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ABSTRACT

We present a Conversational Chain-of-Action (Conv-CoA) framework for Open-
domain Conversational Question Answering (OCQA). Compared with literature,
Conv-CoA addresses three major challenges: (i) unfaithful hallucination that is
inconsistent with real-time or domain facts, (ii) weak reasoning performance in
conversational scenarios, and (iii) unsatisfying performance in conversational infor-
mation retrieval. Our key contribution is a dynamic reasoning-retrieval mechanism
that extracts the intent of the question and decomposes it into a reasoning chain to
be solved via systematic prompting, pre-designed actions, updating the Contextual
Knowledge Set (CKS), and a novel Hopfield-based retriever. Methodologically,
we propose a resource-efficiency Hopfield retriever to enhance the efficiency and
accuracy of conversational information retrieval within our actions. Additionally,
we propose a conversational-multi-reference faith score (Conv-MRFS) to verify
and resolve conflicts between retrieved knowledge and answers in conversations.
Empirically, we conduct comparisons between our framework and 23 state-of-the-
art methods across five different research directions and two public benchmarks.
These comparisons demonstrate that our Conv-CoA outperforms other methods in
both the accuracy and efficiency dimensions.

1 INTRODUCTION

We propose a conversational reasoning-retrieval framework to enhance the efficiency and quality
of OCQA, tailored to surpass the architecture of Retrieval Augmented Generation (RAG) methods.
This work addresses three major challenges in applying RAG to answer conversational questions:
(i) weak reasoning, where large language models (LLMs) struggle to acquire required information
from heterogeneous sources, (ii) unfaithful hallucinations, where the response may not align with
real-time or domain-specific facts, and (iii) unsatisfying retrieval, where the traditional dense
information retriever (IR) cannot get the intent of questions and fails in the conversational scenario.

To enhance the reasoning, faithfulness, and conversational IR, previous approaches such as chain-of-
thought-based work (Saparov & He, 2022; Yao et al., 2023a; Xiong et al., 2024) prompt LLMs to
answer complex questions step by step. The other work proposes RAG-based prompting frameworks,
such as agents (Pan et al., 2024). However, they aim to solve single-round questions and fail in
complex conversations. More recent work focuses on the retrieval phase and aims to improve the
query quality and retrieval capability. While CONQRR and ReExCQ (Wu et al., 2021; Mo et al.,
2023b) are the representative query-reformulation methods to rewrite and expand the current query
with historical conversations, they need extra pre-trained model with much training expense. We
argue that training a model for query reformulation is unnecessary; instead, prompting methods can
harness the existing LLMs to serve this purpose. ConvSDG and CONVAUG (Mo et al., 2024b; Chen
et al., 2024) try to enhance the conversational retriever by generating different levels of conversations.
However, their performance cannot be beyond the theoretical upper bound of traditional dense
retrievers, and their consumption is still expensive. In summary, the key challenge of current OCQA
lies in designing a framework tailored for conversational QA scenarios that integrates prompting with
RAG and devises an innovative conversational retriever that surpasses traditional retriever architecture
in efficacy.
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Figure 1: Overview of Conv-CoA. It starts by injecting the initial question into a prompt, creating an action
chain (AC) via the LLM. Each node in the AC represents a sub-question and an initial answer. Specific actions
verify if the initial answer needs modification based on retrieved data. If the confidence in the initial answer is
lower than in the retrieved data, an action prompts a change. The AC contents are stored in a CKS and updated at
the end of each turn. In future turns, the CKS and the current question are combined to regenerate the AC, using
different prompt templates to generate sub-questions for unknown content, thus reducing information overlap.

To this end, we propose Conv-CoA framework, to deliver an accurate, reliable, and efficient OCQA.
Conv-CoA introduces two predefined actions: web-querying and info-searching. The former retrieves
the latest information from the Internet, while the latter accesses knowledge from storage (i.e.,
specific domain documents). Since both actions reply on effective data retrieval, we design a resource-
efficient Hopfield Retriever, inspired by the Modern Hopfield models showcasing fast convergence and
exponential memory capacity (Schimunek et al., 2023; Widrich et al., 2020). This retriever surpasses
traditional dense retriever architectures in training speed and inference precision. Meanwhile, to
minimize unnecessary time and token consumption, we design a systematic prompting mechanism
to decompose a complex question into a reasoning chain with necessary sub-questions that need
external help. As shown in Figure 1, the first round question is embedded into a designed prompt
to construct an action chain (AC) using the LLM. Each node in the AC represents a sub-question
paired with an initial answer generated by the LLM. We assign actions to verify if the initial answers
align with unprepossessing retrieved data by proposed conversational-multi-reference faith score
(Conv-MRFS). If a discrepancy arises, the action refines the answer using summarized content. This
mechanism avoids unnecessary processing which is the main part of cost in RAG, significantly
improving efficiency. The refined AC content is stored in a contextual knowledge set (CKS), which
is updated at the end of each future round. At the same time, the LLM generates the final answer
based on the updated CKS. For subsequent rounds, Conv-CoA iteratively combines the CKS and the
current round’s question to repeat the AC generation via a different prompt template. We design a
rule to generate the sub-questions that we do not have relevant content yet based on the newest CKS
to minimize the latency of unnecessary retrieval.

In summary, Conv-CoA is the first work that enables a faithful, accurate, fast OCQA by incorporating
the prompting method and the novel Modern Hopfield retriever. Our main contributions are as follows:

• Conv-CoA framework can decompose query into necessary sub-questions to solve by
Hopfield-enhanced actions with verification of Conv-MRFS score.

• We propose a resource-efficient Hopfield retriever to break the limitations of traditional
retrievers and significantly speed up the training with even better accuracy.

• We design a memory-enhanced mechanism to construct each round’s AC based on the
updating CKS, enabling less overusing retrieval to further reduce the cost.

• Experiments demonstrate that we outperform other methods and solve three challenges.

