× S ×A× B.
3: for t = 1, . . . , T do
4: for h = H, . . . , 1 do
5: Policy update: Update policies for all s ∈ S:

(µt
h(·|s), νth(·|s))← MatrixGameAlg

({
Qi

h(s, ·, ·)
}t−1

i=1
,
{
µi
h(·|s)

}t−1

i=1
,
{
νih(·|s)

}t−1

i=1

)
.

6: Value update: Update Q-value for all (s, a, b) ∈ S ×A× B:

Qt
h(s, a, b)← (1− βt)Q

t−1
h (s, a, b) + βt

(
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

)
(s, a, b). (4)

7: Output: State-wise average policy (µ̂T , ν̂T), with βt
T defined in (6):

µ̂T
h (·|s)←

∑T
t=1 β

t
Tµ

t
h(·|s), ν̂Th (·|s)←

∑T
t=1 β

t
T ν

t
h(·|s) for all (h, s) ∈ [H]× S. (5)

For any {βt}, the update (4) implies that

Qt
h(s, a, b) =

∑t
i=1 β

i
t

([
rh + Ph[

(
µi
h+1

)⊤
Qi

h+1ν
i
h+1]

]
(s, a, b)

)
,

where βi
t’s are a group of weights summing to one (

∑t
i=1 β

i
t = 1) defined as

βt
t = βt; βi

t =
∏t

j=i+1(1− βj)βi, for i ∈ [t− 1]. (6)

Note that with smooth value updates (βt < 1), Qt
h is not necessarily the Q-function of any policy.

Upon finishing, the algorithm outputs the state-wise average policy (µ̂T , ν̂T) defined in (5), where
each µ̂T

h (·|s) is the weighted average of µt
h(·|s) using weights {βt

T }
T
t=1 (and similarly for ν̂T), which

we remark can be implemented efficiently using moving averages (cf. Appendix C.1).

Symmetric & simultaneous learning, (de)centralization We remark that Algorithm 1 by defini-
tion performs simultaneous learning (of policies and values) at all layers, and also yields symmetric
(policy) updates if MatrixGameAlg is a symmetric algorithm with respect to µ and ν. Also, although
Algorithm 1 appears to be a centralized algorithm as it maintains Q values in (4), this does not
preclude possibilities that the algorithm can be executed in a decentralized fashion. This can happen
e.g. when the Q-update (4) can be rewritten as an equivalent V-update (cf. Example 1 & 2).

3.1 Theoretical guarantee

We are now ready to state the main theoretical guarantee of Algorithm 1, which states that the
(µ̂T , ν̂T) is an approximate NE, as long as the algorithm achieves low per-state weighted regrets w.r.t.
weights {βi

t}ti=1, defined as

regth,µ(s) := maxµ†∈∆A

∑t
i=1 β

i
t

〈
µ† − µi

h(·|s),
[
Qi

hν
i
h

]
(s, ·)

〉
,

regth,ν(s) := maxν†∈∆B

∑t
i=1 β

i
t

〈
νih(·|s)− ν†,

[
(Qi

h)
⊤µi

h

]
(s, ·)

〉
,

regth := maxs∈S max{regth,µ(s), regth,ν(s)}.
(7)

Theorem 2 (Main guarantee of Algorithm 1). Suppose that the per-state regrets can be upper-
bounded as regth ≤ regth for all (h, t) ∈ [H]× [T], where regth is non-increasing in t: regth ≥ regt+1

h

for all t ≥ 1. Then, the output policy (µ̂T , ν̂T) of Algorithm 1 satisfies

NEGap(µ̂T , ν̂T) ≤ C

[
H max

h∈[H]
regTh +H2cHβ log T · 1

T

T∑
t=1

max
h∈[H]

regth

]
(8)

for all T ≥ 2 and some absolute constant C > 0, where cβ is a constant depending on {βt}t≥1:

cβ := supj≥1

∑∞
t=j β

j
t ≥ 1. (9)

Specifically, cβ =
(
1 + 1

H

)
if βt = αt =

H+1
H+t , and cβ = 1 if βt = 1.

5

Bound (8) is typically dominated by the second term on the right hand side, suggesting that the
NEGap can be bounded by the average weighted regret Õ

(
1
T

∑T
t=1 maxh reg

t
h

)
, if cHβ = O(1).

Theorem 2 serves as a modular tool for analyzing a broad class of algorithms: As long as this average
regret is sublinear in T (including—but not limited to—choosing MatrixGameAlg as uncoupled
no-regret algorithms), the output policy will be an approximate NE. We emphasize though that this
result is not yet end-to-end, as each regth is a weighted regret w.r.t. the particular set of weights{
βi
t

}t
i=1

, minimizing which may require careful algorithm designs and/or case-by-case analyses. We
provide some concrete examples in Section 3.2 to demonstrate the usefulness of Theorem 2.

We remark that the state-wise average policy considered in Theorem 2 is an average policy that
is also Markovian by definition, which is different from existing work which considers either the
(Markovian) last iterate [53] or non-Markovian average policies (e.g. [3]). However, this guarantee
relies on full-information feedback (so that per-state regret bounds are available), and it remains an
open question how such guarantees could be generalized to sample-based settings.

Proof overview The proof of Theorem 2 follows by (1) bounding NEGap(µ̂T , ν̂T) in terms of per-
state regrets w.r.t. the Nash value functions Q⋆

h’s by performance difference arguments (Lemma C.1);
(2) recursively bounding the value estimation error δth := ∥Qt

h −Q⋆
h∥∞ (Lemma C.2) which yields

the constant cβ ; and (3) combining the above to translate the regret from Q⋆
h’s to Qt

h’s (which we
assume to be bounded by regth) and obtain the theorem. The full proof can be found in Appendix C.

3.2 Examples

We now demonstrate the generality of Algorithm 1 and Theorem 2 by showing that they subsume
many existing algorithms (and yield new algorithms) for two-player-zero-sum Markov games, and
provide new guarantees with the particular output policy (5).

Example 1 (Nash V-Learning [3], full-information version): The full algorithm (Algorithm 5)
can be found in Appendix D.1. The algorithm is a special case of Algorithm 1 with βt = αt =
(H + 1)/(H + t), and MatrixGameAlg chosen as the weighted FTRL algorithm

µt
h(a|s)∝a exp

(
η

wt−1

t−1∑
i=1

wi

[
Qi

hν
i
h

]
(s, a)

)
, νth(b|s)∝b exp

(
− η

wt−1

t−1∑
i=1

wi

[(
Qi

h

)⊤
µi
h

]
(s, b)

)
,

(10)
where wt := αt

t/α
1
t . Combining Theorem 2 with the standard regret bound of weighted FTRL, this

algorithm achieves NEGap(µ̂T , ν̂T) ≤ Õ(H7/2/
√
T) choosing η ≍ 1/

√
T (Proposition D.2).

Additionally, although the original Nash V-learning algorithm [3] updates the V values (which makes
the algorithm implementable in a decentralized fashion) instead of the Q values used in Algorithm 1,
these two forms are actually equivalent in the full-information setting (Proposition D.1). ♢

Compared with the Õ(
√
H5Smax{A,B}/T) guarantee of (the non-Markovian output policy of)

Nash V-Learning in the sample-based online setting [3, 51, 24], our rate achieves better (logarithmic)
S,A,B dependence due to our full-information setting, and worse H dependence which happens
as our output policy is the (Markovian) state-wise average policies, whose guarantee (Theorem 2)
follows from a different analysis.

Example 2 (GDA-Critic): This algorithm is a special case of Algorithm 1 with βt = αt =
(H + 1)/(H + t), and MatrixGameAlg as projected gradient descent/ascent (GDA), i.e.,

µt
h(·|s)←P∆A

(
µt−1
h (·|s)+η

[
Qt−1

h νt−1h

]
(s)
)
, νth(·|s)←P∆B

(
νt−1h (·|s)−η(

[
Qt−1

h)⊤µt−1
h

]
(s)
)
. (11)

Similar as Nash V-Learning, GDA-Critic also admits an equivalent form with V value updates (full
description in Algorithm 6). As GDA achieves weighted regret bounds with any monotone weights
including

{
αi
t

}t
i=1

(Lemma B.1), we can invoke Theorem 2 to show that this algorithm achieves
NEGap(µ̂T , ν̂T) ≤ Õ(H7/2(A ∨B)1/2/

√
T) if we choose η ≍ 1/

√
T (Proposition D.4).

The GDA-critic algorithm is also similar to the OGDA-MG algorithm of Wei et al. [53], except that
we use the (non-optimistic) vanilla version of GDA. To our best knowledge, the above algorithm and
guarantee are not known. We remark that even ignoring difference between GDA and OGDA, the

6

above guarantee cannot be obtained by direct adaptation of the results of [53] which focus on either
the average duality gap and/or last-iterate convergence. ♢

Besides the above examples, Algorithm 1 also incorporates the following algorithms which are
typically not categorized as policy optimization algorithms (see Appendix I.2 for a discussion of the
categorization).

Example 3 (Nash Q-Learning [20, 3], full-information version): This algorithm is a special case of
Algorithm 1 with βt = αt = (H + 1)/(H + t) and MatrixGameAlg as the matrix Nash subroutine

(µt
h(·|s), νth(·|s))← MatrixNE(Qt−1

h (s, ·, ·)) := arg

(
min
µ∈∆A

max
ν∈∆B

µ⊤Qt−1
h (s, ·, ·)ν

)
.

(Full description in Algorithm 7.) Although MatrixNE(Qt−1
h (s, ·, ·)) is not by default a no-regret

algorithm, using the fact that
∥∥Qt

h −Qt−1
h

∥∥
∞ is small (due to the small αt) we can show that it is

close to a (hypothetical) “Be-The-Leader” style algorithm that computes the matrix NE of the current
Q matrix Qt

h which achieves ≤ 0 regret (Lemma D.3). Combining this with Theorem 2 shows that
this algorithm achieves NEGap(µ̂T , ν̂T) ≤ Õ(H4/T) (Proposition D.5). ♢

Example 4 (Nash Policy Iteration (Nash-PI)): This classical algorithm (Algorithm 8) performs
iterative policy evaluation and policy improvement (also similar to Nash Value Iteration [47, 2, 33]):

(µt+1
h (·|s), νt+1

h (·|s))← MatrixNE(Qµt,νt

h (s, ·, ·)). (12)

This is also a special case of Algorithm 1 with βt = 1 and MatrixGameAlg set as MatrixNE. It is a
standard result that this algorithm converges exactly (achieving zero NE gap) in H steps, and this
fact can be obtained using our framework as well (Proposition D.6). ♢

4 Fast convergence of optimistic FTRL

In this section, we instantiate Algorithm 1 by choosing MatrixGameAlg as the Optimistic Follow-
The-Regularized-Leader (OFTRL) algorithm. OFTRL is also an uncoupled no-regret algorithm
that is known to enjoy faster convergence than standard FTRL under additional loss smoothness
assumptions [41, 50, 9, 12]. We show that, using OFTRL, Algorithm 1 enjoys faster convergence
than the Õ(1/

√
T) rate of using FTRL or GDA (cf. Example 1 & 2).

Concretely, we use the following weighted OFTRL algorithm at each (h, s, t):

µt
h(a|s) ∝a exp

(
(η/wt) ·

[∑t−1
i=1 wi(Q

i
hν

i
h)(s, a) + wt−1(Q

t−1
h νt−1

h)(s, a)
])

,

νth(b|s) ∝b exp
(
−(η/wt) ·

[∑t−1
i=1 wi((Q

i
h)

⊤µi
h)(s, b) + wt−1((Q

t−1
h)⊤µt−1

h)(s, b)
])

,
(13)

where wt is the same weights as defined in Example 1, and we choose βt = αt = (H + 1)/(H + t).
Theorem 3 (Fast convergence of OFTRL in zero-sum Markov Games). Suppose Algorithm 1 is
instantiated with βt = αt = (H +1)/(H + t) and MatrixGameAlg to be the OFTRL algorithm (13)
with any η ≤ 1/H (full description in Algorithm 9). Then the per-state regret can be bounded as
follows for some absolute constant C > 0:

regth ≤ regth := C

[
H2 log(A ∨B)

ηt
+ η5H6

]
for all (h, t) ∈ [H]× [T]. (14)

Further, choosing η = poly(H, log(A ∨B), log T) · T−1/6, the output (state-wise average) policy
(µ̂T , ν̂T) achieves approximate NE guarantee

NEGap(µ̂T , ν̂T) ≤ O
(
poly(H, log(A ∨B), log T) · T−5/6

)
. (15)

To our best knowledge, the Õ(T−5/6) rate asserted in Theorem 3 is the first rate faster than the
standard Õ(1/

√
T) for symmetric, policy optimization type algorithms in two-player zero-sum

Markov games. The closest existing result to this is of Wei et al. [53], who analyze the OGDA
algorithm with smooth value updates and show a Õ(1/

√
T) convergence of both the average NEGap

7

and the NEGap of the last-iterate. However, these only imply at most a Õ(1/
√
T) rate for the

average policies, and not our faster rate4. Cen et al. [8], Zhao et al. [62] show Õ(1/T) convergence
of algorithms with optimistic gradient-based policy updates, which are however very different styles
of algorithms that either performs layer-wise learning (the matrix games at each state are learned
to sufficient precision before the backup) similar as Value Iteration (the matrix games at each state
are learned to sufficient precision before the backup) [8], or uses strongly asymmetric updates that
simulate a policy gradient-best response dynamics [62]. By contrast, our Algorithm 9 (as well as its
modified version in Algorithm 10 with Õ(T−1) rate) runs symmetric no-regret dynamics for both
players, simultaneously at all layers.

Proof overview The proof of Theorem 3 (deferred to Appendix E) builds upon the recent line of
work on fast convergence of optimistic algorithms [41, 50, 9], in particular the work of Chen and
Peng [9] which shows an Õ(T−5/6) convergence rate of OFTRL for two-player normal-form games.
Our regret bound (14) generalizes this result non-trivially by additionally handling (1) The weighted
regret, which requires bounding the weighted stability of the OFTRL iterates by a new analysis of
the potential functions (Lemma B.4), and (2) The errors induced by changing game matrices, as
Qt

h(s, ·, ·) changes over t. Plugging (14) into Theorem 2 yields the policy guarantee (15).

Modified OFTRL algorithm with Õ(T−1) rate We further slightly modify Algorithm 9 to design
a new OFTRL style algorithm with Õ(T−1) convergence rate (Algorithm 10 and Theorem F.1),
which improves over the Õ(T−5/6) of Theorem 3 and matches the known best convergence rate for
policy optimization type algorithms in two-player zero-sum Markov games. Algorithm 10 still uses
OFTRL in its policy update step, and the main difference from Algorithm 9 is in its value update step:
Rather than maintaining a single Qt

h, the two players now each maintain their own value estimate
Q

t

h, Qt

h
which are still updated in an incremental fashion similar to (though not strictly speaking an

instantiation of) the update rule (4) in our main algorithm framework. Details of the algorithm as
well as the proofs are deferred to Appendix F.

4.1 Extension to multi-player general-sum Markov games

Our fast convergence result can be extended to the more general setting of multi-player general-sum
Markov games. Concretely, we consider general-sum Markov games with m ≥ 2 players, S states,
H steps, where the i-th player has action space Ai with Amax := maxi∈[m] |Ai| and her own reward
function. The goal is to find a correlated policy over all players that is an approximate Coarse
Correlated Equilibrium (CCE) of the game (see Appendix G.1 for the detailed setup).

We show that the OFTRL algorithm works for general-sum Markov games as well, with a fast
Õ(T−3/4) convergence to CCE. The formal statement and proof is in Theorem G.1 & Appendix G.4.

Theorem 4 (Fast convergence of OFTRL in general-sum Markov Games; Informal version of Theo-
rem G.1). For m-player general-sum Markov Games, running the OFTRL algorithm (Algorithm 12)
for T rounds, the output (correlated) policy π̂ is an ε-approximate CCE, where

ε ≤ O
(
poly(H, logAmax, log T) · (m− 1)1/2 · T−3/4

)
.

A baseline result for this problem would be Õ(T−1/2), which may be obtained directly by adapting
existing proofs of the V-Learning algorithm [49, 24] to the full-information setting. Our Theorem 4
shows that a faster Õ(T−3/4) rate is available by using the OFTRL algorithm, which to our best
knowledge is the first such result for policy optimization in general-sum Markov games. We also
remark that the output policy π̂ above is not a state-wise average policy as in the zero-sum setting,
but rather a mixture policy that is in general non-Markov (cf. Algorithm 13), which is similar as
(and slightly simpler than) the “certified policies” used in existing work [3, 49, 24]. The proof of
Theorem 4 builds upon the RVU property of OFTRL [50] and additionally handles changing game
rewards, similar as in Theorem 3. A proof sketch and comparison with the Õ(T−5/6) analysis of the
zero-sum case can be found in Appendix G.2.

4See also [18] for another example where last-iterates are provably slower than averages.

8

5 Simulations

We perform numerical studies on the various policy optimization algorithms. Our goal is two-fold:
(1) Verify the convergence guarantees in our theorems and examples; (2) Test some other important
special cases of Algorithm 1 that may not yet admit a provable guarantee.

To this end, we consider three algorithms covered by the framework in Algorithm 1:

1. FTRL (Nash V-Learning) with smooth value updates βt = αt (Example 1 & Algorithm 5). Here
the output policy (µ̂T , ν̂T) are the state-wise averages with weights

{
αi
T

}T
i=1

, and achieves
NEGap(µ̂T , ν̂T) ≲ T−1/2 if we choose η ≍ T−1/2 (Proposition D.2).

2. OFTRL with smooth value updates βt = αt (Algorithm 9). Here the output policy (µ̂T , ν̂T)

are the state-wise averages with weights
{
αi
T

}T
i=1

, and achieves NEGap(µ̂T , ν̂T) ≲ T−5/6 if
we choose η ≍ T−1/6 (Theorem 3). We also consider the more aggressive choice η = 1.

3. INPG (Independent Natural Policy Gradients). This algorithm is an instantiation of Algo-
rithm 1 (cf. Appendix H.3 for formal justifications) with eager value updates (βt = 1), and
MatrixGameAlg chosen as standard unweighted FTRL (a.k.a. Hedge) for all (h, s, t):

µt
h(a|s) ∝a µt−1

h (a|s) exp
(
η
[
Qt−1

h νt−1
h

]
(s)
)
, νth(b|s) ∝b ν

t−1
h (b|s) exp

(
−η
[(
Qt−1

h

)⊤
µt−1
h

]
(s)
)
.