2 RELATED WORKS

To improve OCQA performance, recent work focuses on RAG methods. We categorize these methods
into two distinct phases in alignment with the RAG life cycle: (1) Retrieval Phase: methods aim to
enhance query quality and retrieval efficacy, facilitating the acquisition of more pertinent information
to support LLM in generating answers. (2) Generation Phase: methods aim to propose prompting
methods to aid LLM in conducting reasoning processes, thereby enabling more rational and precise
answer generation. Hence, we first introduce the work in the retrieval phase from two perspectives:
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query quality and retriever capability. Then, we explore various prompting methods designed to
synergize with the retrieval phase. In addition, we also introduce some Hopfield-based methods that
motivate us to propose our memory-enhanced conversational retriever.

Query Reformulation Methods. Conversational Query Reformulation (CQR) uses query rewriting
and expansion based on a conversational context to improve retrieval performance. Compared with
other conversational retrieval methods, CQR directly reformulates the original conversation-based
query into a standalone query as input to off-the-shelf retrievers without fine-tuning. While previous
CQR work addresses conversational retrieval by using human-rewritten queries or querying expansion
methods (Lin et al., 2021; 2020; Mo et al., 2023a), they always get a sub-optimal and require a
separate model trained by lots of human rewrites. To address these drawbacks, CONQRR (Wu et al.,
2021) optimizes the query rewriting model to the retrieval. More recently, IterCQR and IQR (Jang
et al., 2023; Ye et al., 2023) conduct query reformulation without relying on human rewrites by
prompting the large language models (LLMs). ReExCQ (Mo et al., 2023b) focuses on expanding the
current query with selected relevant historical queries. However, they need a large storage capacity
and time when generating candidates during the training.

Enhanced Retrieval Methods. Conversational Retrievers train previous information retrievers on
conversational datasets using more complicated training strategies and loss functions. It aims to
enhance the retriever’s ability to search for relevant information within conversational situations.
LeCoRE (Mao et al., 2023) considering knowledge distillation, InstructorR (Jin et al., 2023) utilizing
LLMs to predict the relevance score between the session and passages, and SDRConv (Kim & Kim,
2022) that includes mining additional hard negatives. In addition, ConvSDG and CONVAUG (Mo
et al., 2024b; Chen et al., 2024) are the most recent work about utilizing LLM to generate conver-
sations. ConvSDG explores the dialogue/session-level and query-level data generation separately.
CONVAUG generates multi-level augmented conversations to capture the diverse nature of conversa-
tional contexts. HAConvDR (Mo et al., 2024a) incorporating context-denoised query reformulation
and automatic mining of supervision signals based on the actual impact of historical rounds. However,
all of them focus on augmenting the training data for conversational dense retrievers. Despite these
advancements, the performance upper limit of these methods still cannot break through the theoretical
upper limit of transformer-based dense retrievers.

Hopfield Models and Dense Associative Memory. Classical Hopfield models (Hopfield, 1984; 1982)
are energy-based physics models emulating the human brain’s associative memory, emphasizing
memory pattern storage and retrieval. Modern Hopfield models (Krotov, 2023; Hu et al., 2024c;a;b;
2023; Wu et al., 2024; 2023; Krotov & Hopfield, 2021; Ramsauer et al., 2020; Krotov & Hopfield,
2016), also known as Dense Associative Memories, are advanced versions of the classical Hopfield
networks. They offers improved memorization capacity (Hu et al., 2024c; 2023; Wu et al., 2024;
Krotov & Hopfield, 2021; Ramsauer et al., 2020; Demircigil et al., 2017; Krotov & Hopfield, 2016)
and compatibility with transformer architecture as advanced attention mechanisms (Hu et al., 2024c;
Wu et al., 2024; 2023; Schimunek et al., 2023; Auer et al., 2024; Hu et al., 2024a; 2023; Widrich
et al., 2020; Ramsauer et al., 2020). We propose a Hopfield-based retriever for conversational search,
leveraging the rapid convergence and vast memory capacity of modern Hopfield models to better
retrieve knowledge from memory spaces.

3 CONVERSATIONAL CHAIN-OF-ACTION

Our framework aims to generate answers aligned with the current conversational question, denoted
by qn for the n-th round. This QA process is historically contextual, leveraging previous dialogue
rounds denoted by H = {qi}n−1

i=1 . It is essential for the framework to optimize the formulation
of each question qi to accurately capture the user’s intended query content On. Utilizing the
reasoning capabilities of LLMs, the framework decomposes the optimized question into a chain of k
sub-questions {Rn1,Rn2, . . . ,Rnk}, each aimed at a specific aspect of the main query. For each
sub-question Rni, the system retrieves the most relevant information passage Ini from a corpus of
external data sources, culminating in a set {Ini}ki=1 that aids in generating the final answer an. Thus,
the abilities to optimize questioning O, to chain reasoning R, and to retrieve pertinent information
I are pivotal. The goal of this paper is to propose a framework that integrates disparate external
information sources, empowering the LLM to dissect queries effectively and retrieve related content
swiftly, leading to the provision of the most precise answer An.
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3.1 OVERVIEW

As shown in Figure 1, we utilize in-context learning to inject the 1st round query into a prompt,
generating an Action Chain (AC) via an LLM. Each node of AC includes sub-questions paired with
initial answers. The assigned actions then verify if the initial answers align with non-post-processing
retrieved data by Conv-MRFS. If any answers fail, corresponding actions continue to summarize
content for adjusting them, avoiding unnecessary post-processing, which costs a major part of RAG.
Meanwhile, we maintain and iteratively update a Contextual Knowledge Set (CKS) at the end of
a conversation round, which stores essential information of refined AC and reduces redundancy
in retrieved data. This dynamic updating supports the decomposition of subsequent queries into
necessary sub-questions that have no relevant information yet. It helps to minimize the latency of
unnecessary retrieval. In the retrieval phase, our proposed Hopfield-based retriever ensures more
powerful conversational retrieval, enriching the contextual understanding and response precision.