For this algorithm, we choose two standard learning rates: η = 1, and η = T−1/2, and use the
vanilla (state-wise) average as the output policies (since the last-iterate is known to be cyclic):

µ̂T
h (·|s) = 1

T

∑T
t=1 µ

t
h(·|s), ν̂Th (·|s) = 1

T

∑T
t=1 ν

t
h(·|s) for all (h, s) ∈ [H]× S.

The main motivation for considering INPG is that it is a natural generalization of both the widely-
studied NPG algorithm for single-agent RL, and the standard Hedge algorithm for zero-sum matrix
games. In both cases the algorithm admits favorable convergence guarantees: NPG converges with
rate O(T−1) [1, 27, 38, 7] (in both last iterate and averaging) using η = O(1); Hedge converges
with rate O(T−1/2) in zero-sum matrix games (e.g. [41]) using η ≍ T−1/2. However, to our best
knowledge, the convergence of INPG for zero-sum Markov games is unclear, and it is commented
by Wei et al. [53, Section 5] that eager value updates (βt = 1) could cause the value function of the
(h+ 1)th layer to oscillate, which make learning unstable or even biased within the h-th layer.

A two-layer numerical example We design a simple zero-sum Markov game with two layers and
small state/action spaces (H = 2, S = 4, A = 2; see Appendix H.1 for the detailed description).
The main feature of this game is that the reward in the first layer is much lower magnitude than that
of the second layer (the scale is roughly |r1(s, ·, ·)| ≈ 0.1|r2(s, ·, ·)|), which may exaggerate the
aforementioned unstable effect. We also choose a careful initialization (µ1, ν1) which is non-uniform
(and modify the FTRL / OFTRL algorithms to start at this initialization, cf. Appendix H.1) but
with all entries bounded in [0.15, 0.85]. We test all three algorithms above on this game, with this
initialization, T ∈ {103, 3× 103, 104, . . . , 107}, and η chosen correspondingly as described above.

Results Figure 1a plots the NEGap of the final output policies, one for each {algorithm, (T, η)}.
Observe that FTRL converges with rate roughly T−.570 ≲ T−1/2, and OFTRL with η = T−1/6

converges with rate T−.835 ≈ T−5/6, both corroborating our theory. Further, OFTRL with η = 1
appears to converge with rate T−1; showing this may be an interesting open theoretical question.

On the other hand, the INPG algorithm appears to be much slower: The η = 1 version does not seem
to converge, whereas the convergence of η = T−1/2 version is not clear but at least substantially
slower than T−1/2 (T−.308 given by the linear fit) .

To further understand the behavior of INPG, we visualize its layer-wise NEGap’s for h ∈ {1, 2} (on
our example), defined as the NEGap of the h-th layer’s policies with respect to Q⋆

h:

NEGap-Layer-h(µ, ν) := maxs

(
maxµ†

h

[
(µ†

h)
⊤Q⋆

hνh

]
(s)−minν†

h

[
µ⊤
hQ

⋆
hν

†
h

]
(s)
)
, h=1, 2.

Note that NEGap-Layer-1 is a lower bound of NEGap(µ, ν) (cf. Appendix H.3) and thus needs to be
minimized by any convergent algorithm. By contrast, on our example, NEGap-Layer-2 is concerned
with the last layer only, and can be minimized by any algorithm that works on matrix games.

9

(a) Overall NEGap

103 104 105 106 107

Total Number of Iterations T

10 6

10 5

10 4

10 3

10 2

10 1

NE
Ga

p
(

T ,
T)

T . 308

T . 570

T . 835

T 1.00

INPG (t = 1, = 0.1)
INPG (t = 1, = T 1/2)
FTRL (t = t, = T 1/2)
OFTRL (t = t, = T 1/6)
OFTRL (t = t, = 1)

(b) NEGap on layer h = 2

0.0 0.2 0.4 0.6 0.8 1.0
Iteration step t 1e7

10 4

10 3

10 2

10 1

NE
Ga

p
la

ye
r

2
(

t ,
t)

INPG (t = 1, = T 1/2)
FTRL (t = t, = T 1/2)

(c) NEGap on layer h = 1

0.0 0.2 0.4 0.6 0.8 1.0
Iteration step t 1e7

10 3

10 2

NE
Ga

p
la

ye
r

1
(

t ,
t)

INPG (t = 1, = T 1/2)
FTRL (t = t, = T 1/2)

Figure 1: (a) NEGap of the final output policies (y-axis) against total # iterations T (x-axis) on the two-layer
example (cf. Appendix H.1) in log-log scale. Each dot represents a different run with its own (T, η). The
scalings of the form ∼ T−α are obtained via best linear fits in the log space. (b,c) Layer-wise NEGaps (y-axis,
log-scale) against iteration count t (x-axis) for {INPG, FTRL} on a single run with T = 107 and η = T−1/2.

Figure 1b & 1c plot the layer-wise NEGap’s of INPG against FTRL, on the single run with T = 107

and η = T−1/2. As expected, the NEGap-Layer-2 converges nicely for both algorithms with
similar rates (Figure 1b) albeit the oscillation of INPG, whereas their behavior on NEGap-Layer-1 is
drastically different: FTRL still converges, whereas INPG seems to be oscillating around a non-zero
bias (Figure 1c). This suggests that INPG may indeed be suffer from a non-vanishing bias in the first
layer caused by the second layer’s learning dynamics. (See Appendix H.2 for additional illustrations.)
It would be an interesting open question to investigate the convergence of INPG theoretically.

6 Conclusion

This paper provides a unified framework for analyzing a large class of policy optimization algorithms
for two-player zero-sum Markov games. Using our framework, we prove new fast convergence
rates for the OFTRL algorithm with smooth value updates: Õ(T−5/6) for learning Nash Equilibria
two-player zero-sum Markov games, which can be further accelerated to (T−1) by slightly modifying
the framework; and Õ(T−3/4) for learning Coarse Correlated Equilibria in multi-player general-sum
Markov games. We further demonstrate the importance of smooth value updates on a simple numerical
example. We believe our work opens up many other interesting directions, such as whether improved
rates (e.g. Õ(T−1)) are available for the unmodified OFTRL algorithm, or further investigation
of policy optimization algorithms with eager value updates (such as Independent Natural Policy
Gradients). Finally, a limitation of this work is its focus on the full-information setting, and it is an
important open question how to generalize our analyses to the sample-based setting.

Acknowledgment

The authors would like to thank Chi Jin, Yuanhao Wang, Tiancheng Yu, Shicong Cen, and Song Mei
for the valuable discussions. Runyu Zhang is supported by NSF AI institute: 2112085, ONR YIP:
N00014-19-1-2217, NSF CNS: 2003111 and NSF CPS: 2038603.

References
[1] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. On the theory of policy gradient methods:

Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22
(98):1–76, 2021.

[2] Y. Bai and C. Jin. Provable self-play algorithms for competitive reinforcement learning. In
International conference on machine learning, pages 551–560. PMLR, 2020.

[3] Y. Bai, C. Jin, and T. Yu. Near-optimal reinforcement learning with self-play. Advances in
neural information processing systems, 33:2159–2170, 2020.

[4] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto, V. Dumoulin,
S. Moitra, E. Hughes, et al. The hanabi challenge: A new frontier for ai research. Artificial
Intelligence, 280:103216, 2020.

10

[5] J. Bhandari and D. Russo. Global optimality guarantees for policy gradient methods. arXiv
preprint arXiv:1906.01786, 2019.

[6] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

[7] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi. Fast global convergence of natural policy
gradient methods with entropy regularization. Operations Research, 2021.

[8] S. Cen, Y. Wei, and Y. Chi. Fast policy extragradient methods for competitive games with
entropy regularization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 27952–27964.
Curran Associates, Inc., 2021.

[9] X. Chen and B. Peng. Hedging in games: Faster convergence of external and swap regrets.
Advances in Neural Information Processing Systems, 33:18990–18999, 2020.

[10] Z. Chen, D. Zhou, and Q. Gu. Almost optimal algorithms for two-player zero-sum linear
mixture markov games. In International Conference on Algorithmic Learning Theory, pages
227–261. PMLR, 2022.

[11] C. Daskalakis, D. J. Foster, and N. Golowich. Independent policy gradient methods for
competitive reinforcement learning. Advances in neural information processing systems, 33:
5527–5540, 2020.

[12] C. Daskalakis, M. Fishelson, and N. Golowich. Near-optimal no-regret learning in general
games. Advances in Neural Information Processing Systems, 34, 2021.

[13] C. Daskalakis, N. Golowich, and K. Zhang. The complexity of markov equilibrium in stochastic
games. arXiv preprint arXiv:2204.03991, 2022.

[14] C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr, M. Sun, and S. Whiteson.
Is independent learning all you need in the starcraft multi-agent challenge? arXiv preprint
arXiv:2011.09533, 2020.

[15] D. Ding, K. Zhang, T. Basar, and M. Jovanovic. Natural policy gradient primal-dual method for
constrained markov decision processes. Advances in Neural Information Processing Systems,
33:8378–8390, 2020.

[16] D. Ding, C.-Y. Wei, K. Zhang, and M. R. Jovanović. Independent policy gradient for large-scale
markov potential games: Sharper rates, function approximation, and game-agnostic convergence.
arXiv preprint arXiv:2202.04129, 2022.

[17] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer Science & Business
Media, 2012.

[18] N. Golowich, S. Pattathil, C. Daskalakis, and A. Ozdaglar. Last iterate is slower than averaged
iterate in smooth convex-concave saddle point problems. In Conference on Learning Theory,
pages 1758–1784. PMLR, 2020.

[19] T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy iteration is strongly polynomial for
2-player turn-based stochastic games with a constant discount factor. Journal of the ACM
(JACM), 60(1):1–16, 2013.

[20] J. Hu and M. P. Wellman. Nash q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

[21] B. Huang, J. D. Lee, Z. Wang, and Z. Yang. Towards general function approximation in
zero-sum markov games. arXiv preprint arXiv:2107.14702, 2021.

[22] Z. Jia, L. F. Yang, and M. Wang. Feature-based q-learning for two-player stochastic games.
arXiv preprint arXiv:1906.00423, 2019.

[23] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? Advances
in neural information processing systems, 31, 2018.

11

[24] C. Jin, Q. Liu, Y. Wang, and T. Yu. V-learning–a simple, efficient, decentralized algorithm for
multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

[25] C. Jin, Q. Liu, and T. Yu. The power of exploiter: Provable multi-agent rl in large state spaces.
arXiv preprint arXiv:2106.03352, 2021.

[26] Y. Jin, V. Muthukumar, and A. Sidford. The complexity of infinite-horizon general-sum
stochastic games. arXiv preprint arXiv:2204.04186, 2022.

[27] S. Khodadadian, P. R. Jhunjhunwala, S. M. Varma, and S. T. Maguluri. On the linear convergence
of natural policy gradient algorithm. arXiv preprint arXiv:2105.01424, 2021.

[28] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[29] S. Leonardos, W. Overman, I. Panageas, and G. Piliouras. Global convergence of multi-agent
policy gradient in markov potential games. arXiv preprint arXiv:2106.01969, 2021.

[30] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[31] M. L. Littman et al. Friend-or-foe q-learning in general-sum games. In ICML, volume 1, pages
322–328, 2001.

[32] B. Liu, Q. Cai, Z. Yang, and Z. Wang. Neural trust region/proximal policy optimization attains
globally optimal policy. Advances in neural information processing systems, 32, 2019.

[33] Q. Liu, T. Yu, Y. Bai, and C. Jin. A sharp analysis of model-based reinforcement learning with
self-play. In International Conference on Machine Learning, pages 7001–7010. PMLR, 2021.

[34] Q. Liu, Y. Wang, and C. Jin. Learning markov games with adversarial opponents: Efficient
algorithms and fundamental limits. arXiv preprint arXiv:2203.06803, 2022.

[35] Y. Liu, K. Zhang, T. Basar, and W. Yin. An improved analysis of (variance-reduced) policy
gradient and natural policy gradient methods. Advances in Neural Information Processing
Systems, 33:7624–7636, 2020.

[36] W. Mao and T. Başar. Provably efficient reinforcement learning in decentralized general-sum
markov games. arXiv preprint arXiv:2110.05682, 2021.

[37] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans. On the global convergence rates of softmax
policy gradient methods. In International Conference on Machine Learning, pages 6820–6829.
PMLR, 2020.

[38] J. Mei, B. Dai, C. Xiao, C. Szepesvari, and D. Schuurmans. Understanding the effect of
stochasticity in policy optimization. Advances in Neural Information Processing Systems, 34,
2021.

[39] I. Mordatch and P. Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[40] J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2219–2225. IEEE, 2006.

[41] S. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences.
Advances in Neural Information Processing Systems, 26, 2013.

[42] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson. Qmix: Mono-
tonic value function factorisation for deep multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 4295–4304. PMLR, 2018.

[43] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rudner, C.-M. Hung,
P. H. Torr, J. Foerster, and S. Whiteson. The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043, 2019.

12

[44] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[46] L. Shani, Y. Efroni, and S. Mannor. Adaptive trust region policy optimization: Global conver-
gence and faster rates for regularized mdps. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 5668–5675, 2020.

[47] L. S. Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953.

[48] A. Sidford, M. Wang, L. Yang, and Y. Ye. Solving discounted stochastic two-player games with
near-optimal time and sample complexity. In International Conference on Artificial Intelligence
and Statistics, pages 2992–3002. PMLR, 2020.

[49] Z. Song, S. Mei, and Y. Bai. When can we learn general-sum markov games with a large
number of players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

[50] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning
in games. Advances in Neural Information Processing Systems, 28, 2015.

[51] Y. Tian, Y. Wang, T. Yu, and S. Sra. Online learning in unknown markov games. In International
Conference on Machine Learning, pages 10279–10288. PMLR, 2021.

[52] C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Online reinforcement learning in stochastic games. In
Advances in Neural Information Processing Systems, pages 4987–4997, 2017.

[53] C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo. Last-iterate convergence of decentralized
optimistic gradient descent/ascent in infinite-horizon competitive markov games. In Conference
on Learning Theory, pages 4259–4299. PMLR, 2021.

[54] L. Xiao. On the convergence rates of policy gradient methods. arXiv preprint arXiv:2201.07443,
2022.

[55] Q. Xie, Y. Chen, Z. Wang, and Z. Yang. Learning zero-sum simultaneous-move markov games
using function approximation and correlated equilibrium. arXiv preprint arXiv:2002.07066,
2020.

[56] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness of ppo
in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

[57] T. Yu, Y. Tian, J. Zhang, and S. Sra. Provably efficient algorithms for multi-objective competitive
rl. arXiv preprint arXiv:2102.03192, 2021.

[58] K. Zhang, S. M. Kakade, T. Başar, and L. F. Yang. Model-based multi-agent rl in zero-sum
markov games with near-optimal sample complexity. arXiv preprint arXiv:2007.07461, 2020.

[59] K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective overview of
theories and algorithms. Handbook of Reinforcement Learning and Control, pages 321–384,
2021.

[60] R. Zhang, Z. Ren, and N. Li. Gradient play in multi-agent markov stochastic games: Stationary
points and convergence. CoRR, abs/2106.00198, 2021.

[61] R. Zhang, J. Mei, B. Dai, D. Schuurmans, and N. Li. On the effect of log-barrier regularization
in decentralized softmax gradient play in multiagent systems, 2022.

[62] Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du. Provably efficient policy gradient methods for
two-player zero-sum markov games. arXiv preprint arXiv:2102.08903, 2021.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] As this

work is primarily theoretical and about understandings, we do not foresee any negative
societal impacts of this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] Our simulations are deterministic.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Technical tools

A.1 Properties of αi
t

Throughout this section, the sequence
{
βi
t

}
i∈[t]

is defined through sequence {βt}t≥1 as in (6), and
αi
t is its special case with βt = αt, where {αt}t≥1 is defined in (3). We present some basic algebraic

properties of αi
t that will be used in later proofs.

Lemma A.1. Given a sequence {∆t
h}h,t defined by{
∆t

h =
∑t

i=1 α
i
t∆

i
h+1 + βt,

∆t
H+1 = 0, for all t,

(16)

where {βt} is non-increasing w.r.t. t. Then ∆t+1
h ≤ ∆t

h for all (t, h) ∈ N× [H + 1].

Proof. We prove by doing backward induction on h. For the base case of induction, notice that the
claim is true for H + 1. Assume the claim is true for h+ 1. At step h, we have

∆t+1
h =

t+1∑
i=1

αi
t+1∆

i
h+1 + βt+1

= (1− αt+1)

t∑
i=1

αi
t∆

i
h+1 + αt+1∆

t+1
h+1 + βt+1

≤ (1− αt+1)

t∑
i=1

αi
t∆

i
h+1 + αt+1

t∑
i=1

αi
t∆

i
h+1 + βt = ∆t

h,

where the inequality follows from the inductive hypothesis and βt+1 ≤ βt.

The following lemma is taken from [23].
Lemma A.2. The sequence αi

t satisfies the following:

(a)
∑∞

t=i α
i
t = 1 + 1/H for all i ≥ 1.

Lemma A.3 (Convolution of βt
T with decaying sequences). From general {βt}t≥1 sequence, we

have that

XT :=

T∑
t=1

1

t
βt
T ≤

2cβ log(T)

T
, for T ≥ 2.

Specifically if βt = αt, the following holds for all T ≥ 1:

(a) AT :=
∑T

t=1 α
t
T · 1

t2 ≤
4
T .

(b) BT :=
∑T

t=1 α
t
Tαt ≤ (H+1)2

H(H+T)

(c) CT :=
∑T

t=1 α
t
T · α2

t ≤ 4H
T .

Proof. We first prove for the inequality on XT for general {βt}t≥1 sequence. We start with showing
that Xt+1 ≤ Xt, ∀t ≥ 1.

Xt+1 =

t+1∑
i=1

1

i
βi
t+1 =

t∑
i=1

1

i
βi
t+1 +

βt+1

t+ 1

= (1− βt+1)

t∑
i=1

1

i
βi
t +

βt+1

t+ 1
= (1− βt+1)Xt +

βt+1

t+ 1

=⇒ Xt+1 −Xt = βt+1

(
1

t+ 1
−Xt

)
.