3.2 CONTEXTUAL KNOWLEDGE SET

The Contextual Knowledge Set (CKS) is a structured data format designed to store critical in-
formation from each round of a conversation. CKS is in JSON format, which facilitates easy
integration and manipulation in data-driven applications. Each entry in the CKS records various
components of the dialogue, including the original question posed during the round, the optimized
question that refines or extends the original inquiry, detailed sub-questions that break down the
main question into more reasonable parts, summarized information that has been retrieved in re-
sponse to each sub-question, and the final answer concluded at the end of the discussion. This
structure not only preserves the flow of conversation but also enriches the contextual understanding
of each interaction. Below is an example of how CKS organizes and presents this information:
{ "Contextual knowledge set": [

{
"round": 1,
"original_question": "What ...?",
"optimized_question": "...",
"sub_questions": {
"sub1": "What are ...",
"sub2": "What are ...",

},
"information_summaries": {
"infor1": "A use light ...",
"infor2": "B are the ...",

},
"answer": "Photosynthesis ..."

}, ...]
}

Listing 1: Example of Contextual Knowledge Set JSON Structure

3.3 ACTION CHAIN GENERATION

We have two different action chain generation stages, the initial and normal stages, aiming for the
first round and future rounds in a conversational question answering.
Initial stage: In this stage, we inject the first round questions and detailed descriptions of actions
into a prompt template. Then, LLM decomposes the question into sub-questions paired with guess
answers and assigned actions. The prompting template is shown in Appendix E. After that, each
assigned action retrieves the related information and checks if the guess answer is not aligned with
the unprepossessing information by the Conv-MRFS score to determine whether to adjust these
sub-questions. Finally, LLM generates the final answer from the processed action chain, and the
framework updates the CKS with the refined action chain.
Normal stage: In the normal stage, we design a different prompt to promote LLM to extract the
N-round intent question from the updated CKS and original N-round question, then decompose it into
necessary sub-questions that have no related information yet. After that, actions do the retrieve and
answers correction again. Finally, LLM generates the final N-round answer and updates the process
into the CKS iteratively. The prompting template is shown in Appendix E:

4
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3.4 ACTION IMPLEMENTATION

We propose two actions to address different information needs: (1) Web-querying, which searches
real-time information from the Internet, and (2) Knowledge-retrieval, which retrieves the relevant
information within domain-specific corpus datasets. Both actions follow the same three-stage
workflow: (i) Information Retrieval, (ii) Alignment Detection, and (iii) Answer Correction. At the
core of the Information Retrieval stage for both actions is our novel Hopfield-based Retriever, which
enables efficient and accurate conversational search. In the following sections, we first introduce the
action designs. We then provide a detailed explanation of the three workflow stages, with a particular
emphasis on the innovative Hopfield-based Retriever.

3.4.1 ACTION DESIGN

Web-querying. Web-querying action leverages search engines, employing a query strategy to retrieve
relevant Internet content. Initially, the action searches for keywords from the specified sub-question
Rnk, providing a result list. We select the top-k results and extract the content directly from their web
pages as the unprepossessing information to detect the alignment between it and LLM-generated initial
answers. If the nonalignment exists, we collect the titles T and snippets Sn from the top k pages. Each
title and snippet pair {Tk, Snk} is then transformed into a 1536-dimension vector Emb{Tk|Snk}
using the OpenAI’s text-embedding-ada-002 model (OpenAI, 2023). We perform the same vector
transformation for the sub-question and its guess answer {Rnk,Gnk}. Subsequently, our Hopfield-
based retriever selects the most similar pages from vectors Emb{Tk|Snk} by Emb{Rnk|Gnk}. The
contents from these pages are then extracted and summarized to correct the related sub-question.

Knowledge-retrieval. In our framework, documents sourced from diverse platforms, including
Wikipedia, are pre-processed using an encoder designed to transform textual content into embedding
vectors. Each document is segmented into multiple chunks determined by their length, following
which these segments are encoded into vectors. These vectors are subsequently cataloged in a vector
database, indexed for efficient retrieval. For the retrieval process, we leverage our novel Hopfield
retriever, which utilizes these pre-encoded vectors to respond to queries effectively, ultimately yielding
the top-k most relevant results based on similarity metrics. The details of the encoding and retrieval
mechanisms will be further elaborated in the subsequent section of this paper 4. After retrieval, if
there exists a nonalignment between the retrieved information and the guess answer Gnk, Conv-CoA
prompts the LLM to summarize the retrieved results and correct the answer.

3.4.2 ACTION WORKFLOW

For each sub-question, an action follows the same three-stage workflow as shown in Algorithm 1.

A. Information Retrieval. In this stage, the task begins by transforming the sub-question and
guessed answer into a vector representation compatible with the information pool (e.g., Internet
data or local domain-specific corpus databases). To achieve this, we utilize the existed embedding
model to encode the query, QSn = {Subn | An} into a vector, Emb{QSn}. This vector aligns
with the embedding space of the information pool. Subsequently, using our Hopfield-based retriever,
which incorporates the conversational context, we search for the top-k most similar results. The final
retrieved results, R{QS}, are expressed as: R{QS} = (r1 | r2 | · · · | rk).
B. Alignment Detection. To verify conflicts between guess answers and retrieved information, we
introduce the Conversational-Multi-Reference Faith Score (Conv-MRFS) to evaluate the consistency
of guess answers with the conversational context (conversation history CKS and new retrieved
information), helping to avoid unnecessary post-processing of retrieval and reduce the hallucinations.
B1. Overview of Conv-MRFS: The Conv-MRFS involves extracting relevant segments from the
conversation history as references. The core is the faith score, which measures alignment between
the guess answer and reference segments based on precision, recall, and average word length.
B2. Components of the Faith Score: The faith score S is a composite metric incorporating three
components: Precision (P), Recall (Rcl), and Average Word Length (AWL). These components are
weighted to reflect their importance in the evaluation process: S = α · P+ β ·Rcl + γ ·AWL. Here,
α, β, γ are weights for precision, recall, and average word length, summing to 1 for normalization.
B3. Precision and Recall: Precision (P) quantifies the fraction of relevant instances within the
generated answer consistent with the conversational context and Recall (Rcl) measures the fraction of

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

relevant instances from the conversational context captured by the generated answer:

P =
# of consistent items
total # of items in An

,Rcl =
# of consistent items

total # of relevant items in CH
.

B4. Average Word Length: Average Word Length (AWL) represents the mean length of words in the
generated answer, indicating verbosity and informativeness: AWL = sum of lengths of all words in An

total # of words in An
.

B5. Score Calculation: For each segment CHi in the conversation, we compute the faith score
S(CHi, An). The Conv-MRFS is the maximum score across all segments.
B6. Threshold Decision: We set a threshold T for answer. If the Conv-MRFS exceeds T , the answer
is considered faithful. Otherwise, the answer is revised to better align with the retrieved information.
C. Answer Correction. If a misalignment is detected, the retrieved information R{QS} and the
corresponding sub-question Subn are fed to the LLM. The LLM generates a corrected answer A′

n and
a reasoning summary that links retrieved data to the correction. The corrected answer and rationale
are then stored in the CKS for future rounds.

3.5 CONV-COA-PLUS

To further enhance the structured reasoning ability of LLMs, we propose Conv-CoA-Plus, an
extension designed for open-source LLMs. Specifically, we incorporate a reinforcement learning
module that fine-tunes the model using GRPO (Shao et al., 2024). Detailed descriptions of Conv-
CoA-Plus are provided in appendix I.

4 RESOURCE-EFFICIENT HOPFIELD RETRIEVER

We propose a resource-efficient Hopfield retrieval model designed to extract the top-k relevant
information from existing conversation rounds and the knowledge base, aiming to enhance the
efficiency and accuracy of the retriever.

4.1 ENCODER

In this work, we employ separate BERT-based (Devlin et al., 2019) networks for the question and
passage encoders, using the [CLS] token representation as the output, with each representation
being 768-dimensional. To enhance efficiency, we utilize an 8-bit quantized version (Dettmers et al.,
2022) of the BERT-based model. Previous studies (Luo et al., 2025; Hu et al., 2024a; Bondarenko
et al., 2024) have shown that large foundation models often suffer from numerous outliers that
degrade efficiency and quantization performance due to attention-weight explosions caused by these
outliers. In response, we adopt the OutEffHop (Hu et al., 2024a) variant of BERT, which mitigates
performance loss associated with these challenges.

4.2 HOPFIELD RETRIEVER

During inference, we implement a speed-up strategy to enhance the Hopfield model in large-scale sce-
narios, achieving high speed with minimal impact on accuracy. As shown in appendix F, given the ex-
tensive time required for querying a large-scale knowledge database, we adapt the SparseHopfield
layer (Hu et al., 2023) to segment the memory pattern into k parts with ecah part chunk size is n:

Y → {Y(i)}ki=1, Y(i) = [y
(i)
1 , . . . ,y(i)

n ].

In order to effectively train the retrieval, we make those k retrievals share the same weights.

For each input query x, we compute its representation using the Hopfield network:

z(i) = Sprasemax(βxWQW
⊤
K(Y(i))T)Y(i)WKWV .

Then, we compute the similarity score sim(z(i),x) to identify the most relevant passage from i.

4.3 TRAINING STRATEGY

In our Hopfield-based retriever, we aim to design a resource-efficient retrieval system compared to
traditional retrieval methods (Izacard et al., 2021; Karpukhin et al., 2020). Hu et al. (2023) demon-
strates that Hopfield networks achieve faster convergence than traditional attention mechanisms,
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making them a promising choice for efficient and scalable retrieval. In our system, we employ a
SparseHopfield network to construct a straightforward retrieval that captures the hidden represen-
tations of the query x and the retrieval memory Y(i). The model utilizes the encoder described in
section 4.1 and employs the Hopfield network to distinguish the latent representations between the
query and the retrieval memory. Following this, dot-product similarity is applied as an effective
ranking function to determine the retrieval index from the memory. In the training process, we
optimize the Hopfield-based retrieval system using the loss function from the Dense Passage Retrieval
(DPR) model introduced by Karpukhin et al. (2020).

In detail, let D = {qi, y+i,1, y
−
i,1, y

−
i,2, . . . , y

−
i,d}mi=1 represent the training data, which comprises m

instances. Each instance includes one question qi, one relevant (positive) memory sets y+i,j , and with
d irrelevant (negative) memory sets y−i,j . positive passages are paired with different questions from
the training set to form negative pairs for retrieval. This method of using gold passages from other
questions as negatives enhances computational efficiency and yields high performance. We also find
that our Hopfield-based retriever needs less training cost than other transformer retrievers.

4.4 THEORETICAL GUARANTEES

We emphasize that our design choice provides strong theoretical guarantees. First, using OutEffHop
(Hu et al., 2024a) as the encoder backbone ensures (i) outlier-free representation learning (Hu et al.,
2024a, Lemma 2.1) and (ii) Transformer-like generalization power (Hu et al., 2024a, Thm. 3.4).
Together, these properties make OutEffHop a quantization-strong Transformer backbone. Second,
choosing the SparseHopfield layer (Hu et al., 2023) as the knowledge retriever guarantees (i)
faster convergence per epoch (Hu et al., 2023, Thm.2.2) and (ii) strong noise robustness in sparse
representation learning (Hu et al., 2023, Remark2.4). These theoretical advantages strengthen our
method, and our empirical results validate them.