15

Since

1

t+ 1
−Xt =

1

t+ 1
−

t∑
i=1

1

i
βi
t =

t∑
i=1

βi
t

(
1

t+ 1
− 1

i

)
≤ 0,

we have that Xt+1 −Xt ≤ 0.Thus

XT ≤
1

T

T∑
t=1

Xt =
1

T

T∑
t=1

t∑
i=1

1

i
βi
t =

1

T

T∑
i=1

1

i

(
T∑
t=i

βi
t

)
≤ cβ

T

T∑
i=1

1

i
≤ 2cβ log(T)

T
.

Now we prove for the specific case where βt = αt:

(a) Note that A1 = 1 and we have the recursive relationship

AT+1 = (1− αT+1)AT + αT+1 ·
1

(T + 1)2

by definition of the sequence αt
T . In particular this implies AT+1 ≤ AT , since AT is a weighted

average of 1/t2 ≥ 1/(T + 1)2. Therefore we have

AT ≤
1

T

T∑
t=1

At =
1

T

T∑
t=1

t∑
s=1

αs
t ·

1

s2

=
1

T

T∑
s=1

T∑
t=s

αs
t︸ ︷︷ ︸

≤1+1/H≤2

· 1
s2
≤ 2

T

T∑
s=1

1

s2
≤ 2

T

∞∑
s=1

1

s2
≤ 4

T
.

Above, the step
∑T

t=s α
s
t ≤

∑∞
t=s α

s
t = 1 + 1/H follows from Lemma A.2.

(b) From the definition of BT we have that

BT+1 =

T+1∑
t=1

αt
T+1αt =

T∑
t=1

(1− αT+1)α
t
Tαt + α2

T+1 = (1− αt
T+1)BT + αT+1

=⇒ BT+1 =
T

H + T + 1
BT +

(H + 1)2

(H + T + 1)2
≤ T

H + T + 1
BT +

(H + 1)2

(H + T + 1)(H + T)

=⇒
(
BT+1 −

(H + 1)2

H(H + T + 1)

)
≤ T

H + T + 1

(
BT −

(H + 1)2

H(H + T)

)
.

Since B1 = α2
1 = 1 ≤ (H+1)2

H(H+1) , we have that BT ≤ (H+1)2

H(H+T) via proof by induction.

(c) Since αt ≤ 1, we have that CT ≤ BT , thus by part (b)

CT ≤ BT ≤
(H + 1)2

H(H + T)
≤ 4H

T
.

Consider the sequence {wt}t≥1 defined by (cf. also Example 1)

wt = αt
t/α

1
t . (17)

Note that we also have wt = αt
T /α

1
T for any T ≥ t.

Lemma A.4 (Properties of wt). The following holds for all t ≥ 2:

(a) wt/wt−1 = (H + t− 1)/(t− 1).

(b) (1
wt−1

− 1
wt

)
∑t−1

i=1 wi = H/(H + 1).

16

Proof. (a) We have
wt

wt−1
=

αt

αt−1(1− αt)
=

(H + 1)/(H + t)

(H + 1)/(H + t− 1) · (t− 1)/(H + t)
=

H + t− 1

t− 1
.

(b) We have(
1

wt−1
− 1

wt

) t−1∑
i=1

wi =
1

wt−1

(
1− wt−1

wt

) t−1∑
i=1

wi =

(
1− wt−1

wt

)
· 1

αt−1
t−1

(i)
=

H

H + t− 1
· H + t− 1

H + 1
=

H

H + 1
.

Above, (i) used part (a).

A.2 Other technical lemmas

Lemma A.5 (Smoothness of Exponential Weights). Let g1, g2 ∈ Rn and

x1 = argmax
x∈∆[n]

⟨x, g1⟩ −H(x),

x2 = argmax
x∈∆[n]

⟨x, g2⟩ −H(x),

where H(x) :=
∑n

i=1 xi log xi is the standard entropy functional. Then ∥x1−x2∥1 ≤ 2∥g1−g2∥∞.

Proof. Since H is 1-strongly convex in ∥ · ∥1 (Pinsker’s inequality), we have that

∥x1 − x2∥21
2

≤ H(x1)−H(x2)− ⟨∇H(x2), x1 − x2⟩

= H(x1) + (⟨x2, g1⟩ −H(x2))− ⟨x2, g1⟩ − ⟨∇H(x2), x1 − x2⟩
≤ H(x1) + (⟨x1, g1⟩ −H(x1))− ⟨x2, g1⟩ − ⟨∇H(x2), x1 − x2⟩
= ⟨x1 − x2, g1⟩ − ⟨∇H(x2), x1 − x2⟩
= ⟨x1 − x2, g1 − g2⟩+ ⟨g2 −∇H(x2), x1 − x2⟩
≤ ⟨x1 − x2, g1 − g2⟩ (From the optimality of x2)
≤ ∥x1 − x2∥1∥g1 − g2∥∞,

which completes the proof.

B Bound for regret minimization algorithms

B.1 Projected gradient descent

Algorithm 2 Projected gradient descent

Require: Learning rate η > 0.
1: Initialize x1 ∈ X ⊂ Rd.
2: for t = 1, . . . , T do
3: Receive loss gt ∈ Rd.
4: Compute update yt+1 = xt − ηgt, xt+1 = PX (yt+1).

The following weighted regret bound for projected gradient descent is standard. For completeness
we provide a proof here. For simplicity of notation, denote the diameter of X ⊂ Rd by R and
G = maxt∈[T] ∥gt∥2.
Lemma B.1 (Weighted regret bound for projected gradient descent). For any weights {wt}t≥1 ∈ R>0

with wt ≤ wt+1 for all t ≥ 1, Algorithm 2 achieves

max
z∈X

T∑
t=1

wt⟨xt − z, gt⟩ ≤
wT

2η
R2 +

η
∑T

t=1 wt ·G2

2
.

17

Proof. By following the standard GD analysis, we first have

⟨xt − z, gt⟩ =
1

η
⟨xt − z, xt − yt+1⟩

=
1

2η

[
∥xt − z∥2 + ∥xt − yt+1∥2 − ∥z − yt+1∥2

]
≤ 1

2η

[
∥xt − z∥2 + ∥xt − yt+1∥2 − ∥z − xt+1∥2

]
=

1

2η

[
∥xt − z∥2 − ∥z − xt+1∥2 + η2∥gt∥2

]
,

where the inequality follows from z ∈ X and xt+1 = PX (yt+1). By multiplying both sides with wt

and taking summation over t ∈ [T], we have
T∑

t=1

wt⟨xt − z, gt⟩ ≤
1

2η

T∑
t=1

wt

[
∥xt − z∥2 − ∥z − xt+1∥2 + η2∥gt∥2

]
=

1

2η

T−1∑
t=1

(wt+1 − wt)∥z − xt+1∥2 + w1∥x1 − z∥2 +
η
∑T

t=1 wt ·G2

2

(i)

≤ 1

2η

T−1∑
t=1

(wt+1 − wt)R
2 + w1R

2 +
ηG2

2
=

1

2η
wTR

2 +
η
∑T

t=1 wt ·G2

2
,

Above, (i) follows as wt+1 ≥ wt. This completes the proof.

B.2 Follow-The-Regularized Leader (FTRL)

In this subsection, we consider the following weighted FTRL algorithm over the probability simplex
∆[A] with the standard (negative) entropy regularizer Φ(x) :=

∑
a∈[A] x(a) log x(a). Below the

notation xt(a) denotes the a-th entry of xt.

Algorithm 3 Weighted FTRL with changing learning rate

Require: Learning rate η > 0; Weights {wt}t≥1 ⊂ R>0.
1: Initialize x1 ← 1A/A to be the uniform distribution over [A].
2: for t = 1, . . . , T do
3: Receive loss gt ∈ RA.
4: Compute FTRL update

xt+1 ← argmin
x∈∆[A]

〈
x,

t∑
s=1

wsgs

〉
+

wt

η
Φ(x). (18)

Note that (18) has a closed-form solution via exponential weights:

xt+1(a) ∝a exp

(
− η

wt

t∑
s=1

wsgs(a)

)
. (19)

Lemma B.2 (Regret bound of weighted FTRL). Suppose the weights are non-decreasing: wt+1 ≥ wt

for all t ≥ 1, and maxt ∥gt∥∞ ≤ G. Then Algorithm 3 achieves weighted regret bound

max
z∈∆[A]

T∑
t=1

wt⟨xt − z, gt⟩ ≤
wT

η
logA+

ηG2

2

T∑
t=1

wt.

Proof. Applying standard anytime FTRL analysis (see, e.g., Excercise 28.12 in [28]) with loss
sequence {wtgt}t≥1 and learning rate {η/wt}t≥1, we have that

T∑
t=1

wt⟨xt − z, gt⟩ ≤
wT (Φ(x1)−minx Φ(x))

η
+

T∑
t=1

wt

(
⟨xt − xt+1, gt⟩ −

KL(xt+1||xt)

η

)

18

≤ wT logA

η
+

T∑
t=1

(
wt ⟨xt − xt+1, gt⟩ −

wt∥xt − xt+1∥21
2η

)
(Pinsker’s inequality)

≤ wT logA

η
+

T∑
t=1

wtη

2
∥gt∥2∞

≤ wT logA

η
+

ηG2

2

T∑
t=1

wt,

which completes the proof.

B.3 Optimistic Follow-The-Regularized-Leader (OFTRL)

We consider the following OFTRL algorithm on the probability simplex ∆[A] with standard (negative)
entropy regularizer Φ(x) =

∑
a∈[A] x(a) log x(a).

Algorithm 4 Anytime OFTRL

Require: Learning rate {ηt}t≥1.
1: Initialize x1 ← 1A/A to be the uniform distribution over [A].
2: for t = 1, . . . , T do
3: Receive loss gt ∈ RA.
4: Compute a prediction vector Mt+1 ∈ RA using past observations.
5: Compute OFTRL update

xt+1 ← argmin
x∈∆[A]

ηt+1

〈
x,

t∑
s=1

gs +Mt+1

〉
+Φ(x). (20)

Note that (20) has a closed-form solution via exponential weights:

xt+1(a) ∝a exp

(
−ηt+1

[
t∑

s=1

gs(a) +Mt+1(a)

])
. (21)

The following regret bound for OFTRL follows similarly as standard OFTRL analysis, see, e.g. [41,
Lemma 1]. For completeness, we provide a proof here.

Lemma B.3 (Regret bound for OFTRL). Suppose the learning rates are non-increasing: ηt ≥ ηt+1

for all t ≥ 1. Then Algorithm 4 achieves the following bound for all x ∈ X :

T∑
t=1

⟨xt − x, gt⟩ ≤
logA

ηT
+

T∑
t=1

ηt∥gt −Mt∥2∞ −
T−1∑
t=1

1

8ηt
∥xt − xt+1∥21.

Proof. Consider a fixed T ≥ 1. Note that Algorithm 4 is equivalent to Algorithm (25) with regularizer
Rt(·) := (Φ(·)+ logA)/ηt+1 ≥ 0 for t ≥ 0, and RT (·) := RT−1(·) (Note that the shifting by logA
does not affect the algorithm.)

We first decompose the regret into the following three terms

T∑
t=1

⟨xt − x, gt⟩ =
T∑

t=1

⟨qt+1 − x, gt⟩+
T∑

t=1

⟨xt − qt+1,Mt⟩+
T∑

t=1

⟨xt − qt+1, gt −Mt⟩,

where {qt}t≥1 is defined in (26). By Lemma B.5, we can upper bound the first two terms by
RT (x)−minx′ R0(x

′) + ST ≤ RT (x) + ST and obtain

T∑
t=1

⟨xt − x, gt⟩

19

≤RT (x) +

T∑
t=1

(Rt−1(qt+1)−Rt(qt+1)) +

T∑
t=1

(
⟨xt − qt+1, gt −Mt⟩ −DRt−1

(qt+1, xt)−DRt−1
(xt, qt)

)
≤RT (x) +

T∑
t=1

(
∥xt − qt+1∥1∥gt −Mt∥∞ −

1

2ηt
∥qt+1 − xt∥21 −

1

2ηt
∥xt − qt∥21

)
,

where the second inequality uses Rt−1 ≤ Rt and Rt−1 is 1/ηt strongly-convex w.r.t. ∥ · ∥1. Finally,
we conclude the proof by applying Cauchy-Schwarz inequality:

∥xt − qt+1∥1∥gt −Mt∥∞ −
1

4ηt
∥qt+1 − xt∥21 ≤ ηt∥gt −Mt∥2∞,

and triangle inequality

− 1

4ηt
∥qt+1 − xt∥21 −

1

4ηt
∥qt+1 − xt+1∥21 ≤ −

1

8ηt
∥xt+1 − xt∥21,

and the bound RT (x) ≤ logA/ηT+1 = logA/ηT for any x ∈ ∆[A].

The following lemma bounds the total variation of the iterates in terms of the smoothness of loss
vectors and prediction vectors. This can be seen as a generalization of [9, Lemma 3.2] to the case
with changing learning rate and arbitrary prediction vectors.
Lemma B.4 (Bounding stability by the smoothness of loss). Suppose the learning rates are non-
increasing: ηt ≥ ηt+1 for all t ≥ 1. Then the OFTRL algorithm (20) satisfies (understanding
M1 := 0)

T∑
t=2

1

2ηt
∥xt − xt−1∥21 ≤

logA

ηT
+ max

x∈∆[d]

T−1∑
t=1

⟨xt − x, gt⟩+
T∑

t=2

∥Mt −Mt−1∥∞ + ∥MT ∥∞

(22)

≤ 2 logA

ηT
+

T−1∑
t=1

ηt ∥gt −Mt∥2∞ +

T∑
t=2

∥Mt −Mt−1∥∞ + ∥MT ∥∞ . (23)

In particular, choosing the prediction vector Mt = gt−1 with g0 := 0, and assume ∥gt − gt−1∥∞ ≤
Gt for all t ≥ 1, we have

T∑
t=2

1

2ηt
∥xt − xt−1∥21 ≤

2 logA

ηT
+

T−1∑
t=1

ηt ∥gt − gt−1∥2∞ +

T∑
t=2

∥gt−1 − gt−2∥∞ + ∥gT−1∥∞

≤ 2 logA

ηT
+

T−1∑
t=1

(1 + ηtGt) ∥gt − gt−1∥∞ + ∥gT−1∥∞ .

(24)

Proof. We first prove (22). For any t ≥ 2, the optimality condition of (20) for xt gives〈
t−1∑
s=1

gs +Mt +
∇Φ(xt)

ηt
, x′ − xt

〉
≥ 0

for all x′ ∈ ∆[A]. In particular, this holds for x′ = xt−1, from which we get

1

2ηt
∥xt−1 − xt∥21

(i)

≤ 1

ηt
KL(xt−1∥xt)

(ii)
=

Φ(xt−1)− Φ(xt)

ηt
−
〈
∇Φ(xt)

ηt
, xt−1 − xt

〉
≤ Φ(xt−1)− Φ(xt)

ηt
+

〈
t−1∑
s=1

gs +Mt, xt−1 − xt

〉
,

where (i) is by Pinsker’s inequality, and (ii) is since the KL divergence is the Bregman divergence of
Φ. Summing the above over t = 2, . . . , T yields

T∑
t=2

1

2ηt
∥xt−1 − xt∥21

20

≤ −Φ(xT)

ηT︸ ︷︷ ︸
≤logA/ηT

+

T∑
t=2

(
1

ηt
− 1

ηt−1

)
︸ ︷︷ ︸

≥0

Φ(xt−1)︸ ︷︷ ︸
≤0

−

〈
T−1∑
s=1

gs +MT , xT

〉
+

T∑
t=2

⟨gt−1 +Mt −Mt−1, xt−1⟩

≤ logA

ηT
+

T−1∑
t=1

⟨xt, gt⟩ −
T−1∑
t=1

⟨xT , gt⟩+ ⟨MT , xT ⟩+
T∑

t=2

⟨Mt −Mt−1, xt−1⟩

≤ logA

ηT
+ max

x∈∆[d]

T−1∑
t=1

⟨xt − x, gt⟩+
T∑

t=2

∥Mt −Mt−1∥∞ + ∥MT ∥∞ .

This proves (22). Then, (23) follows by plugging in the regret bound given by Lemma B.3:

max
x∈∆[d]

T−1∑
t=1

⟨xt − x, gt⟩ ≤
logA

ηT−1
+

T−1∑
t=1

ηt ∥gt −Mt∥2∞ ≤
logA

ηT
+

T−1∑
t=1

ηt ∥gt −Mt∥2∞ .

Finally, (24) is a direct consequence of (23) by plugging in Mt = gt−1 and ∥gt − gt−1∥∞ ≤ Gt for
all t ≥ 1.

B.3.1 Auxiliary lemma for OFTRL with general regularizers

Consider an OFTRL algorithm with loss function {gt}t≥0 ⊂ Rd, parameter space X ⊂ Rd, and
convex regularizers Rt : X → R for t ≥ 0:

xt+1 ← argmin
x∈X

〈
x,

t∑
s=1

gs +Mt+1

〉
+Rt(x). (25)

Define auxiliary sequence

qt+1 = argmin
x∈X

〈
x,

t∑
s=1

gs

〉
+Rt(x). (26)

Recall the Bregman divergence associated with any convex regularizer R : X → R is given by

DR(x, y) := R(x)−R(y)− ⟨∇R(y), x− y⟩ ≥ 0.

Lemma B.5 (Auxiliary lemma for OFTRL with general regularizers). Algorithm (25) achieves the
following for any T ≥ 1 and x ∈ X :

T∑
t=1

⟨qt+1, gt⟩+
T∑

t=1

⟨xt − qt+1,Mt⟩ ≤
T∑

t=1

⟨x, gt⟩+RT (x)− min
x′∈X

R0(x
′) + ST ,

where

ST :=

T∑
t=1

(Rt−1(qt+1)−Rt(qt+1))−
T∑

t=1

(
DRt−1(qt+1, xt) +DRt−1(xt, qt)

)
.