Table 1: Retrieval Performance on Conversational Datasets. We conduct experiments on conversation-
based datasets, testing 14 baselines in a conversational retrieval task using Mean Reciprocal Rank (MRR)
and Recall@10&100 scores. The best results are highlighted in bold, while the second-best are underlined.
Across most configurations, the Hopfield Retrieval (HR) with training outperforms all baselines, and HR without
retrieval surpasses several of the retrieval methods.

Category Model QReCC TopiOCQA
MRR Recall@10 Recall@100 MRR Recall@10 Recall@100

QR

T5QR 34.5 53.1 72.8 23.0 37.6 54.4
CONQRR 41.8 65.1 84.7 - - -
ConvGQR 42.0 63.5 81.8 25.6 41.8 58.8
IterCQR 42.9 65.5 84.1 26.3 42.6 62.0

IQR 49.4 66.3 85.0 - - -
AdaRewriter 47.5 69.8 80.2 41.3 61.9 79.3

ConvSearch-R1 49.7 69.8 81.6 51.4 72.0 85.7

RE
ReExCQ 18.5 28.9 41.1 10.8 24.1 33.3

ConvSDG - - - 21.4 37.8 58.0
CONVAUG 52.7 75.6 83.1 35.0 57.9 67.3

RB

HAConvDR 48.5 72.4 88.9 30.1 50.8 72.8
LeCoRE 51.1 73.9 89.7 32.0 54.3 73.5

InstructorR 52.9 77.7 92.9 38.5 62.1 83.2
SDRConv 53.0 76.1 88.3 26.1 44.4 63.2

HR HR w/o Training 45.1† 70.2† 85.1 33.7† 59.2† 73.9
HR w/ Training 68.7† 83.5† 90.7 60.3† 74.8† 87.3

5 EXPERIMENTS

In experiments, we first compare our Conv-CoA framework with recent state-of-the-art baselines
across public benchmarks, followed by an in-depth improvement analysis for major challenges
in RAG: (i) weak reasoning, (ii) unfaithful hallucinations, (iii) unsatisfying retrieval. Note that
GPT-3.5-Turbo serves as the backbone in all LLM-based methods and as the reader for all retrievers.

Datasets. We select two public benchmarks: TopiOCQA (Adlakha et al., 2022), an open-domain
conversational dataset with topic switches, contains 3920 conversations with information-seeking
questions. On average, a conversation in TopiOCQA spans 13 question-answer rounds and in-
volves four topics. QReCC (Question Rewriting in Conversational Context) dataset includes 14K
conversations with 81K question-answer pairs (Anantha et al., 2020).
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Table 2: Abilities of Question Answering. We conduct an experiment on QA using 13 baselines of prompting-
based methods, evaluated with the GPT Exact Match Score (GPT-EM). The best results are highlighted in bold,
while the second-best are underlined. Across most configurations, Conv-CoA achieves the best performance on
in the TopiOCQA (Topi) and QReCC datasets.

0-shot Few CoT SC ToT LM ToolF SA React DSP CoA RopMura EORM Ours

QReCC 18.4 18.4 30.6 67.4 20.4 22.4 50.0 34.5 37.3 38.1 69.7 38.5 39.2 71.2
Topi 23.2 28.2 35.4 78.8 22.4 48.0 30.7 51.0 40.8 28.6 56.9 32.7 43.7 83.7

Table 3: Comparison of Retrievers Efficiency. We conduct an experiment on time usage in training and
memory retrieval separately with 7 baselines. We report the average time spent (in minutes) on model training
(A) and memory retrieval (B), represented by A/B in table. The best results are highlighted in bold, while the
second-best are underlined. Across most configurations, Conv-CoA is efficient in model training and memory
retrieval. In our experiment, we utilize four NVIDIA A100 80GB GPUs and train for 10 epochs.

HAConvDR LeCoRe InstructorR SDRConv ReExCQ AdaRewriter ConvSearch-R1 (Ours)

QReCC 131.75 / 44.25 112.5 / 38.23 - / 32.01 120 / 75.87 143.15 / 47.23 121.7/29.8 372.6/61.3 91.25 / 35.78
TopiOCQA 93.65/ 50.72 87.75 / 47.68 - / 30.32 - / 55.39 103.51 / 38.23 116.5/21.5 178.9/49.2 72 / 29.65

Baselines. In our experiments, we include several baseline categories to compare with Conv-CoA.
Specifically, we evaluate against Query Rewriting (QR), Query Expansion (QE), dense retriever–based
approaches (RB), and prompting-based methods, including Energy-Based prompting (EB), Prompting-
Only (PO), and Prompting-RAG (PRAG). Detailed descriptions of the baselines are provided in
appendix C. In our experiment, we evaluate our proposed Hopfield Retriever (HR) solely using the
same reader (GPT-3.5-Turbo) as other conversational RAG baselines, demonstrating its promising
performance. We assess our retriever both with and without training.

Table 4: Agent Costs. Each cell contains two values (A/B), where A corresponds to TopiOCQA and B
corresponds to QReCC.

Agent Input Tokens Output Tokens Total Tokens Overall Time (s) Number of Retrievals Number of LLM Calls
React 32750 / 9407 1394 / 2750 32750 / 10210 29 / 17 22 / 11 36 / 21
SeChain 53027 / 40868 4890 / 2513 57917 / 43381 42 / 28 42 / 25 63 / 49
CoA 9730 / 7213 1498 / 2273 13177 / 8763 27 / 19 19 / 10 20 / 19
RopMura 30728/17278 1678/2358 32406/19636 31/21 32/25 19/17
EORM — — — 22/18 — 1/1
Our w/o Alignment Detection 14744 / 16837 7352 / 2296 15479 / 18120 29 / 20 24 / 16 58 / 36
Our w/o CKS 6197 / 6584 1929 / 2928 7652 / 9584 27 / 19 23 / 19 21/18
Our w/ Alignment Detection & CKS 3898 / 5736 1330 / 2127 5230 / 8032 21 / 17 20 / 16 14 / 15

5.1 EVALUATION METRICS

To evaluate the performance of the retriever, we select the Mean Reciprocal Rank (MRR) and
Recall@10&100. MRR measures the average of the reciprocal ranks of the first relevant document
returned by the retriever across all queries. And Recall@10&100 measure the proportion of relevant
documents found in the top 10 and 100 results returned by the retriever. We select the time (s) to
evaluate both training and inference time of our Hopfield retriever and others.