Proof. We prove the lemma by induction. The above relation holds trivially for T = 0. Assume the
relation holds for τ = T − 1. For τ = T , we have

T∑
t=1

⟨qt+1, gt⟩+
T∑

t=1

⟨xt − qt+1,Mt⟩

≤min
x∈X

[
T−1∑
t=1

⟨x, gt⟩+RT−1(x)

]
− min

x′∈X
R0(x

′) + ST−1 + ⟨qT+1, gT ⟩+ ⟨xT − qT+1,MT ⟩

=

T−1∑
t=1

⟨qT , gt⟩+RT−1(qT)− min
x′∈X

R0(x
′)

21

+ ST−1 + ⟨qT+1, gT ⟩+ ⟨xT − qT+1,MT ⟩ (definition of qT)

≤
T−1∑
t=1

⟨xT , gt⟩+RT−1(xT)−DRT−1
(xT , qT)− min

x′∈X
R0(x

′)

+ ST−1 + ⟨qT+1, gT ⟩+ ⟨xT − qT+1,MT ⟩ (optimality of qT)

=min
x∈X

[
⟨x,

T−1∑
t=1

gt +MT ⟩+RT−1(x)

]
−DRT−1

(xT , qT)− min
x′∈X

R0(x
′)

+ ST−1 + ⟨qT+1, gT −MT ⟩ (definition of xT)

≤⟨qT+1,

T−1∑
t=1

gt +MT ⟩+RT−1(qT+1)−DRT−1
(qT+1, xT)

−DRT−1
(xT , qT)− min

x′∈X
R0(x

′) + ST−1 + ⟨qT+1, gT −MT ⟩ (optimality of xT)

=min
x∈X
⟨x,

T∑
t=1

gt⟩+RT (x) + (RT−1(qT+1)−RT (qT+1))

−DRT−1
(qT+1, xT)−DRT−1

(xT , qT)− min
x′∈X

R0(x
′) + ST−1 (definition of qT+1),

which completes the induction.

C Proofs for Section 3.1

In this section we prove Theorem 2. The proof relies on the following two lemmas.
Lemma C.1 (Performance difference for Markov policies). In two-player zero-sum Markov games,
suppose a Markov policy (µ, ν) satisfies the following for all h ∈ [H + 1]:

max
s

max
µ†∈∆A

([
(µ†)⊤Q⋆

hνh
]
(s)− V ⋆

h (s)
)
≤ εh,

max
s

max
ν†∈∆B

(
V ⋆
h (s)−

[
µ⊤
hQ

⋆
hν

†](s)) ≤ εh.

Then we have for all h ∈ [H] that

max
{
∥V †,ν

h − V ⋆
h ∥∞, ∥V µ,†

h − V ⋆
h ∥∞

}
≤

H∑
h′=h

εh′ .

Proof. We prove by backward induction over h. The claim is trivial for h = H + 1. Suppose the
claim holds for step h+ 1. At step h,

∥V †,ν
h − V ⋆

h ∥∞ = max
s

∣∣∣∣ max
µ†∈∆A

[
(µ†)⊤Q†,ν

h νh

]
(s)− V ⋆

h (s)

∣∣∣∣
≤ max

s

∣∣∣∣ max
µ†∈∆A

[
(µ†)⊤Q⋆

hνh
]
(s)− V ⋆

h (s)

∣∣∣∣+ ∥Q†,ν
h −Q⋆

h∥∞

≤ εh + ∥Q†,ν
h −Q⋆

h∥∞.

Notice that

∥Q†,ν
h −Q⋆

h∥∞ ≤ max
s,a,b

∣∣∣(rh + PhV
†,ν
h+1

)
(s, a, b)−

(
rh + PhV

⋆
h+1

)
(s, a, b)

∣∣∣
≤ max

s,a,b

∣∣∣Ph

[
V †,ν
h+1 − V ⋆

h+1

]
(s, a, b)

∣∣∣ ≤ ∥V †,ν
h+1 − V ⋆

h+1∥∞ ≤
H∑

h′=h+1

εh′ . (by inductive hypothesis)

Combining the two inequalities we get

∥V †,ν
h − V ⋆

h ∥∞ ≤
H∑

h′=h

εh′ .

22

This proves the claim for ∥V †,ν
h − V ⋆

h ∥∞. The same argument also holds for ∥V µ,†
h − V ⋆

h ∥∞, which
completes the proof.

Throughout the rest of this section, we define the following shorthand for the value estimation error:

δth :=
∥∥Qt

h −Q⋆
h

∥∥
∞ = max

s,a,b

∣∣Qt
h(s, a, b)−Q⋆

h(s, a, b)
∣∣,

where Qt
h is the estimated value in Algorithm 1.

Lemma C.2 (Recursion of value estimation). Algorithm 1 guarantees that for all (t, h) ∈ [T]× [H],

δth ≤
t∑

i=1

βi
tδ

i
h+1 + regth+1.

Further, suppose that regth ≤ regth for all (h, t) ∈ [H] × [T], where regth is non-increasing in t:
regth ≥ regt+1

h for all t ≥ 1. Then we have

δth ≤ HcH−1
β · 1

t

t∑
i=1

max
h′

regih′ ,

where cβ is defined in (9).

Proof. Fix (h, s, a, b) ∈ [H]× S ×A× B. From the definition of Q⋆
h we have that

Q⋆
h(s, a, b) = rh(s, a, b) + max

µh+1

min
νh+1

Ph

[
µ⊤
h+1Q

⋆
h+1νh+1

]
(s, a, b)

≤ rh(s, a, b) + max
µh+1

Ph

[
µ⊤
h+1Q

⋆
h+1

(
t∑

i=1

βi
tν

i
h+1

)]
(s, a, b)

= rh(s, a, b) + max
µh+1

t∑
i=1

βi
tPh

[
µ⊤
h+1Q

⋆
h+1ν

i
h+1

]
(s, a, b)

≤ rh(s, a, b) + max
µh+1

t∑
i=1

βi
t

(
Ph

[
µ⊤
h+1Q

i
h+1ν

i
h+1

]
(s, a, b) + ∥Qi

h+1 −Q⋆
h+1∥∞

)
≤ rh(s, a, b) +

t∑
i=1

βi
tPh

[
(µi

h+1)
⊤Qi

h+1ν
i
h+1

]
(s, a, b) +

t∑
i=1

βi
tδ

i
h+1 + regth+1

= Qt
h(s, a, b) +

t∑
i=1

βi
tδ

i
h+1 + regth+1.

Above, the last equality is derived from the update rule (3), which implies that

Qt
h(s, a, b) =

t∑
i=1

βi
t

(
rh + Ph

[
(µi

h+1)
⊤Qi

h+1ν
i
h+1

])
(s, a, b).

Therefore we have

Q⋆
h(s, a, b)−Qt

h(s, a, b) ≤
t∑

i=1

βi
tδ

i
h+1 + regth+1, ∀ s, a, b.

Apply similar analysis to the min-player, we get

Qt
h(s, a, b)−Q⋆

h(s, a, b) ≤
t∑

i=1

βi
tδ

i
h+1 + regth+1, ∀ s, a, b.

Thus we get

δth ≤
t∑

i=1

βi
tδ

i
h+1 + regth+1,

23

which completes the proof of the first inequality in the Lemma. Now consider an auxiliary sequence
{∆t

h}h,t defined by {
∆t

h =
∑t

i=1 β
i
t∆

i
h+1 + regth+1,

∆t
H+1 = 0, for all t.

(27)

Where regth is the upperbound of regth defined in Theorem 2. Observe that {∆t
h}h,t satisfies the

following properties {
∆t

h ≥ δth (by definition),
∆t

h ≤ ∆t−1
h (by Lemma A.1).

(28)

Therefore, to control δth, it suffices to bound ∆t
h ≤ 1

t

∑t
i=1 ∆

i
h, which follows from the standard

argument in [23]:

1

t

t∑
i=1

∆i
h =

1

t

t∑
i=1

i∑
j=1

βj
i∆

j
h+1 +

1

t

t∑
i=1

regih+1

≤ 1

t

t∑
j=1

 t∑
i=j

βj
i

∆j
h+1 +

1

t

t∑
i=1

regih+1

≤ cβ ·
1

t

t∑
i=1

∆i
h+1 +

1

t

t∑
i=1

regih+1

≤ c2β ·
1

t

t∑
i=1

∆i
h+2 + cβ ·

1

t

t∑
i=1

regih+2 +
1

t

t∑
i=1

regih+1

≤ · · ·

≤

(
H∑

h′=h+1

ch
′−h

β

)
· 1
t

t∑
i=1

max
1≤h′≤H

regih′

≤ HcH−1
β · 1

t

t∑
i=1

max
1≤h′≤H

regih′ .

Above, the last step used the fact that cβ ≥ 1. This completes the proof of the second inequality in
the Lemma.

We are now ready to prove the main theorem.

Proof of Theorem 2. Fix any (h, s) ∈ [H] × S. We first give a bound for
maxµ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s), i.e. the per-state duality gap of (µ̂T , ν̂T) with

respect to Q⋆
h. We have

max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s)

= max
µ†∈∆A,ν†∈∆B

T∑
t=1

βt
T

[
(µ†)⊤Q⋆

hν
t
h −

(
µt
h

)⊤
Q⋆

hν
†
]
(s)

≤ max
µ†∈∆A,ν†∈∆B

T∑
t=1

βt
T

[
(µ†)⊤Qt

hν
t
h −

(
µt
h

)⊤
Qt

hν
†
]
(s)︸ ︷︷ ︸

regT
µ,h(s)+regT

ν,h(s)

+2

T∑
t=1

βt
T δ

t
h

≤ 2regTh + 2HcH−1
β

T∑
t=1

βt
T ·

1

t

t∑
i=1

max
h′

regih′ (Lemma C.2)

≤ 2regTh + 2HcH−1
β

(
T∑

t=1

1

t
βt
T

)(
T∑

i=1

max
h′

regih′

)
.

24

Apply Lemma A.3 into the above inequality, we get that

max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s) ≤ 2regTh + 4HcHβ log T · 1

T

T∑
t=1

max
h′

regth′ .

Since

max
µ†∈∆A

([
(µ†)⊤Q⋆

hν̂
T
h

]
(s)−V ⋆

h (s)
)
, max
ν†∈∆B

(
V ⋆
h (s)−

[
(µ̂T

h)
⊤Q⋆

hν
†](s))≤ max

µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s),

by applying Lemma C.1 and the preceding per-state duality gap bound, we have

NEGap(µ̂T , ν̂T) =
(
V †,ν̂T

1 (s1)− V ⋆
1 (s1)

)
+
(
V ⋆
1 (s1)− V µ̂T ,†

1 (s1)
)

≤ 2

H∑
h=1

max
s

max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s)

≤ 2

H∑
h=1

(
2regTh + 4HcHβ log T · 1

T

T∑
t=1

max
h′

regth′

)

≤ 4Hmax
h

regTh + 8H2cHβ log T · 1
T

T∑
t=1

max
h′

regth′ .

This completes the proof.

C.1 Implementation of state-wise average policy

Here we explain how to implement the state-wise average policy (5) efficiently via moving average.
Recall that the weights {βt

T }
T
t=1 are defined via {βt}t≥1 through (6). Therefore, for each (h, s), we

can maintain a set of moving averages

µt
h(·|s) := (1− βt)µ

t−1
h (·|s) + βtµ

t
h(·|s)

for all t ≥ 1 during the execution of Algorithm 1. At time T , we output the moving average µT
h (·|s),

which is exactly the desired state-wise average policy in (5):

µT
h (·|s) =

T∑
t=1

βt
Tµ

t
h(·|s) = µ̂T

h (·|s).

D Algorithm details and proofs for Section 3.2

D.1 Nash V-Learning (full-information version)

The full description of Nash V-Learning (Example 1) using V updates is presented in Algorithm 5.
Proposition D.1 (Equivalence between V update and Q update). Nash V-learning (full-information
version) in Algorithm 5 is equivalent to Algorithm 1 with the MatrixGameAlg as weighted FTRL (10).

Proof. It suffices to show that, for the Q value defined in (4) and the V value defined in (30), the
following holds for all (h, s, a, b) and all t ∈ [T]:

Qt
h(s, a, b) =

[
rh + PhV

t
h+1

]
(s, a, b). (31)

Since α1 = 1, it is not hard to verify that

Q1
h(s, a, b) =

[
rh + PhV

1
h+1

]
(s, a, b),

We now prove by induction on both t and h. Given that Q1
h(s, a, b) =

[
rh + PhV

1
h+1

]
(s, a, b), it is

not hard to verify that Qt
H(s, a, b) = rH(s, a, b), ∀ k ≥ 0. We assume that (31) holds for (t− 1, h)

and (t, h+ 1), then for (t, h), from (3)

Qt
h(s, a, b) = (1− αt)Q

t−1
h (s, a, b) + αt

(
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

)
(s, a, b)

25

Algorithm 5 Nash V-learning (full-information version)

Require: Learning rate {αt}t≥1 in (3) and corresponding {wt}t≥1 (cf. Example 1); η > 0.
Initialize: Set V 0

h (s) = H − h+ 1 for all (h, s) ∈ [H]× S .
for t = 1, . . . , T do

for h = H, . . . , 1 do
Update policy for all s ∈ S (understanding w0 := 1):

µt
h(a|s) ∝a exp

(
η

wt−1

t−1∑
i=1

wi

[(
rh + PhV

i
h+1

)
νih
]
(s, a)

)

νth(a|s) ∝b exp

(
− η

wt−1

t−1∑
i=1

wi

[(
rh + PhV

i
h+1

)⊤
µi
h

]
(s, b)

)
.

(29)

Update V value for all s ∈ S:

V t
h(s)← (1− αt)V

t−1
h (s) + αt

[(
µt
h

)⊤(
rh + PhV

t
h+1

)
νth

]
(s). (30)

≤ (1−αt)
[
rh+PhV

t−1
h+1

]
(s, a, b) + αt

(
rh+Ph

[
(µt

h+1)
⊤(rh+1+Ph+1Vh+2)ν

t
h+1

])
(s, a, b)

(inductive hypothesis)

=
[
rh + Ph

(
(1− αt)V

t−1
h+1 + αt(µ

t
h+1)

⊤(rh+1+Ph+1Vh+2)ν
t
h+1

)]
(s, a, b)

=
[
rh + PhV

t
h+1

]
(s, a, b) (from (30)),

which completes the proof by induction.

Lemma D.1 (Per-state regret bound for Nash V-learning). Algorithm 5 achieves the following
per-state regret bound:

regth ≤
(H + 1) log(A ∨B)

ηt
+

ηH2

2
, ∀h ∈ [H], t ≥ 1.

Proof. Fix any (h, s). Note that the update of {µt
h(·|s)}t≥1 in (29) is equivalent to the weighted

FTRL algorithm (Algorithm 3) with loss vectors gi = −
[
Qi

hν
i
h

]
(s). Thus by Lemma B.2 we get for

any t ≥ 1 that

max
µ†∈∆A

t∑
i=1

wi

〈
µ† − µi

h(·|s),
[
Qi

hν
i
h

]
(s, ·)

〉
≤ wt

η
logA+

ηH2

2

t∑
i=1

wi.

Further, recalling αi
t = wi · α1

t for 1 ≤ i ≤ t, we have

regth,µ ≤ α1
t

(
wt

η
logA+

ηH2

2

t∑
i=1

wi

)
=

α1
twt

η
logA+

ηH2

2

t∑
i=1

αi
t

=
αt

η
logA+

ηH2

2
≤ (H + 1) logA

ηt
+

ηH2

2
.

The similar bound also holds for regth,ν , and thus we have that

regth ≤
(H + 1) log(A ∨B)

ηt
+

ηH2

2
.

Proposition D.2 (Guarantee of Nash V-Learning). Algorithm 5 achieves

NEGap(µ̂T , ν̂T) ≤ 14ηH4 log(T) +
104 log(A ∨B) log(T)2H3

ηT
.

26

Specifically, choosing η = 4√
HT

, we have

NEGap(µ̂T , ν̂T) ≤ 82 log(A ∨B) log(T)2H7/2

√
T

.

Proof. From Lemma D.1, we can take regth as regth = (H+1) log(A∨B)
ηt + ηH2

2 . Then from Theorem
2, we have

NEGap(µ̂T , ν̂T) ≤ 4Hmax
h

regTh + 8H2

(
1 +

1

H

)H

log(T) · 1
T

T∑
t=1

max
h

regth

≤ 4H

(
(H + 1) log(A ∨B)

ηT
+

ηH2

2

)
+ 24H2 log(T) · 1

T

T∑
t=1

(
(H + 1) log(A ∨B)

ηt
+

ηH2

2

)

≤ 14ηH4 log(T) + 24H2 log(T) · 1
T

T∑
t=1

(H + 1) log(A ∨B)

ηt
+

8H2 log(A ∨B)

ηT

≤ 14ηH4 log(T) +
104 log(A ∨B) log(T)2H3

ηT
.

Thus, choosing η = 4√
HT

, we get

NEGap(µ̂T , ν̂T) ≤ 82 log(A ∨B) log(T)2H7/2

√
T

.

D.2 GDA-Critic

The full description of GDA-Critic (Example 2) using V updates is presented in Algorithm 6.

Algorithm 6 GDA-Critic

Require: Learning rate {αt}t≥1 (defined in (3)), and η > 0.
Initialize: set V 0

h (s) = H − h+ 1 and µ0(·|s), ν0(·|s) to be uniform for all (h, s) ∈ [H]× S .
for t = 1, . . . , T do

for h = H, . . . , 1 do
Update policy for all s ∈ S:

µt
h(·|s)← P∆A

(
µt−1
h (·|s) + η

[(
rh + PhV

t−1
h+1

)
νt−1
h

]
(s, ·, b)

)
νth(·|s)← P∆B

(
νt−1
h (·|s)− η

[(
rh + PhV

t−1
h+1

)⊤
µt−1
h

]
(s, a, ·)

) (32)

Update V value for all s ∈ S:

V t
h(s)← (1− αt)V

t−1
h (s) + αt

[(
µt
h

)⊤(
rh + PhV

t
h+1

)
νth

]
(s).

Similar as Proposition D.1 (with the same proof), the following equivalence between Q updates and
V updates also holds for GDA-Critic.

Proposition D.3 (Equivalence between Q updates and V updates for GDA-Critic). Algorithm 6 is
equivalent to our algorithm framework (Algorithm 1) with the MatrixGameAlg instantiated as (11).

Lemma D.2 (Per-state regret bound for GDA-Critic). Algorithm 6 achieves the following per-state
regret bound:

regth ≤
2(H + 1)

ηt
+

η(A ∨B)H2

2
.

27

Proof. Fix any (h, s) and t ≥ 1. We apply Lemma B.1 to the projected gradient descent (or ascent)
update (32), with weights wi = αi

t and loss vectors gi’s −
[
Qi

hν
i
h

]
(s) or

[(
Qi

h

)⊤
µi
h

]
(s) respectively.

For the gradient ascent update for µt
h(·|s), we get

regth,µ(s) ≤
αt
t

2η
· 4 +

η
(∑t

i=1 α
i
t

)
AH2

2
=

2

η

H + 1

H + t
+

ηAH2

2

regth,ν(s) ≤
αt
t

2η
· 4 +

η
(∑T

t=1 α
i
t

)
BH2

2
=

2

η

H + 1

H + t
+

ηBH2

2

=⇒ regth ≤
2(H + 1)

ηt
+

η(A ∨B)H2

2
.

Proposition D.4 (Guarantee of GDA-Critic). Algorithm 6 achieves

NEGap(µ̂T , ν̂T) ≤ 14η(A ∨B)H4 log(T) +
208 log(T)2H3

ηT
.

Specifically, picking η = 4√
(A∨B)HT

yields

NEGap(µ̂T , ν̂T) ≤ 108 log(T)2
√
A ∨BH7/2

√
T

.

Proof. From Lemma D.2, we can take regth as 2(H+1)
ηt + η(A∨B)H2

2 , then from Theorem 2

NEGap(µ̂T , ν̂T) ≤ 4Hmax
h

regTh + 8H2

(
1 +

1

H

)H

log(T) · 1
T

T∑
t=1

max
h

regth

≤ 4H

(
2(H + 1)

ηT
+

η(A ∨B)H2

2

)
+ 24H2 log(T) · 1

T

T∑
t=1

(
2(H + 1)

ηt
+

η(A ∨B)H2

2

)

≤ 14η(A ∨B)H4 log(T) + 48H2 log(T) · 1
T

T∑
t=1

(H + 1)

ηt
+

16H2

ηT

≤ 14η(A ∨B)H4 log(T) +
208 log(T)2H3

ηT
.

Thus, pick η = 4
(A∨B)

√
HT

, we get

NEGap(µ̂T , ν̂T) ≤ 108 log(T)2
√
A ∨BH7/2

√
T

.

D.3 Nash Q-Learning (full-information version)

The Nash Q-Learning algorithm (Example 3) is described in Algorithm 7.
Lemma D.3 (Per-state regret bound for Nash Q-Learning). Algorithm 7 achieves the following
per-state regret bound:

regth ≤
(H + 1)2

H + t
, ∀ h ∈ [H], t ≥ 1.

Proof. We have

regth,µ(s) = max
µ†∈∆A

t∑
i=1

αi
t

〈
µ† − µi

h(·|s),
[
Qi

hν
i
h

]
(s, ·)

〉
28

Algorithm 7 Nash Q-Learning

Require: Learning rate (For Nash Q-learning) {βt = αt};
Initialize: Q0

h(s, a, b)← H − h+ 1 for all (h, s, a, b).
for k = 1, . . . ,K do

for h = H, . . . , 1 do
Update policy for all s ∈ S:

(µt
h(·|s), νth(·|s))← MatrixNE(Qt−1

h (s, ·, ·)). (33)

Update Q value for all (s, a, b) ∈ S ×A× B:

Qt
h(s, a, b)← (1− αt)Q

t−1
h (s, a, b) + αt

(
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

)
(s, a, b).

= max
µ†∈∆A

t∑
i=1

αi
t

〈
µ† − µi

h(·|s),
[
Qi−1

h νih
]
(s, ·)

〉
+

t∑
i=1

αi
t∥Qi

h −Qi−1
h ∥∞

≤
t∑

i=1

αi
t max
µ†∈∆A

〈
µ† − µi

h(·|s),
[
Qi−1

h νih
]
(s, ·)

〉
︸ ︷︷ ︸

=0 from (33)

+

t∑
i=1

αi
t∥Qi

h −Qi−1
h ∥∞

=

t∑
i=1

αi
t∥Qi

h −Qi−1
h ∥∞.

The same bound also holds for regth,ν(s), thus

regth ≤
t∑

i=1

αi
t∥Qi

h −Qi−1
h ∥∞.

Since

Qi
h(s, a, b) = (1− αi)Q

i−1
h (s, a, b) + αi

(
rh + Ph[(µ

i
h+1)

⊤Qi
h+1ν

i
h+1]

)
(s, a, b)

=⇒|Qi
h(s, a, b)−Qi−1

h (s, a, b)| ≤ αi∥Qi−1
h −

((
rh + Ph[(µ

i
h+1)

⊤Qi
h+1ν

i
h+1]

))
∥∞ ≤ αiH

=⇒∥Qi
h −Qi−1

h ∥∞ ≤ αiH,

substituting this into the above equations we have that

regth ≤ H

t∑
i=1

αi
tαi ≤

(H + 1)2

H + t
(From Lemma A.3 (b)),

which completes the proof.

Proposition D.5 (Guarantee for Nash Q-Learning). Algorithm 7 achieves

NEGap(µ̂T , ν̂T) ≤ 112 log(T)2H4

T
.

Proof. From Theorem 2 and Lemma D.3 we have that

NEGap(µ̂T , ν̂T) ≤ 4Hmax
h

regTh + 8H2

(
1 +

1

H

)H

log(T) · 1
T

T∑
t=1

max
h

regth

≤ 4H
(H + 1)2

H + T
+ 24H2 log(T) · 1

T

T∑
t=1

(H + 1)2

H + t
≤ 112 log(T)2H4

T
.

29

Algorithm 8 Nash Policy Iteration (Nash-PI)

Initialize: Q0
h(s, a, b)← H − h+ 1 for all (h, s, a, b).

for t = 1, . . . , T do
for h = H, . . . , 1 do

Update policy for all s ∈ S:

(µt
h(·|s), νth(·|s))← MatrixNE(Qt−1

h (s, ·, ·)).

Update Q value for all (s, a, b) ∈ S ×A× B:

Qt
h(s, a, b)←

[
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

]
(s, a, b). (34)

D.4 Nash Policy Iteration

The full description of Nash Policy Iteration (Nash-PI, Example 4) is presented in Algorithm 8.

Note that from (34), we have that Qk
h equals to Qµk×νk

h . Based on this observation, we have the
following lemma.
Lemma D.4 (Exact learning of Q functions). For Algorithm 8, we have for any h ∈ [H] and
t ≥ H − h+ 1 that

Qt
h(s, a, b) = Q⋆

h(s, a, b), ∀ (s, a, b) ∈ S ×A× B.

Proof. We prove this by backward induction over h. For h = H , we have that

Qt
H(s, a, b) = rH(s, a, b), ∀t ≥ 1.

Assume that for h+ 1, the condition holds, then for time horizon h and iteration step t ≥ H − h+ 1,
we have that

Qt
h(s, a, b) =

[
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

]
(s, a, b)

=
[
rh + Ph[(µ

t
h+1)

⊤Q⋆
h+1ν

t
h+1]

]
(s, a, b).

Additionally, from the inductive hypothesis

(µt
h+1(·|s), νth+1(·|s)) = MatrixNE(Qt−1

h+1(s, ·, ·)) = MatrixNE(Q⋆
h+1(s, ·, ·)),

we have that

[(µt
h+1)

⊤Q⋆
h+1ν

t
h+1](s) = V ⋆

h+1(s).

Thus

Qt
h(s, a, b) =

[
rh + Ph[(µ

t
h+1)

⊤Q⋆
h+1ν

t
h+1]

]
(s, a, b)

=
[
rh + PhV

⋆
h+1

]
(s, a, b) = Q⋆

h(s, a, b),

which completes the proof.

Proposition D.6 (Guarantee for Nash-PI). Algorithm 8 achieves NEGap(µ̂T , ν̂T) = 0 for T ≥ H .

Proof. For this proposition we will not proof by calling Theorem 2, but instead directly apply Lemma
C.1, which is an auxiliary lemma for proving Theorem 2.

Note that Nash-PI corresponds is equivalent to using βt = 1 in Algorithm 1, so that βi
t = 1{i = t}.

From Lemma D.4 we have that

Qt
h = Q⋆

h, ∀ t ≥ H,h ∈ [H].

Thus for t ≥ H ,

max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s)

30

Algorithm 9 OFTRL for two-player zero-sum Markov Games

1: Initialize: Q0
h(s, a, b)← H − h+ 1 for all (h, s, a, b).

2: for t = 1, . . . , T do
3: for h = H, . . . , 1 do
4: Update policies for all s ∈ S by OFTRL:

µt
h(a|s) ∝a exp

(
(η/wt) ·

[∑t−1
i=1 wi(Q

i
hν

i
h)(s, a) + wt−1(Q

t−1
h νt−1

h)(s, a)
])

,

νth(b|s) ∝b exp
(
−(η/wt) ·

[∑t−1
i=1 wi((Q

i
h)

⊤µi
h)(s, b) + wt−1((Q

t−1
h)⊤µt−1

h)(s, b)
])

.

5: Update Q-value for all (s, a, b) ∈ S ×A× B:

Qt
h(s, a, b)← (1− αt)Q

t−1
h (s, a, b) + αt

(
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

)
(s, a, b). (35)

6: Output state-wise average policy:

µ̂T
h (·|s)←

T∑
t=1

αt
Tµ

t
h(·|s), ν̂Th (·|s)←

T∑
t=1

αt
T ν

t
h(·|s).

= max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤QT

h ν
T
h −

(
µT
h

)⊤
QT

h ν
†
]
(s) + 2

T∑
t=1

βt
T δ

t
h

= 0, ∀h.

Then applying Lemma C.1, we obtain

NEGap(µ̂T , ν̂T) ≤
(
V †,ν̂T

1 (s1)− V ⋆
1 (s1)

)
+
(
V ⋆
1 (s1)− V µ̂T ,†

1 (s1)
)

≤
H∑

h=1

max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s) = 0, for T ≥ H.

This is the desired result.

E Proof of Theorem 3

In this section we prove Theorem 3. The full algorithm box of OFTRL for Markov Games is provided
in Algorithm 9.

We aim to show that

NEGap(µ̂T , ν̂T)

≤ O
(
H14/3(log(A ∨B))5/6(log T)11/6 · T−5/6 +H5 log(A ∨B)(log T)2 · T−1

)
.

(36)

Bounding per-state regret We first bound regtν,h(s), i.e. the per-state regret for the min-player, for
any fixed (h, s, t) ∈ [H]× [S]× [T]. (The bound for regtµ,h(s) follows similarly.) This is the main
part of this proof.

Throughout this part, we will fix (h, s) and omit these subscripts within the policies and Q functions,
so that νth(·|s) will be abbreviated as νt (and similarly for µt and Qt). We will also overload T ≥ 1
to be any positive integer (instead of the fixed total number of iterations).

Observe that the above update for νt is equivalent to the OFTRL algorithm (Algorithm 4) with loss
vectors gt = wt(Q

t)⊤µt (understanding g0 = 0 and Q0
h = 0), prediction vector Mt = gt−1 =

wt−1(Q
t−1)⊤µt−1, and learning rate ηt = η/wt. Therefore we can apply the regret bound for

31

OFTRL in Lemma B.3 and obtain for any T ≥ 1 that

max
ν†∈∆B

T∑
t=1

wt

〈
νt − ν†, (Qt)⊤µt

〉
= max

ν†∈∆B

T∑
t=1

〈
νt − ν†, gt

〉
≤ logB

ηT
+

T∑
t=1

ηt∥gt −Mt∥2∞ −
T−1∑
t=1

1

8ηt
∥νt − νt+1∥21

=
logB · wT

η
+

T∑
t=1

η

wt
∥wt(Q

t)⊤µt − wt−1(Q
t−1)⊤µt−1∥2∞ −

T∑
t=2

wt−1

8η
∥νt − νt−1∥21.

(37)

We now relate the terms above to the stability of {µt}t≥1 (the other player’s policies). Let

∆t :=
∥∥wtQ

t − wt−1Q
t−1
∥∥
∞

for all t ≥ 1 for shorthand, where ∥·∥∞ for a matrix denotes its infinity norm (i.e. entry-wise max
absolute value). Then we have

∥wt(Q
t)⊤µt − wt−1(Q

t−1)⊤µt−1∥2∞
≤ 2

∥∥(wtQ
t − wt−1Q

t−1)⊤µt−1
∥∥2
∞ + 2

∥∥(wt−1Q
t−1)⊤(µt − µt−1)

∥∥2
∞

≤ 2∆2
t + 2w2

t−1

∥∥Qt−1
∥∥2
∞

∥∥µt − µt−1
∥∥2
1

≤ 2∆2
t + 2w2

t−1H
2
∥∥µt − µt−1

∥∥2
1
1 {t ≥ 2} .

By symmetry, the similar bound also holds for {νt}, from which we obtain for any t ≥ 2 that

−wt−1

∥∥νt − νt−1
∥∥2
1
≤ ∆2

t

wt−1H2
− 1

2wt−1H2

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥2
∞ .

Plugging the above two bounds into (37), we get

max
ν†∈∆B

T∑
t=1

wt

〈
νt − ν†, (Qt)⊤µt

〉
≤ logB · wT

η
+

T∑
t=1

[
2η

wt
∆2

t +
2ηH2w2

t−1

wt

∥∥µt − µt−1
∥∥2
1
1 {t ≥ 2}

]

+

T∑
t=2

[
∆2

t

8ηH2wt−1
− 1

16ηH2wt−1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥2
∞

]
(i)

≤ logB · wT

η
+

T∑
t=1

[
2η

wt
+

1

8ηH2wt−1
1 {t ≥ 2}

]
∆2

t︸ ︷︷ ︸
:=ERRT

+4η2H2 ·
T∑

t=2

1

2η/wt

∥∥µt − µt−1
∥∥2
1︸ ︷︷ ︸

:=STABt

−
T∑

t=2

1

16ηH2wt−1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥2
∞ .

(38)
Above, (i) rearranges terms and used the fact that wt−1 ≤ wt.

The following lemma (proof deferred to Section E.1) bounds term ERRT .
Lemma E.1 (Bound on ERRT). Suppose η ≤ 1/H . Then for any T ≥ 1, we have

α1
T · ERRT ≤

192H2

ηT
.

To bound term STABT , note that it is exactly the total distance (in squared L1 norm) of the sequence
{µt}t≥1, which itself follows an OFTRL algorithm with loss sequence g′t := −wtQ

tνt, M ′
t := g′t−1,

and ηt = η/wt. Therefore we can apply the stability bound (24) in Lemma B.4 to obtain that

STABT = 4η2H2 ·
T∑

t=2

1

2ηt

∥∥µt − µt−1
∥∥2
1

32

≤ 4η2H2

(
2 logA

ηT
+

T−1∑
t=1

(1 + ηtG
′
t)
∥∥g′t − g′t−1

∥∥
∞ +

∥∥g′T−1

∥∥
∞

)

= 4η2H2

(
2wT logA

η
+

T−1∑
t=1

(1 + ηH)
∥∥wtQ

tνt − wt−1Q
t−1νt−1

∥∥
∞ +

∥∥wT−1Q
T−1νT−1

∥∥
∞

)
(i)

≤ 4η2H2

(
2wT logA

η
+ 2

T−1∑
t=1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥
∞ + wT−1H

)
(ii)

≤ 4η2H2

(
4wT logA

η
+ 2

T−1∑
t=1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥
∞

)
,

where here we take G′
t = wtH ≥

∥∥g′t − g′t−1

∥∥
∞, (i) holds whenever η ≤ 1/H , and (ii) follows as

wT−1H ≤ wT /η ≤ 2wT logA/η.

Plugging the above bounds into (38) yields that for any T ≥ 1,

regTν,h(s) = max
ν†∈∆B

T∑
t=1

αt
T︸︷︷︸

α1
T ·wt

〈
νt − ν†, (Qt)⊤µt

〉
= α1

T max
ν†∈∆B

T∑
t=1

wt

〈
νt − ν†, (Qt)⊤µt

〉

≤ logB · (α1
TwT)

η
+ α1

TERRT + α1
T

[
STABT −

T∑
t=2

1

16ηH2wt−1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥2
∞

]

≤ logB · αT
T

η
+

192H2

ηT
+ α1

T

[
16ηH2wT logA

+ 8η2H2
T−1∑
t=1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥
∞ −

T∑
t=2

1

16ηH2wt−1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥2
∞

]
(i)

≤ logB · αT
T

η
+

192H2

ηT
+ α1

T

[
32 ηH2︸︷︷︸

≤1/η

wT logA

+

T−1∑
t=2

(
8η2H2

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥
∞ −

1

16ηH2wt−1

∥∥wtQ
tνt − wt−1Q

t−1νt−1
∥∥2
∞

)]
(ii)

≤ 33 log(A ∨B) · αT
T

η
+

192H2

ηT
+ α1

T

T−1∑
t=2

256η5H6wt−1

≤ 33 log(A ∨B) · αT
T

η
+

192H2

ηT
+ 256η5H6

T−1∑
t=2

αt−1
T︸ ︷︷ ︸

≤1

(iii)

≤ C

[
H2 log(A ∨B)

ηT
+ η5H6

]
.

Above, (i) used the fact that 8η2H2
∥∥w1Q

1ν1
∥∥
∞ ≤ 8η2H3w1 ≤ 8η2H3wT ≤ 16ηH2wT logA,

(ii) used the fact that 8η2H2z − z2/(16ηH2wt−1) ≤ 256η5H6wt−1 by the AM-GM inequality, and
(iii) used the fact that αT

T = αT = (H + 1)/(H + T) ≤ 2H/T , where C ≤ 256 is an absolute
constant.

By symmetry, the same regret bound also holds for regTµ,h(s), which gives that for any t ≥ 1

regth := max
s∈S

max
{
regtµ,h(s), reg

t
ν,h(s)

}
≤ C

[
H2 log(A ∨B)

ηt
+ η5H6

]
︸ ︷︷ ︸

:=regt
h

.

Note that regth is decreasing in t. This is the desired regret bound.

33

Performance of output policy As our algorithm chooses βt = αt = (H + 1)/(H + t), we can
invoke Theorem 2 with cβ = 1 + 1/H ≥

∑∞
t=j α

j
t (by Lemma A.2) so that cHβ = (1 + 1/H)H ≤

e ≤ 3. Further, by the above regret bound,

max
h∈[H]

regth ≤ C

[
H2 log(A ∨B)

ηt
+ η5H6

]
.