To evaluate the effectiveness, most of the work chooses cover-EM (Rosset et al., 2020) to represent
whether the generated answer contains the ground truth. However, we find it is insufficient for
accurately judging the correctness of LLM-generated answers. Sometimes, the LLM generates lots
of sentences that may cover the ground truth at first but provide the final wrong answer in the end. In
this way, the cover-EM still takes it as a correct answer. In addition, even if we try to limit the output
format, the outputs are always out of the format, making it difficult to deal with various answer types
to evaluate the performance. Motivated by recent work, they demonstrate the potential evaluation
ability of GPT-4 (Bevilacqua et al., 2023). We also follow the same strategy to establish an advanced
pipeline and propose a new metric called GPT-EM. We design a prompt template to let GPT-4
evaluate whether the generated answer truly matches the ground truth. The template is shown in E. In
addition, to evaluate the actual cost of our Conv-CoA, we use the number of input&output tokens,
retrieval times.

5.2 EXPERIMENTAL RESULTS

In our evaluation, as detailed in Table 1 and Table 2, our Conv-CoA framework outshines baselines
across the board for both the QReCC and TopiOCQA datasets. When examining the effectiveness of
the proposed approach in retrieval only or overall question answering, it is evident that we achieves
the highest performance, signifying its prowess in retrieving relevant information and delivering final
answers. Meanwhile, Table 4 compare various costs between Cov-CoA and other agents, including
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Table 5: RAG Misleading. External knowledge leads LLM astray in solving questions using baseline methods.
Our study takes place in a context involving information retrieval tasks. The best results are highlighted in bold.

React SDRConv CONVAUG IQR CoA (Ours)

QReCC 19.6 6.7 7.3 9.1 13.5 4.8
TopiOCQA 41.6 17.3 18.9 23.6 22.9 16.2

Table 6: Model Contradiction. Generated content is not aligned with the previous context.
SDRConv CONVAUG IQR React Self-Ask SeChain CoA Conv-CoA

QReCC 4.8 5.6 9.2 9.5 19.6 13.5 8.7 3.2
TopiOCQA 5.1 8.5 13.7 17.5 25.8 14.9 10.1 4.1

number of tokens used for input and output by the LLM, overall spending time, number of retrieval
times, and number of LLM calls. The results demonstrate that our framework can avoid lots of
unnecessary post-processing of retrieval. It helps to save many cost consumption and reduce related
latency. Further ablation study also demonstrates that the saving derives from the proposed Alignment
Detection and updated CKS. The former stage can detect the knowledge boundary of LLM and
leverage LLM’s parametric knowledge to avoid external retrieval and the later module can further
minimize cost by enabling less overlap of the retrieval.

5.3 ANALYSIS OF RAG CHALLENGES

To claim that Conv-CoA addresses three challenges in RAG, we perform in-depth analysis as follows:

Weak Reasoning. In Table 5, the results demonstrate that Conv-CoA reduces the LLM’s reliance on
misleading external knowledge. This highlights the superiority of our reasoning capabilities, achieved
through accurate internal knowledge representation and retrieval. The robustness of these findings is
further validated through three runs, ensuring consistent performance and minimal variability.

Unfaithful Hallucinations. Frequent topic shifts within a dialogue always lead LLMs to produce
“new facts” that conflict with earlier rounds. To quantify this effect, we compare the proportion of
answers that contradict previous contextual information (as detected by GPT-4) in Table 6. Our results
demonstrates that the proposed framework significantly reduces context-induced hallucinations.

Unsatisfying Retrieval. A satisfying retrieval should be more accurate and less costly. Table 1
demonstrates the effectiveness of our Hopfield Retriever. We also conduct further experiments on
latency and cost consumption of our method. In Table 3, we contrast the efficiency of different
retrievers within our framework. Notably, Ours exhibits comparable retrieval time against established
approaches, while improving the training time, particularly on the TopiOCQA dataset. This enhanced
efficiency does not compromise the quality of outcomes, as evidenced by our better performance.

Additional Experiments. We conduct a series of experiments to demonstrate the robustness of
Conv-CoA, as presented in appendix J.

6 CONCLUSIONS AND FUTURE WORK

This paper presents the Conv-CoA framework, a novel approach to enhancing OCQA. The frame-
work addresses critical limitations of traditional RAG methods, such as poor reasoning, unfaithful
responses, and inadequate retrieval in conversational contexts. By integrating a Hopfield retriever and
a systematic prompting, Conv-CoA improves speed and accuracy. This advanced retriever utilizes
Modern Hopfield networks for efficient memory utilization and rapid convergence. The prompting
strategy decomposes complex questions into a sequence of sub-questions managed through an AC,
which updates a CKS to refine responses and minimize information overlap. Conv-CoA demonstrates
superior performance on public benchmarks, showcasing its ability to deliver more accurate and
efficient conversational question answering. Future work involves exploring information extraction
and analysis across additional data modalities, including visual data. The ultimate aim is to enhance
the accuracy and multi-step reasoning capabilities for real-world question answering, ensuring com-
prehensive analysis aligns with external data sources. Additionally, we need to further accelerate the
Hopfield retriever by compressing the model using techniques such as quantization.
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ETHICAL STATEMENT

This work investigates conversational chain-of-thought methods. In line with the ICLR Code of
Ethics1, we do not identify any specific ethical issues requiring consideration in this study.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release an anonymous open-source repository containing the full imple-
mentation of Conv-CoA and selected baselines, with plans for full open-sourcing upon acceptance.
All experiments are conducted with three random seeds, yielding stable results with standard devia-
tions below 2%. In our work, we use top-5 retrieval (k = 5) for both knowledge and web retrieval
modules, balancing accuracy and efficiency. For the Conv-MRFS module, we set the consistency
threshold T = 0.75, tuned on a validation set to effectively filter hallucinations while retaining valid
paraphrases.
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A BROADER IMPACT

Our research methodology enhances understanding and problem-solving across various domains,
including AI research, by producing clearer and more comprehensible results. However, this method
might oversimplify complex issues by breaking them down into discrete parts, potentially overlooking
nuances and interrelated elements. Additionally, relying heavily on this approach could limit creative
problem-solving, as it encourages a linear and structured process that may impede unconventional
thinking.