Plugging this into Theorem 2 yields that the output policy (µ̂T , ν̂T) satisfies

NEGap(µ̂T , ν̂T)

≤ O

(
H max

h∈[H]
regTh +H2cHβ ·

log T

T

T∑
t=1

max
h∈[H]

regth

)

≤ H · O
(
H2 log(A ∨B)

ηT
+ η5H6

)
+H2 log T

T
· O
(
H2 log(A ∨B) log T

η
+ η5H6T

)
= O

(
H4 log(A ∨B)(log T)2

ηT
+ η5H8 log T

)
.

Choosing η = (log T log(A ∨B)/H4T)1/6 ∧ (1/H), we get

NEGap(µ̂T , ν̂T) ≤ O
(
H14/3(log(A ∨B))5/6(log T)11/6 · T−5/6 +H5 log(A ∨B)(log T)2/T

)
.

This proves (36) and thus Theorem 3.

E.1 Proof of Lemma E.1

Recall our notation Qt := Qt
h(s, ·, ·) ∈ [0, H]A×B for some fixed (h, s) ∈ [H] × S. We first note

that, for any t ≥ 2,∥∥wtQ
t − wt−1Q

t−1
∥∥2
∞ ≤ 2

∥∥wtQ
t − wt−1Q

t
∥∥2
∞ + 2

∥∥wt−1(Q
t −Qt−1)

∥∥2
∞

≤ 2(wt − wt−1)
2H2 + 2w2

t−1α
2
tH

2

= 2w2
t−1H

2

[
α2
t +

H2

(t− 1)2

]
≤ 2w2

t−1H
2 · 8H

2

t2
= 16w2

t−1H
4/t2.

For t = 1, we have
∥∥wtQ

t − wt−1Q
t−1
∥∥2
∞ ≤ w2

1H
2 = H2. Substituting this into the expression of

ERRT gives

α1
TERRT

= α1
T

T∑
t=1

(
2η

wt
+

1

8ηwt−1H2
1 {t ≥ 2}

)
·
(
H21 {t = 1}+ 16w2

t−1H
4/t2 · 1 {t ≥ 2}

)
= 2ηα1

TH
2 + α1

T

T∑
t=2

(
2ηw2

t−1

wt
+

wt−1

8ηH2

)
· 16H

4

t2

(i)

≤ 2ηα1
TH

2 +

T∑
t=2

(
2ηαt

TH
2 +

αt
T

8η

)
· 16H

2

t2

(ii)

≤ 2ηα1
TH

2 +

T∑
t=2

αt
T ·

3

η
· 16H

2

t2

(iii)

≤ 48H2

η

T∑
t=1

αt
T ·

1

t2

(iv)

≤ 192H2

ηT
.

Above, (i) used wt−1 ≤ wt and α1
Twt = αt

T ; (ii) used the fact that 2ηH2 ≤ 2/η (as η ≤ 1/H) and
thus 2ηH2 + 1/(8η) ≤ (2 + 1/8)/η ≤ 3/η; (iii) used the fact that 2ηH2 ≤ 48H2/η which also
follows from η ≤ 1/H ≤ 1; (iv) used Lemma A.3(a). This is the desired result.

34

F A modified OFTRL algorithm with Õ(T−1) rate

In this section we show that a slightly modified OFTRL algorithm (described Algorithm 10) achieves
Õ(T−1) convergence rate for finding NE in two-player zero-sum Markov Games, improving over
the Õ(T−5/6) of Algorithm 9.

Algorithm 10 Modified OFTRL

1: Initialize: Q0

h(s, a, b)← H − h+ 1, Q0

h
← 0 for all (h, s, a, b).

2: for t = 1, . . . , T do
3: for h = H, . . . , 1 do
4: Update policies for all s ∈ S by OFTRL:

µt
h(a|s) ∝a exp

(
(η/wt) ·

[∑t−1
i=1 wi(Q

i

hν
i
h)(s, a) + wt−1(Q

t−1

h νt−1
h)(s, a)

])
;

νth(b|s) ∝b exp
(
−(η/wt) ·

[∑t−1
i=1 wi((Q

i

h
)⊤µi

h)(s, b) + wt−1((Q
t−1

h
)⊤µt−1

h)(s, b)
])

.

5: Update Q-values for all (s, a, b) ∈ S ×A× B:

Q
t

h(s, a, b)← rh(s, a, b) + Ph

[
maxµ†∈∆A

〈
µ†,
∑t

i=1 α
i
tQ

i

h+1ν
i
h+1

〉]
(s, a, b);

Qt

h
(s, a, b)← rh(s, a, b) + Ph

[
minν†∈∆B

〈
ν†,
∑t

i=1 α
i
t

(
Qi

h+1

)⊤
µi
h+1

〉]
(s, a, b).

(39)

6: Output state-wise average policy for all (h, s):

µ̂T
h (·|s)←

∑T
t=1 α

t
Tµ

t
h(·|s), ν̂Th (·|s)←

∑T
t=1 α

t
T ν

t
h(·|s).

Algorithm 10 keeps track of a series of Q
t

h, Q
t

h
’s that are upper-bounds and lower-bounds of Q⋆

h

respectively. The policy update is similar to the update as the OFTRL algorithm (Algorithm
4), but here µ is performing OFTRL with respect to Q

t

h’s while ν with respect to Qt

h
’s. The

value updates (39) are slightly different from the value update in our unified framework, how-
ever, we remark that it is still an incremental update because the terms inside the inner product∑t

i=1 α
i
tQ

i

h+1ν
i
h+1,

∑t
i=1 α

i
t

(
Qi

h+1

)⊤
µi
h+1 are incremental updates, which leads to that fact that

Q
t

h, Q
t

h
’s are also updating incrementally.. Further, the algorithm can be performed in a decentralized

manner, which is stated in Algorithm 11. The convergence result is stated in Theorem F.1.
Theorem F.1 (Convergence rate of modified OFTRL). Algorithm 10 with η = 1

16H guarantees that

NEGap(µ̂T , ν̂T) ≤ C

[
H4 log(A ∨B)(log T)

2

T

]
,

where C is some absolute constant.

F.1 Proof of Theorem F.1

In this section, we consider the following definitions of regret, which is slightly different from the
definition in (7):

regth,µ(s) := maxµ†∈∆A

∑t
i=1 α

i
t

〈
µ† − µi

h(·|s),
[
Q

i

hν
i
h

]
(s, ·)

〉
,

regth,ν(s) := maxν†∈∆B

∑t
i=1 α

i
t

〈
νih(·|s)− ν†,

[
(Qi

h
)⊤µi

h

]
(s, ·)

〉
,

regth,µ+ν := maxs∈S regth,µ(s) + regth,ν(s).

We first prove that Qt

h
and Q

t

h upper and lower bounds Q⋆
h respectively.

Lemma F.1.
Qt

h
(s, a, b) ≤ Q⋆

h(s, a, b) ≤ Q
t

h(s, a, b).

35

Algorithm 11 Modified OFTRL (Equivalent V-form)

1: Initialize: V 1

h(s)← H − h+ 1, V 1
h(s)← 0 for all (h, s, a, b).

2: for t = 1, . . . , T do
3: for h = H, . . . , 1 do
4: Update policies for all s ∈ S by OFTRL:

µt
h(a|s) ∝a exp

(
(η/wt) ·

[∑t−1
i=1 wiL

i

h(s, a) + wt−1L
t−1

h (s, a)
])

νth(b|s) ∝b exp
(
−(η/wt) ·

[∑t−1
i=1 wi((Q

i
h)

⊤µi
h)(s, b) + wt−1((Q

t−1
h)⊤µt−1

h)(s, b)
])

.

5: Update losses for all (s, a) ∈ S ×A:

L
t

h(s, a)←
〈
rh(s, a, ·) +

[
PhV

t

h+1

]
(s, a, ·), νth(·|s)

〉
,

Lt
h(s, a)←

〈[
rh(s, a, ·) +

[
PhV

t
h+1

]
(s, a, ·)

]⊤
, µt

h(·|s)
〉
.

6: Update V-value for all s ∈ S:

V
t

h(s)←maxµ†∈∆A

〈
µ†,
∑t

i=1 α
i
tL

i

h(s, ·)
〉
, V t

h(s)←minν†∈∆B

〈
ν†,
∑t

i=1 α
i
tL

i
h(s, ·)

〉
.

(40)

7: Output state-wise average policy for all (h, s):

µ̂T
h (·|s)←

∑T
t=1 α

t
Tµ

t
h(·|s), ν̂Th (·|s)←

∑T
t=1 α

t
T ν

t
h(·|s).

Proof. We prove by induction on (h, t). Given the initialization, for t = 0 the condition holds. Since
Q

t

H+1, Q
t

H+1
= 0, we have that for h = H + 1 the condition holds. Assume that the condition hold

for (i, h+ 1), i ≤ t, then

Q
t

h(s, a, b) = rh(s, a, b) + Ph

[
max

µ†∈∆A

〈
µ†,

t∑
i=1

αi
tQ

i

h+1ν
i
h+1

〉]
(s, a, b)

≥ rh(s, a, b) + Ph

[
max

µ†∈∆A

〈
µ†, Q⋆

h+1

(
t∑

i=1

αi
tν

i
h+1

)〉]
(s, a, b)

≥ rh(s, a, b) + Ph

[
max

µ†∈∆A
min

ν†∈∆B

〈
µ†, Q⋆

h+1ν
†〉](s, a, b)

= Q⋆
h(s, a, b).

Using similar strategy, we can also show that Qt

h
(s, a, b) ≤ Q⋆

h(s, a, b), which implies that the
condition hold for (t, h), and thus finishes the proof by induction.

Throughout the rest of this section, we define the following shorthand for the gap between Q
t

h, Q
t

h
defined in (39):

δth := ∥Qt

h −Qt

h
∥∞ = max

s,a,b

[
Q

t

h(s, a, b)−Qt

h
(s, a, b)

]
,

Lemma F.2 (Recursion of δth). Algorithm 10 guarantees that for all (t, h) ∈ [T]× [H],

δth ≤
t∑

i=1

αi
tδ

i
h+1 + regth+1,µ+ν .

Further, suppose that regth,µ+ν ≤ regth,µ+ν for all (h, t) ∈ [H] × [T], where regth,µ+ν is non-
increasing in t: regth,µ+ν ≥ regt+1

h,µ+ν for all t ≥ 1. Then we have

δth ≤ 2H · 1
t

t∑
i=1

max
h′

regih′,µ+ν .

36

Proof. The proof structure resembles Lemma C.2. From the definition of Q
t

h, Q
t

h
, we have that

Q
t

h(s, a, b)−Qt

h
(s, a, b)

≤ Ph max
µ†∈∆A,ν†∈∆B

〈
µ†,

t∑
i=1

αi
tQ

i

h+1ν
i
h+1

〉
−

〈
ν†,

t∑
i=1

αi
t(Q

i

h+1
)⊤µi

h+1

〉

= Ph

[
max

µ†∈∆A

〈
µ†,

t∑
i=1

αi
tQ

i

h+1ν
i
h+1

〉
−

t∑
i=1

αi
t(µ

i
h+1)

⊤Q
i

h+1ν
i
h+1

+ max
ν†∈∆B

t∑
i=1

αi
t(µ

i
h+1)

⊤Q
i

h+1ν
i
h+1 −

〈
ν†,

t∑
i=1

αi
t(Q

i

h+1
)⊤µi

h+1

〉

+

t∑
i=1

αi
t(µ

i
h+1)

⊤Q
i

h+1ν
i
h+1 −

t∑
i=1

αi
t(µ

i
h+1)

⊤Q
i

h+1ν
i
h+1

]

≤ regth+1,µ+ν +

t∑
i=1

αi
t∥Q

i

h+1 −Qi

h+1
∥∞ =

t∑
i=1

αi
tδ

i
h+1 + regth+1,µ+ν .

Then using the same argument as Lemma C.2, we can consider an auxiliary sequence{
∆t

h =
∑t

i=1 α
i
t∆

i
h+1 + regth+1,µ+ν ,

∆t
H+1 = 0, for all t.

(41)

Observe that {∆t
h}h,t satisfies the following properties{

∆t
h ≥ δth (by definition),

∆t
h ≤ ∆t−1

h (by Lemma A.1).
(42)

Therefore, to control δth, it suffices to bound ∆t
h ≤ 1

t

∑t
i=1 ∆

i
h, which follows from the standard

argument in [23]:

1

t

t∑
i=1

∆i
h =

1

t

t∑
i=1

i∑
j=1

αj
i∆

j
h+1 +

1

t

t∑
i=1

regih+1,µ+ν

≤ 1

t

t∑
j=1

 t∑
i=j

αj
i

∆j
h+1 +

1

t

t∑
i=1

regih+1,µ+ν

≤
(
1 +

1

H

)
· 1
t

t∑
i=1

∆i
h+1 +

1

t

t∑
i=1

regih+1,µ+ν

≤
(
1 +

1

H

)2

· 1
t

t∑
i=1

∆i
h+2 +

(
1 +

1

H

)
· 1
t

t∑
i=1

regih+2,µ+ν +
1

t

t∑
i=1

regih+1,µ+ν

≤ · · ·

≤

(
H∑

h′=h

(
1 +

1

H

)h′−h
)
· 1
t

t∑
i=1

max
1≤h′≤H

regih′,µ+ν

≤ (e− 1)H · 1
t

t∑
i=1

max
1≤h′≤H

regih′,µ+ν ≤ 2H · 1
t

t∑
i=1

max
1≤h′≤H

regih′,µ+ν .

which completes the proof.

Lemma F.3 (Bound the NEGap by regh,µ+ν). Suppose that the per-state regrets (summing over
the two agents) can be upper-bounded as regth,µ+ν ≤ regth,µ+ν for all (h, t) ∈ [H] × [T] where
regth,µ+ν is non-increasing in t: regth,µ+ν ≥ regt+1

h,µ+ν for all t ≥ 1. Then, the output policy (µ̂T , ν̂T)
of Algorithm 10 satisfies

NEGap(µ̂T , ν̂T) ≤ 2Hmax
h

regTh,µ+ν + 24H2 log T · 1
T

T∑
t=1

max
h

regth,µ+ν

37

Proof. From Lemma C.1 we have that

NEGap(µ̂T , ν̂T) =
(
V †,ν̂T

1 (s1)− V ⋆
1 (s1)

)
+
(
V ⋆
1 (s1)− V µ̂T ,†

1 (s1)
)

≤ 2

H∑
h=1

max
s

max
µ†∈∆A,ν†∈∆B

[
(µ†)⊤Q⋆

hν̂
T
h −

(
µ̂T
h

)⊤
Q⋆

hν
†
]
(s)

= 2

H∑
h=1

max
s

max
µ†∈∆A,ν†∈∆B

T∑
t=1

αt
T

[
(µ†)⊤Q⋆

hν
t
h−
(
µt
h

)⊤
Q⋆

hν
†
]
(s)

≤ 2

H∑
h=1

max
s

max
µ†∈∆A,ν†∈∆B

T∑
t=1

αt
T

[
(µ†)⊤Q

t

hν
t
h−
(
µt
h

)⊤
Qt

h
ν†
]
(s)

≤ 2

H∑
h=1

max
s

(
max

µ†∈∆A

T∑
t=1

αt
T

[
(µ†)⊤Q

t

hν
t
h−
(
µt
h

)⊤
Q

t

hν
t
h

]
(s)

+ max
ν†∈∆B

T∑
t=1

αt
T

[
(µt

h)
⊤Qt

h
νth−

(
µt
h

)⊤
Qt

h
ν†
]
(s)

)

+ 2

H∑
h=1

max
s

max
µ†∈∆A,ν†∈∆B

T∑
t=1

αt
T

[
(µt

h)
⊤Q

t

hν
t
h−
(
µt
h

)⊤
Qt

h
νth

]
(s)

≤ 2

H∑
h=1

regTh,µ+ν + 2

H∑
h=1

T∑
t=1

αt
T δ

t
h

≤ 2Hmax
h

regTh,µ+ν + 4H2
T∑

t=1

αt
T

1

t

t∑
i=1

max
h

regih,µ+ν (Lemma F.1)

≤ 2Hmax
h

regTh,µ+ν + 4H2

(
T∑

t=1

1

t
αt
T

)(
T∑

i=1

max
h

regih,µ+ν

)

≤ 2Hmax
h

regTh,µ+ν + 24H2 log T · 1
T

T∑
t=1

max
h

regth,µ+ν (Lemma A.3),

Lemma F.4 (Bound regth,µ+ν). Running Algorithm 10 with η = 1
16H can guarantee that

regTh,µ+ν(s) ≤
36H2 log(A ∨B)

T

Proof. From Lemma B.3, substituting gt = wtQ
t

hν
t
h(s),Mt = wtQ

t−1

h νt−1
h (s), ηt =

η
wt

, we can
get that

T∑
t=1

wt

[〈
µ†, Q

t

hν
t
h

〉
−
〈
µt
h, Q

t

hν
t
h

〉]
≤ wT logA

η
+ η

T∑
t=1

wt∥Q
t

hν
t
h(s)−Q

t−1

h νt−1
h (s)∥2∞ −

T∑
t=2

wt

8η
∥µt

h(·|s)−µt−1
h (·|s)∥21

=⇒ regTh,µ ≤ α1
T

T∑
t=1

wt−1

〈
µ†, Q

t

hν
t
h

〉
−
〈
µt
h, Q

t

hν
t
h

〉
≤ αT logA

η
+ η

T∑
t=1

αt
T ∥Q

t

hν
t
h(s)−Q

t−1

h νt−1
h (s)∥2∞ −

T∑
t=2

αt−1
T

8η
∥µt

h(·|s)− µt−1
h (·|s)∥21.

38

Further we have that

∥Qt

hν
t
h(s)−Q

t−1

h νt−1
h (s)∥2∞ ≤ 2∥Qt

h −Q
t−1

h ∥2∞ + 2∥νth(s)− νt−1
h (s)∥21.

From the definition of Q
t

h we have that

∥Qt

h −Q
t−1

h ∥ ≤

∥∥∥∥∥
t∑

i=1

αi
tQ

i

h+1ν
i
h+1 −

t−1∑
i=1

αi
t−1Q

i

h+1ν
i
h+1

∥∥∥∥∥
∞

=

∥∥∥∥∥αtQ
t

h+1ν
t
h+1 + (1− αt)

t−1∑
i=1

αi
t−1Q

i

h+1ν
i
h+1 −

t−1∑
i=1

αi
t−1Q

i

h+1ν
i
h+1

∥∥∥∥∥
∞

=

∥∥∥∥∥αtQ
t

h+1ν
t
h+1 − αt

t−1∑
i=1

αi
t−1Q

i

h+1ν
i
h+1

∥∥∥∥∥
∞

≤ αtH.