B ADDITIONAL RELATED WORK

Prompting Methods. Prompting methods aim to direct the LLMs to follow given instructions. The
commonly used method of few-shot prompting (Kaplan et al., 2020) facilitates in-context learning that
guides LLMs to comply with directives and respond to queries using just a few examples. Methods
like Chain-of-Thought (CoT) (Wei et al., 2022) and its enhanced versions (Wang et al., 2022; Saparov
& He, 2022) seek to steer LLMs towards breaking down intricate tasks into logical sequences of
reasoning, thereby improving performance. The Chain-of-Action (CoA) (Pan et al., 2024) integrates
the reasoning capabilities of CoT with the information retrieval prowess of external retrievers, crafting
a collaborative design that culminates in a faithful and multimodal QA system. However, it lacks
support for OCQA and does not overcome the limitations of traditional dense retrieval methods.
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C DETAILS OF BASELINES

C.1 QUERY-REFORMULATION-BASED APPROACHES

Query Rewriting (QR): T5QR (Lin et al., 2020), CONQRR (Wu et al., 2021), ConvGQR (Mo et al.,
2023a), IterCQR (Jang et al., 2023), AdaRewriter (Lai et al., 2025), ConvSearch-R1 (Zhu et al.,
2025) train individual rewriters to extract intents before answering. IQR (Ye et al., 2023) further uses
existing LLMs as rewriters to reduce latency.
Query Expansion (RE): While ReExCQ (Mo et al., 2023b), ConvSDG (Mo et al., 2024b), and
CONVAUG (Chen et al., 2024) try different ways to expand questions from different resources, they
incorporate the expanding latency also.

C.2 DENSE RETRIEVER-BASED APPROACHES (RB)

HAConvDR (Mo et al., 2024a) incorporates context-denoised query reformulation and automatic
mining of supervision signals based on the impact of historical rounds. LeCoRE (Mao et al., 2023)
considers knowledge distillation and InstructorR (Jin et al., 2023) utilizes LLMs to predict the
relevance between the session and passages. SDRConv (Kim & Kim, 2022) includes mining hard
negatives.

C.3 PROMPTING-BASED APPROACHES

Energy Based (EB): EORM (Jiang et al., 2025)

Prompting only (PO): Zero-shot Prompting, Few-shot Prompting (Few), Chain-of-Thought (CoT)
(Wei et al., 2022), Self Consistency (SC) (Wang et al., 2022), Tree of Thought (ToT) (Yao et al.,
2023a), RopMura (Wu et al., 2025) and Least-to-Most (LM) (Zhou et al., 2022)

Prompting RAG (PRAG): ToolFormer (ToolF) (Schick et al., 2023), Self-Ask (SA) (Press et al., 2022),
React (Yao et al., 2023b), DSP (Khattab et al., 2022), and CoA (Pan et al., 2024).

D ALGORITHMS

Algorithm 1 Description of Actions Workflow
Initialize: Actions Chain: AC; Question: Q; LLM Model: M; Query Section: QS; Sub-question:
Sub; Guess Answer: A; Faith Score: S; Multi-reference Faith Score: MRFS; Retrieved Results: R;
Missing Flag: MF;
Output: Final Generated Answer.
Function IR(Subi, Ai,MFi):

QSn = Concat[Subi |Ai];
R = Retrieval(QSn);
MRFS = argk maxS(rk, Ai);

if MRFS < T then
AC.correct(Subi, rk);

end if
AC.add(Subi, r1);

end Function
Function MAIN(Q,M):

AC = ChainGenerate(Q,M);
for each (Subi, Ai,MFi) in AC do

IR(Subi, Ai,MFi);
end for

FinalAnswerGenerate(AC,M);
return “Finish”;
end Function
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E PROMPTS

We use the following prompts in our Cov-CoA method and experiments. These include prompts
for decomposing questions at the initial stage, evaluation prompts for GPT-4, and prompts for
decomposing questions with CKS in the normal stage.

Prompt for Decomposing Questions in Initial Stage

Given a [Question]: “$QUESTION”, construct an action
reasoning chain for this question in JSON format. For each
step of the chain, choose an action from [Web-querying
Engine(search real-time news), Knowledge-retrieval Engine
(search existing knowledge in local knowledge base)] as
the value of element "Action", and generate a sub-question
for each action to get one of [web-search keywords, needed
information description] as the value of element "Sub". Also,
generate an initial answer for each Sub as the value of the
element "Guess_answer" if you make sure it is correct. You
need to try to generate the final answer for the [Question]
by referring to the "Chain", as the value of the element
"Final_answer".
For example:
{"question": "Is it good to invest in Dogecoin now?"
"chain": [
{"action":"Knowledge-retrieval","Sub":"what is
Dogecoin","guess_answer":
"Dogecoin is one cryptocurrency."}
{"action":"Web-querying","Sub":"Dogecoin news","guess_answer":""}
,
"final_answer":"Dogecoin is one of the cryptocurrencies that
is risky to invest. And its news prompts Bitcoin. So, it is
a good time to invest now."}