Substitute this inequality to the regret bound we have

regTh,µ(s)

≤ αT logA

η
+ 2η

T∑
t=1

αt
Tα

2
tH

2 + 2η
T∑

t=1

αt
T ∥νth(s)− νt−1

h (s)∥21 −
T∑

t=2

αt−1
T

8η
∥µt

h(·|s)− µt−1
h (·|s)∥21

(Lemma A.3)
≤ αT logA

η
+

8ηH3

T
+ 2η

T∑
t=1

αt
T ∥νth(s)− νt−1

h (s)∥21 +−
T∑

t=2

αt−1
T

8η
∥µt

h(·|s)− µt−1
h (·|s)∥21.

Similar bound holds for regTh,ν :

regTh,ν(s) ≤
αT logB

η
+
8ηH3

T
+2η

T∑
t=1

αt
T ∥µt

h(s)−µt−1
h (s)∥21+−

T∑
t=2

αt−1
T

8η
∥νth(·|s)−νt−1

h (·|s)∥21.

Summing regTh,µ(s), reg
T
h,ν(s) together we get

regTh,µ+ν(s) ≤
2αT log(A ∨B)

η
+

16ηH3

T
+ 16ηα1

T

+

T∑
t=2

(
2ηαt

T −
αt−1
T

8η

)(
∥µt

h(·|s)− µt−1
h (·|s)∥21 + νth(·|s)− νt−1

h (·|s)∥21
)
.

Since αt−1
T

αt
T
≥ 1

H for t ≥ 2, by setting η = 1
16H we can guarantee that 2ηαt

T −
αt−1

T

8η ≤ 0, thus

regTh,µ+ν(s) ≤
2αT log(A ∨B)

η
+

16ηH3

T
+ 16ηα1

T ≤
32H2 log(A ∨B)

T
+

H2

T
+

1

T

≤ 36H2 log(A ∨B)

T

Given Lemma F.3 and F.4, we are now ready to prove Theorem F.1.

Proof Theorem F.1. From Lemma F.3 and F.4 we have that:

NEGap(µ̂T , ν̂T) ≤ 2Hmax
h

regTh,µ+ν + 24H2 log T · 1
T

T∑
t=1

max
h

regth,µ+ν

≤ 2H
36H2 log(A ∨B)

T
+ 24H2 log T · 1

T

T∑
t=1

36H2 log(A ∨B)

t

≤ 936H4 log(A ∨B)(log T + 1)
2

T
,

which completes the proof.

39

G Optimistic policy optimization for general-sum Markov Games

G.1 Preliminaries

Here we formally present the preliminaries for multi-player general-sum Markov games, parallel to
the zero-sum setting considered in Section 2.

Multi-player general-sum Markov games We consider tabular episodic (finite-horizon) m-player
general-sum Markov games (MGs), which can be denoted asM(H,S, {Ai}mi=1,P, {ri}

m
i=1), where

H is the horizon length; S is the state space with |S| = S; Ai is the action space of the i-th player,
with |Ai| = Ai. We use a = (a1, . . . , am) ∈

∏
i∈[m]Ai =: A to denote a joint action taken by all

players; P = {Ph}Hh=1 is the transition probabilities, where each Ph(s
′|s,a) gives the probability of

transition to state s′ from state-action (s,a); ri = {ri,h}Hh=1 are the reward functions, where each
ri,h(s,a) is the deterministic reward function of the i-th player at time step h and state-action (s,a).
In each episode, the MG starts with a deterministic initial state s1. Then at each time step 1 ≤ h ≤ H ,
all players observes the state sh, each player takes an action ai,h ∈ Ai. Then, each player receive
their rewards ri,h(sh,ah), and the game transitions to the next state st+1 ∼ Ph(·|sh,ah).

Policies & value functions A (Markov) policy πi of the i-th player is a collection of policies
πi = {πi,h : S → ∆Ai

}Hh=1, where each πi,h(·|sh) ∈ ∆Ai
specifies the probability of taking action

ai,h at (h, sh). We use π = {πi}i∈[m] to denote a product policy of all players. For any joint policy
π (not necessarily a product policy), we use V π

i,h : S → R and Qπ
i,h : S ×A → R to denote the (i-th

player’s) value function and Q-function at time step h, respectively, i.e.

V π
i,h(s) := Eπ

[∑H
h=h′ ri,h′(sh′ ,ah′) | sh = s

]
, (43)

Qπ
i,h(s,a) := Eπ

[∑H
h=h′ ri,h′(sh′ ,ah′) | sh = s,ah = a

]
. (44)

For notational simplicity, we use the following abbreviation: [PhV](s,a) := Es′∼Ph(·|s,a)V (s′) for
any value function V . By definition of the value functions and Q-functions, we have the following
Bellman equations for all Markov product policy π and all (i, h, s,a):

Qπ
i,h(s,a) =

(
ri,h + PhV

π
i,h+1

)
(s,a),

V π
i,h(s,a) = Ea∼πh(·|s)

[
Qπ

i,h(s,a)
]
=
〈
Qπ

i,h(s, ·), πh(·|s)
〉
.

The goal for the i-th player is to maximize their own value function.

Correlated policy & best response A (general) correlated policy π is any policy for which players
may take actions in a history-dependent and correlated fashion. More precisely, a correlated policy π
is a mapping

{
πh : Ω× (S ×A)h−1 × S → ∆A

}
, and executes as follows. At the beginning of an

episode, a random seed w ∈ Ω is sampled from some distribution (also denoted as Ω with slight abuse
of notation). Then, at each step h and state sh, suppose the history so far is (s1,a1, . . . , sh−1,ah−1).
Then, π samples a joint action ah ∼ πh(·|ω, (s1,a1, . . . , sh−1,ah−1); sh). This formulation allows
each πh(·|ω, ·, ·) to be a Markov product policy for any fixed ω while still making π to be a correlated
policy, due to the correlation introduced by ω.

For any correlated policy π, let π−i denote the (marginal) policy of all but the i-th player. Then, the
(i-th) player’s best-response value function is

V
†,π−i

i,1 (s1) := max
π†
i

V
π†
i×π−i

i,1 (s1),

where the max is over all (potentially history-dependent) policy π†
i for the i-th player.

Coarse Correlated Equilibrium (CCE) For general-sum MGs, we consider learning an approxi-
mate Coarse Correlated Equilibrium [33, 49] defined as follows.
Definition G.1 (ε-approximate Coarse Correlated Equilibrium). For any ε ≥ 0, a correlated policy
π is an ε-approximate Coarse Correlated Equilibrium (ε-CCE) if

CCEGap(π) := max
i∈[m]

V
†,π−i

i,1 (s1)− V π
i,1(s1) ≤ ε.

40

Algorithm 12 OFTRL for multi-player general-sum Markov games

1: Initialize: Q0
h(s,a)← H − h+ 1 for all (h, s, a, b).

2: for t = 1, . . . , T do
3: for h = H, . . . , 1 do
4: Update policies for all s ∈ S and i ∈ [m] by OFTRL

πt
i,h(ai|s) ∝ai

exp
(
(η/wt) ·

[∑t−1
j=1 wj(Q

j
i,hπ

j
−i,h)(s, ai) + wt(Q

t−1
i,h πt−1

−i,h)(s, ai)
])

.

(45)

5: Update Q-value for all (i, s,a) ∈ [m]× S ×A:

Qt
i,h(s,a)← (1− αt)Q

t−1
i,h (s,a) + αt

(
rh + Ph[Q

t
i,h+1π

t
h+1]

)
(s,a). (46)

6: Output policy π̂T = π̂T
1 , where π̂T

1 is defined in Algorithm 13.

Additional notation For any Q function Qi,h(s, ·) : S × (
∏m

i=1Ai)→ R and joint policy πh(·|s),
we use [Qi,hπh](s) := ⟨Qi,h(s, ·), πh(·|s)⟩ for shorthand. Similarly, for any joint policy π−i,h(·|s)
over all but the i-th player, [Qi,hπ−i,h](s, ai) := ⟨Qi,h(s, ai, ·), π−i,h(·|s)⟩.

G.2 Algorithm and formal statement of result

Algorithm 13 Policy π̂t
h

Require: Product policies πt′

h′(·|s′) =
∏m

i=1 π
t′

i,h′(·|s′) for all (h′, t′, s′) ∈ [H]× [T] ∈ S.
1: Sample j ∈ [t] with probability P(j = i) = αi

t.
2: Play policy πj

h at the h-th step of the game.
3: Play policy π̂j

h+1 for step h+ 1 onward.

Theorem G.1 (Formal version of Theorem 4). Suppose Algorithm 12 is run for T rounds. Then the
per-state regret can be bounded as follows for some absolute constant C > 0:

regth ≤ regth := C

[
H logAmax

ηt
+

ηH3

t
+ (m− 1)2η3H4

]
for all (h, t) ∈ [H]× [T].

Further, choosing η = (logAmax log T/(H
3T))1/4(m− 1)−1/2, the output policy π̂T achieves

CCEGap(π̂T) ≤O
(
H11/4(logAmax log T)

3/4
√
m− 1 · T−3/4

+H13/4(logAmax)
1/4(log T)5/4(m− 1)−1/2 · T−5/4

)
.

Proof overview and remarks The proof of Theorem G.1 also follows by relating the performance of
the output policy by per-state regrets via performance difference (Lemma G.2, similar as Theorem 2),
and bounding per-state regrets as regth ≤ regth := Õ(1/(ηt) + η3(m − 1)2) which gives the
theorem. The latter builds upon the fast convergence analysis of OFTRL in multi-player normal-form
games [50] as well as additional handling of the changing game rewards, similar as in Theorem 3.
Note that the Õ(T−3/4) rate here is worse than Õ(T−5/6) for the zero-sum setting in Theorem 3.
This happens as the fine-grained analysis of OFTRL [9] used there relies critically on the game having
two players (for translating between the iterate stabilities and loss stabilities between each other), and
becomes infeasible when there are more than 2 players.

We first present some lemmas in Section G.3. The proof of Theorem G.1 is then provided in
Section G.4.

41

G.3 Useful lemmas

We additionally define the V-values maintained by Algorithm 12 as

V t
i,h(s) :=

t∑
j=1

αj
t

[
Qj

i,hπ
j
h

]
(s) (47)

for all (i, h, t, s) ∈ [m]× [H]× [T]× S, where Qt
i,h and πt

h are the Q-functions and joint policies
maintained within Algorithm 12. Note that by (46), we immediately have

Qt
i,h(s,a) =

t∑
j=1

αj
t

[
rh + Ph[Q

j
i,h+1π

j
h+1]

]
(s,a)

=

rh + Ph

 t∑
j=1

αj
tQ

j
i,h+1π

j
h+1

(s,a) =
(
rh + PhV

t
i,h+1

)
(s,a).

(48)

We also define the value functions of π̂t
h and of its best response for any (i, h, t, s) as (see e.g. [49,

Definition C.4 & Eq.(8)]):

V
π̂t
h

i,h (s) := Eπ̂t
h

[
H∑

h′=h

ri,h′ |sh = s

]
,

V
†,π̂t

−i,h

i,h (s) := max
πi,h:H

Eπi,h:H×π̂t
−i,h

[
H∑

h′=h

ri,h′ |sh = s

]
.

Lemma G.1 (Equivalence of value functions). For Algorithm 12, we have for all i ∈ [m] and all
(h, s, t) ∈ [H + 1]× S × [T] that

V t
i,h(s) = V

π̂t
h

i,h (s).

Proof. We prove this by backward induction over h ∈ [H + 1]. The claim trivially holds for
h = H + 1. Suppose the claim holds for steps h+ 1 onward and all (s, t) ∈ S × [T]. For step h and
any fixed (s, t) ∈ S × [T], note that

V t
i,h(s) =

t∑
j=1

αj
t

[
Qj

i,hπ
j
h

]
(s)

(i)
=

t∑
j=1

αj
t

[
(rh + PhV

j
i,h+1)π

j
h

]
(s)

(ii)
=

t∑
j=1

αj
t

[
(rh + PhV

π̂j
h+1

i,h+1)π
j
h

]
(s)

(iii)
= V

π̂t
h

i,h (s).

Above, (i) follows by (48); (ii) uses the inductive hypothesis; (iii) uses the definition of the output
policy π̂t

h (cf. Algorithm 13), which samples j ∈ [t] with probability αj
t , plays πj

h(·|s), and plays
π̂j
h+1 for the rest of the game. This proves the case for step h and thus the lemma.

Define the weighted per-state regrets as

regth,i(s) := max
π†
i∈∆Ai

t∑
j=1

αj
t

〈
Qj

h(s, ·), (π
†
i × πj

−i,h)(·|s)− πj
h(·|s)

〉
, (49)

regth := max
s∈S

max
i∈[m]

regth,i(s). (50)

The following lemma bounds the difference between the values of the certified policy πt
h (Algo-

rithm 13) and its best-response.
Lemma G.2 (Recursion of best-response values). For the policy π̂t

h defined in Algorithm 13, we
have for all (i, h, t) ∈ [m]× [H]× [T] that

max
s∈S

(
V

†,π̂t
−i,h

i,h (s)− V
π̂t
h

i,h (s)

)
≤ regth +

t∑
j=1

αj
t max

s∈S

(
V

†,π̂j
−i,h+1

i,h+1 (s)− V
π̂j
h+1

i,h+1(s)

)
.

42

Proof. Fix (i, h, t) ∈ [m]× [H]× [T]. We have for any s ∈ S that

V
†,π̂t

−i,h

i,h (s)− V
π̂t
h

i,h (s)

= max
π†
i∈∆Ai

〈
π†
i ,

t∑
j=1

αj
t

[
(rh + PhV

†,π̂j
−i,h+1

i,h+1)πj
−i,h

]
(s, ·)

〉
−

t∑
j=1

αj
t

〈
πj
i,h,

[
(rh + PhV

π̂j
h+1

i,h+1)π
j
−i,h

]
(s, ·)

〉
(i)

≤
t∑

j=1

αj
t max
s′∈S

(
V

†,π̂j
−i,h+1

i,h+1 (s′)− V
π̂j
h+1

i,h+1(s
′)

)
+ max

π†
i∈∆Ai

t∑
j=1

αj
t

〈
π†
i − πj

i,h,

[
(rh + PhV

π̂j
h+1

i,h+1)π
j
−i,h

]
(s, ·)

〉
(ii)
=

t∑
j=1

αj
t max
s′∈S

(
V

†,π̂j
−i,h+1

i,h+1 (s′)− V
π̂j
h+1

i,h+1(s
′)

)
+ max

π†
i∈∆Ai

t∑
j=1

αj
t

〈
π†
i − πj

i,h,
[
(rh + PhV

j
i,h+1)π

j
−i,h

]
(s, ·)

〉
︸ ︷︷ ︸

regt
i,h(s)

≤
t∑

j=1

αj
t max
s′∈S

(
V

†,π̂j
−i,h+1

i,h+1 (s′)− V
π̂j
h+1

i,h+1(s
′)

)
+ regth.

Above, (i) follows by substituting V
†,π̂j

−i,h+1

i,h+1 with V
π̂j
h+1

i,h+1 and paying the additive error; (ii) follows
from Lemma G.1. This proves the desired result.

Lemma G.3 (Guarantee of Algorithm 12 via per-state regrets). Suppose that the per-state regrets (50)
can be upper-bounded as regth ≤ regth for all (h, t) ∈ [H]× [T], where regth is non-increasing in t:
regth ≥ regt+1

h for all t ≥ 1. Then running Algorithm 12 will guarantee that

CCEGap(π̂T) ≤ CH · 1
T

T∑
t=1

max
h∈[H]

regth. (51)

for all T ≥ 2, where C > 0 is an absolute constant.

Proof. For any (h, t) ∈ [H + 1]× [T], define

δth := max
i∈[m]

max
s∈S

(
V

†,π̂j
−i,h+1

i,h+1 (s)− V
π̂j
h+1

i,h+1(s)

)
.

Then Lemma G.2 implies the recursive relationship

δth ≤ regth +

t∑
j=1

αj
tδ

j
h+1.

(With δtH+1 ≡ 0 for all t ∈ [T].) Therefore we can imitate the proof of Lemma C.2 and obtain that,
for any regth such that regth ≤ regth and regth ≥ regt+1

h ,

δth ≤ HcH−1
β · 1

t

t∑
j=1

max
h′∈[H]

regjh′ ,

where cβ = 1 + 1/H = supj≥1

∑∞
t=j α

j
t by Lemma A.2(a).

Further, by definition of the output policy π̂T = π̂T
1 (cf. Algorithm 13), we have

CCEGap(π̂T) = V
†,π̂T

−i,1

i,1 (s1)− V
π̂T
1

i,1 (s1) ≤ δT1 ≤ HcH−1
β · 1

T

T∑
t=1

max
h∈[H]

regth

≤ CH · 1
T

T∑
t=1

max
h∈[H]

regth,

where C ≤ 3 as cH−1
β ≤ (1 + 1/H)H ≤ e ≤ 3. This is the desired result.

43

G.4 Proof of Theorem G.1

Bounding per-state regret We first bound regti,h(s) (cf. definition in (49)), i.e. the per-state regret
for the i-th player, for any fixed (i, h, s, t) ∈ [m] × [H] × [S] × [T]. This is the main part of this
proof.

Throughout this part, we will fix (i, h, s, t), and omit the subscript (h, s) within the policies and Q
functions, so that πt

i,h(·|s) will be abbreviated as πt
i , and Qt

i,h(s, ·) will be abbreviated as Qt
i. We

will also reload T ≥ 1 to be any positive integer (instead of the fixed total number of iterations).

We first observe that the update (45) for πt
i,h(·|s) is exactly equivalent to the OFTRL algorithm

(Algorithm 4) with loss vectors gt = wt(Q
t
i)

⊤πt
−i (understanding g0 = 0 and Q0

i = 0), prediction
vector Mt = wt(Q

t−1
i)⊤πt−1

−i , and learning rate ηt = η/wt. Therefore we can apply the regret
bound for OFTRL in Lemma B.3 and obtain for any T ≥ 1 that

max
π†
i∈∆Ai

T∑
t=1

wt

〈
πt
i − π†

i , Q
t
iπ

t
−i

〉
= max

π†
i∈∆Ai

T∑
t=1

〈
πt
i − π†

i , gt

〉
≤ logAi

ηT
+

T∑
t=1

ηt∥gt −Mt∥2∞ −
T−1∑
t=1

1

8ηt
∥πt

i − πt+1
i ∥21

≤ logAi · wT

η
+

T∑
t=1

ηwt∥Qt
iπ

t
−i −Qt−1

i πt−1
−i ∥

2
∞

≤ logAmax · wT

η
+

T∑
t=1

2ηwt

∥∥Qt
i −Qt−1

i

∥∥2
∞︸ ︷︷ ︸

I

+

T∑
t=2

2ηwtH
2
∥∥πt

−i − πt−1
−i

∥∥2
1︸ ︷︷ ︸

II

.

(52)

Above, the last inequality uses the fact that
∥∥(Qt

i −Qt−1
i)πt

−i

∥∥
∞ ≤

∥∥Qt
i −Qt−1

i

∥∥
∞ for t ≥ 1, and∥∥Qt−1

i (πt
−i − πt−1

−i)
∥∥
∞ ≤ H

∥∥πt
−i − πt−1

−i

∥∥
1

for t ≥ 2.

For term I, noticing that
∥∥Qt

i −Qt−1
i

∥∥
∞ ≤ αtH by (46), we have

I ≤
T∑

t=1

2ηwtα
2
tH

2 = 2ηH2
T∑

t=1

wtα
2
t .

Bounding term II requires the following lemma on the stability of the iterates. The proof can be
found in Section G.5.

Lemma G.4 (Stability of iterates). We have for any i ∈ [m] and any t ≥ 2 that (recall the subscripts
(h, s) are omitted below): ∥∥πt

i − πt−1
i

∥∥
1
≤ 4ηH. (53)

Consequently, ∥∥πt
−i − πt−1

−i

∥∥
1
≤ 4(m− 1)ηH. (54)

Using Lemma G.4, we have

II ≤
T∑

t=2

2ηwtH
2 · 16(m− 1)2η2H2 = 32η3H4(m− 1)2

T∑
t=2

wt.

Plugging the preceding bounds into (52) and using α1
T · wt = αt

T yields that

regTi,h(s) = max
π†
i∈∆Ai

T∑
t=1

αt
T︸︷︷︸

α1
T ·wt

〈
πt
i − π†

i , Q
t
iπ

t
−i

〉
= α1

T max
π†
i∈∆Ai

T∑
t=1

wt

〈
πt
i − π†

i , Q
t
iπ

t
−i

〉

44

≤ logAmax · αT
T

η
+ 2ηH2

T∑
t=1

αt
Tα

2
t + 32η3H4(m− 1)2

T∑
t=2

αt
T︸ ︷︷ ︸

≤1

(i)

≤ 2H logAmax

ηT
+

8ηH3

T
+ 32η3H4(m− 1)2

≤ C

[
H logAmax

ηT
+

ηH3

T
+ η3H4(m− 1)2

]
=: regTh .

Above, (i) used the fact that αT
T = αT = (H +1)/(H + T) ≤ 2H/T , and

∑T
t=1 α

t
Tα

2
t ≤ 4H/T by

Lemma A.3(c), and C ≤ 32 is an absolute constant. This proves the per-state regret bounds claimed
in Theorem G.1.

Overall policy guarantee Plugging the above per-state regret bounds into Lemma G.3 yields that,
the output policy π̂T of Algorithm 12 achieves

CCEGap(π̂T) ≤ CH · 1
T

T∑
t=1

max
h∈[H]

regTh

≤ O
(
H2 logAmax log T

ηT
+

ηH4 log T

T
+ η3H5(m− 1)2

)
.

Choosing η = (logAmax log T/(H
3T))1/4(m− 1)−1/2, the above can be upper bounded as

O
(
H11/4(logAmax log T)

3/4
√
m− 1 · T−3/4 +H13/4(logAmax)

1/4(log T)5/4(m− 1)−1/2 · T−5/4
)
,

which is the desired result.

G.5 Proof of Lemma G.4

We first prove (53). By the OFTRL update (45) and the smoothness of exponential weights
(Lemma A.5), we have for any t ≥ 2 that∥∥πt

i − πt−1
i

∥∥
1
≤ 2

∥∥Gt −Gt−1
∥∥
∞ ,

where Gt, Gt−1 are the (weighted) total losses in (45):

Gt :=
η

wt

t−1∑
j=1

wjQ
j
iπ

j
−i + wtQ

t−1
i πt−1

−i

,
Gt−1 :=

η

wt−1

t−2∑
j=1

wjQ
j
iπ

j
−i + wt−1Q

t−2
i πt−2

−i

.
Therefore we have∥∥πt

i − πt−1
i

∥∥
1
≤ 2

∥∥Gt −Gt−1
∥∥
∞

≤ 2η

∥∥∥∥∥∥
(

1

wt
− 1

wt−1

) t−1∑
j=1

wjQ
j
iπ

j
−i

∥∥∥∥∥∥
∞

+ 2η
∥∥2Qt−1

i πt−1
−i −Qt−2

i πt−2
−i

∥∥
∞

(i)

≤ 2ηH ·
(

1

wt−1
− 1

wt

) t−1∑
j=1

wj︸ ︷︷ ︸
(ii)
= H/(H+1)≤1

+2ηH ≤ 4ηH.

Above, (i) uses the fact that Qj
iπ

j
−i ∈ [0, H] entry-wise for all j ≥ 1, and (ii) uses Lemma A.4(b).

This proves (53).

45

The above directly implies (54) by the following bound on the TV distance (or L1 norm) of product
distributions [50]: ∥∥πt

−i − πt−1
−i

∥∥
1
≤
∑
j ̸=i

∥∥πt
j − πt−1

j

∥∥
1
.

This completes the proof.

H Experimental details and additional studies

H.1 Experimental details for Section 5

Details about the game The simulations in Section 5 is performed on the following two-player-
zero-sum Markov game with H = 2. The state space at h = 1 only consists of a single state
S1 = {s0}. The state space at h = 2 consists of four different states S2 = {s11, s12, s21, s22}. The
action spaces are the same for every state, namely A = {a1, a2},B = {b1, b2}, i.e. each player has
two actions. The transition from S1 ×A× B → S2 is deterministic, which takes the following form:

s0 × ai × bj → sij , 1 ≤ i, j ≤ 2.

The instantaneous reward rh depends only on the action (and not the state), i.e., rh : A× B → [0, 1],
which takes values as (scaled) identity matrices:

r1(·, ·) =
[
0.1 0
0 0.1

]
, r2(·, ·) =

[
1 0
0 1

]
. (55)

Direct calculation yields that the Nash values and policies for this game is given by

V ⋆
2 (s) = 0.5 for s ∈ {s11, s12, s21, s22},

Q⋆
1(s0, ·, ·) =

[
0.6 0.5
0.5 0.6

]
, µ⋆

1(·|s0) = ν⋆1 (·|s0) =
[
0.5
0.5

]
, V ⋆

1 (s0) = 0.55. (56)

Initialization All algorithms in Figure 1 use the following initialization (µ0, ν0):

At h = 1 : µ0
1(a1|s0) = 0.3, µ0

1(a2|s0) = 0.7, ν01(b1|s0) = 0.7, ν01(b2|s0) = 0.3;

At h = 2 : µ0
2(a1|s11) = 0.248, µ0

2(a2|s11) = 0.752, ν02(b1|s11) = 0.248, ν02(b2|s11) = 0.752;

µ0
2(a1|s12) = 0.500, µ0

2(a2|s12) = 0.500, ν02(b1|s12) = 0.168, ν02(b2|s12) = 0.832;

µ0
2(a1|s21) = 0.500, µ0

2(a2|s21) = 0.500, ν02(b1|s21) = 0.168, ν02(b2|s21) = 0.832;

µ0
2(a1|s22) = 0.752, µ0

2(a2|s22) = 0.248, ν02(b1|s22) = 0.248, ν02(b2|s22) = 0.752.

Standard FTRL (Algorithm 3) and OFTRL (Algorithm 4) by default uses the uniform distribution as
the initialization, as it minimizes the (neg)entropy Φ(·). To make them initialized at µ0, we change
the regularizers for µh(·|s) to be KL(·∥µ0

h(·|s)) for the max-player. (And similarly KL(·∥ν0h(·|s))
for the min-player.) Note that our actual initialization above satisfies the property that all its values
are bounded within the interval [0.15, 0.85]. In particular, KL(µ′∥µ0

h(·|s)) for any other µ′ ∈ ∆A is
bounded by O(log(1/0.15)) = O(1), and thus all the convergence theorems will still hold with this
modified regularizer, with at most a larger (multiplicative) constant than with the Φ(·) regularizer.

Remark on runtime Running all our experiments takes approximately 6.46 hours CPU running
time (Intel(R) Core(TM) i5-8250U CPU).5

H.2 Additional visualizations for the INPG algorithm

Figure 1 shows that the INPG algorithm (with η = 1/
√
T) appears to converge much slower

than O(T−1/2) (which is the rate for FTRL with η = 1/
√
T). Here we present some further

understandings of this phenomenon by visualizing the optimization trajectories of the INPG algorithm.

5Code: https://github.com/DianYu420376/NeurIPS2022-Policy-Optimization-MGs

46

https://github.com/DianYu420376/NeurIPS2022-Policy-Optimization-MGs

(a) Value functions at h = 2

0.95 0.96 0.97 0.98 0.99 1.00
Iteration step t 1e6

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V
t, t

2 (s11) V
t, t

2 (s12), V
t, t

2 (s21) V
t, t

2 (s22)

(b) Policy at h = 1 (µt
1(a1|s0))

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Iteration step t 1e6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t
1(a1|s0) state-wise average T

1(a1|s0)

Figure 2: Visualizations of the optimization trajectory of the INPG algorithm along a single run with T = 106

and η = 1/
√
T . (a) Value functions in the second layer V µt,νt

2 (s) for all four states s ∈ {s11, s12, s21, s22}
over the last 5× 104 steps. (b) Policy in the first layer, i.e. µt

1(a1|s0) over the last 4× 105 steps. The horizontal
line plots the value of the final averaged policy µ̂T

1 (a1|s0) (where the averaging is over the entire run t ∈ [T]).

Figure 2a shows the evolution of the value functions at h = 2 over iteration step t, for the last
5 × 104 steps. For all four states, the policy optimization is equivalent to Hedge on the matrix
game with identity reward matrix 55, and thus exhibits an expected cyclic behavior and leads to the
sinusoidal-like curves shown in Figure 2a. However, due to the choice of our specific initialization
(µ0, ν0), the four curves behave like the same periodic curves with different “phases”.

Figure 2b shows the evolution of the policy at h = 1 (specifically, µt
1(a1|s0) which is the probability

of the max-player taking action a1) over t, for the last 4× 105 steps. (The result for the min-player
is similar.) The curve also behaves periodically, and appears to be a superposition of two waves,
one main waive with larger magnitude and period, and another oscillation with smaller magnitude
and period. Qualitatively, the main wave is caused by the intrinsic cyclic behavior of learning with
respect to the (fixed) reward at the h = 1, while the oscillation is caused by the changing reward that
is backed-up from h = 2. Further, as the reward in the second layer has much higher magnitude than
the first layer in this game, the oscillation has a non-negligible magnitude.

The horizontal line in Figure 2b plots the final output policy µ̂T
1 (a1|s0) ≈ 0.52, which we recall

is the average of µt
1(a1|s0) over the entire run t ∈ [T] (cf. Section 5). Note that the unique Nash

equilibrium satisfies µ⋆
1(a1|s0) = 0.5 (56), and the error µ̂T

1 (a1|s0)−µ⋆
1(a1|s0) ≈ 0.02. We suspect

that this may be an intrinsic bias caused by the aforementioned correlation between the two layers’
learning processes (in particular, the different “phases” of the second-layer’s learning over the four
states), and may also be the cause of the slow convergence for INPG shown in Figure 1.

H.3 Additional theoretical justifications

INPG as an instantiation of Algorithm 1 Here we show why the instantiation of Algorithm 1
with βt = 1 and

µt
h(a|s) ∝a µt−1

h (a|s) exp
(
η
[
Qt−1

h νt−1
h

]
(s)
)
, νth(b|s) ∝b ν

t−1
h (b|s) exp

(
−η
[(
Qt−1

h

)⊤
µt−1
h

]
(s)
)
.

considered in Section 5 is equivalent to the Independent Natural Policy Gradient (INPG) algorithm.
Indeed, choosing βt = 1 in Algorithm 1 ensures that Qt

h = Qµt,νt

h (the true value function of
(µt, νt)). Therefore, the above update is equivalent to

µt
h(a|s)∝aµ

t−1
h (a|s) exp

(
η
[
Qµt−1,νt−1

h νt−1h

]
(s)
)
, νth(b|s)∝b ν

t−1
h (b|s) exp

(
−η
[(

Qµt−1,νt−1

h

)⊤
µt−1
h

]
(s)

)
.

This is exactly an independent two-player version of the Natural Policy Gradient algorithm (e.g. [1]),
where each player plays an NPG algorithm as if they are facing their own Markov Decision Process,
with the opponent fixed.

NEGap-Layer-1 lower bounds NEGap Here we show NEGap-Layer-1(µ, ν) ≤ NEGap(µ, ν) for
any (µ, ν). From the definition of V ⋆

h we have that

V ⋆
h (s) = inf

ν
V †,ν
h (s) = sup

µ
V µ,†
h ,

47

=⇒ V µ,†
h ≤ V ⋆

h (s) ≤ V †,ν
h (s), ∀µ, ν.

Thus

Q⋆
h(s, a, b) =

[
rh + PhV

⋆
h+1

]
(s, a, b) ≤

[
rh + PhV

†,ν
h+1

]
(s, a, b) = Q†,ν

h (s, a, b),

Q⋆
h(s, a, b) =

[
rh + PhV

⋆
h+1

]
(s, a, b) ≥

[
rh + PhV

µ,†
h+1

]
(s, a, b) = Qµ,†

h (s, a, b)

=⇒ Qµ,†
h (s, a, b) ≤ Q⋆

h(s, a, b) ≤ Q†,ν
h (s, a, b).

Thus for our example

NEGap-Layer-1(µ, ν) = max
µ†
1

[
(µ†

1)
⊤Q⋆

1ν1

]
(s0)−min

ν†
1

[
µ⊤
1 Q

⋆
1ν

†
1

]
(s0)

≤ max
µ†
1

[
(µ†

1)
⊤Q†,ν

1 ν1

]
(s0)−min

ν†
1

[
µ⊤
1 Q

µ,†
1 ν†1

]
(s0)

= V †,ν
1 (s0)− V µ,†

1 (s0) = NEGap(µ, ν).

I Additional details

I.1 Learning setting

In this paper we consider the full-information setting for learning Markov Games formally defined
via the following oracle: Given any h ∈ [H], policies µh+1 = {µh+1(·|s) ∈ ∆A}s∈S , νh+1 =

{νh+1(·|s) ∈ ∆B}s∈S , and V function Vh+1 ∈ RS , we can query the exact value of

rh + PhVh+1 ∈ RS×A×B. (57)

Note that our algorithm framework (Algorithm 1) and all its subsequent instantiations can execute
under the above oracle: Each iteration of Algorithm 1 makes H queries to this oracle, one for each
h ∈ [H] with value function Vh+1 = (µt

h+1)
⊤Qt

h+1ν
t
h+1 (cf. (4)).

For the purpose of comparing policy optimization type algorithms, we also consider the following
weaker oracle: Given any h ∈ [H], policies µh = {µh(·|s) ∈ ∆A}s∈S , νh = {νh(·|s) ∈ ∆B}s∈S
and V function Vh+1 ∈ RS , we can query the expected value of its one-step backup under each
player’s policy: {

(rh + PhVh+1)νh ∈ RS×A,

(rh + PhVh+1)
⊤µh ∈ RS×B.

(58)

This oracle is also considered in [53, Section 3]. It is clear that one query to (57) can implement one
query to (58), and thus (58) is a weaker oracle.

I.2 Comparison of algorithms

We first remark that all algorithms considered in Section 3.2, 4, & 5 fall into the unified framework of
Algorithm 1 and thus are implementable using the full-information oracle (57).

Second, most algorithms we consider: Nash V-Learning (Example 1), GDA (Example 2), OFTRL
(Algorithm 4 & Theorem 3), as well as INPG (Section 5) are policy optimization type algorithms
which can be implemented using the weaker oracle (58) (see implementation details in Algorithm
5,6,9). In this paper, we are interested in comparing the rates of the above algorithms, where OFTRL
achieves a faster Õ(T−5/6) rate, and Nash V-Learning and GDA achieve the standard Õ(T−1/2) rate.
(The convergence rate of INPG in theory is still open.)

By contrast, Nash Q-Learning (Example 3) and Nash Policy Iteration (Example 4) are not typically
considered as policy optimization algorithms, and they cannot be implemented using (58). Our unified
framework (Algorithm 1) allows using (57) and thus encapsulates these two algorithms, but due to
the usage of a stronger oracle, their convergence rates are not comparable with the aforementioned
policy optimization algorithms.

48

	Introduction
	Related work

	Preliminaries
	An algorithm framework for zero-sum Markov games
	Theoretical guarantee
	Examples

	Fast convergence of optimistic FTRL
	Extension to multi-player general-sum Markov games

	Simulations
	Conclusion
	Technical tools
	Properties of ti
	Other technical lemmas

	Bound for regret minimization algorithms
	Projected gradient descent
	Follow-The-Regularized Leader (FTRL)
	Optimistic Follow-The-Regularized-Leader (OFTRL)
	Auxiliary lemma for OFTRL with general regularizers

	Proofs for Section 3.1
	Implementation of state-wise average policy

	Algorithm details and proofs for Section 3.2
	Nash V-Learning (full-information version)
	GDA-Critic
	Nash Q-Learning (full-information version)
	Nash Policy Iteration

	Proof of Theorem 3
	Proof of Lemma E.1

	A modified OFTRL algorithm with O"0365O(T-1) rate
	Proof of Theorem F.1

	Optimistic policy optimization for general-sum Markov Games
	Preliminaries
	Algorithm and formal statement of result
	Useful lemmas
	Proof of Theorem G.1
	Proof of Lemma G.4

	Experimental details and additional studies
	Experimental details for Section 5
	Additional visualizations for the INPG algorithm
	Additional theoretical justifications

	Additional details
	Learning setting
	Comparison of algorithms