Evaluation Prompt of GPT-4

Given (question, ground truth answer, LLM-generated answer),
you need to check whether the generated answer contains the
ground truth by their meaning, not individual word only. If
correct, the output is 1, otherwise, 0. For example:
[Question]: What should I do when I drink spoiled milk? (A)
drink more (B) drink coffee (C) take some medicine.
[Ground truth]: (C) take some medicine
[Generated answer]: when you drink spoiled milk, you can
not drink more or even drink coffee. You should go to the
hospital and check if you need to take some medicines or not.
[Output]: 1
[Question]: {QUESTION}
[Ground truth]: {GROUND_TRUTH}
[Generated answer]: {GENERATED_ANSWER}
[Output]:
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Prompt for Decomposing Question with CKS in Normal Stage

Given a [Contextual Knowledge Set]:”$CKS” and [Question]:
“$QUESTION”, help me to extract the real intent and provide
an optimized question for this round. Then, construct an
action reasoning chain for this question in JSON format. For
each step of the chain, choose an action from [Web-querying
Engine(search real-time news), Knowledge-retrieval Engine
(search existing knowledge in local knowledge base)] as
the value of element "Action", and generate a sub-question
for each action to get one of [web-search keywords, needed
information description] as the value of element "Sub".
Also, generate an initial answer for each Sub as the value
of the element "Guess_answer" if you make sure it is
correct. You need to try to generate the final answer for
the [Question] by referring to the "Chain", as the value of
the element "Final_answer".
For example:
{"question": "Is it good to invest in it now?"
"optimized_question": "Is it good to invest in Bitcoin now?"
"chain": [
{"action":"Knowledge-retrieval","Sub":"what is
bitcoin","guess_answer":
"Bitcoin is one cryptocurrency."}
{"action":"Web-querying","Sub":"bitcoin news","guess_answer":""},
"final_answer":"Bitcoin is one of the cryptocurrencies that
is risky to invest. And its news prompte Bitcoin. So, it is
a good time to invest now."}

F SparseHopfield LAYERS

Building on the insights from (Hu et al., 2023), we establish a link between the single-update approx-
imation of Hopfiled Network and sparsemax attention (Martins & Astudillo, 2016). Specifically, this
relationship becomes apparent when the retrieval dynamics T are limited to a single iteration.

Consider some hidden states R and Y within a deep learning model. We establish the query and
memory associative (or embedded) spaces via transformations: XT = RWQ := Q and ΞT =
YWK := K, with matrices WQ and WK . By adapting the retrieval dynamics from (Hu et al., 2023)
and transposing, followed by multiplication with WV (where we define V := KWV ), we obtain:

Z := QnewWV = Sparsemax(βQKT)V (1)

This equation mirrors the structure of an attention mechanism, albeit utilizing a Sparsemax activation.
By substituting the initial patterns R and Y, we introduce the SparseHopfield layer:

Z = SparseHopfield(R,Y) (2)

= Sparsemax(βRWQW
T
KYT)YWKWV . (3)

This layer can be easily integrated into deep learning architectures.

Specifically, the SparseHopfield layer accepts matrices R and Y, along with weight matrices
WQ, WK , and WV . The way it operates is defined by its configuration:

1. Memory Retrieval: In a mode where learning is not necessary, the weight matrices WK ,
WQ, and WV are set as identity matrices. Here, R serves as the query, and Y holds
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the retrieval patterns: WK = I, WQ = I, WV = I This configuration facilitates direct
interaction between the query and retrieval patterns without transformation.

2. SparseHopfield: Here, R and Y are inputs, designed to serve as an alternative to
the conventional attention mechanism. The matrices WK , WQ, and WV are adaptable.
Additionally, R, Y, and Y act as the sources of the query, key, and value respectively. To
emulate a self-attention mechanism, we set R = Y.

3. SparseHopfieldPooling: In this configuration, where only Y is taken as input, Q
functions as a static prototype pattern and is thus learned within the Hopfield pooling layer.

4. SparseHopfieldLayer: With only R as the query pattern , the adaptive matrices WK

and WV function as repositories for stored patterns and their projections. This setup implies
that keys and values are independent of the input, suggesting that Y could be interpreted as
an identity matrix.

G SYSTEM SETTING

All experiments are carried out on a High Performance Computing cluster. There are 34 GPU nodes
where 16 nodes each have 2 NVIDIA 40GB Tesla A100 PCIe GPUs, 52 CPU cores, and 192 GB of
CPU RAM while 18 nodes are each equipped with 4 NVIDIA 80GB Tesla A100 SXM GPUs, 52
CPU cores, and 512 GB of CPU RAM. The driver version 525.105.17 on these nodes is compatible
with CUDA 12.0 or earlier. The operating system is Red Hat Enterprise Linux 7.9.

H HYPERPARAMETER

In our work, we use top-5 retrieval (k = 5) for both knowledge and web retrieval modules, balancing
accuracy and efficiency. For the Conv-MRFS module, we set the consistency threshold T = 0.75,
tuned on a validation set to effectively filter hallucinations while retaining valid paraphrases.

I GRPO FINE-TUNING FOR STRUCTURED REASONING

To enhance the model’s native ability to perform structured and verifiable reasoning, we design a rein-
forcement learning (RL) extension that fine-tunes the LLM via Group Relative Policy Optimization
(GRPO) (Shao et al., 2024).

I.1 ACTION CHAIN AS POLICY OUTPUT

During inference, the model generates an action chain consisting of sub-questions and their guessed
answers, which we treat as a policy. For training, we record the log-probabilities of generated tokens:

log p(at | st),

the probability of each token in the action chain under current parameters.

I.2 ACTION CHAIN EXECUTION AND REWARD COLLECTION

Once generated, the action chain is executed in three steps:

1. Retrieve evidence for each sub-question.

2. Verify guessed answers with Conv-MRFS; if aligned, keep the guess, otherwise replace
with a processed answer.

3. Summarize the final answer based on the verified chain.

This produces a scalar reward R.

18
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I.3 REWARD FUNCTION

Let n be the number of sub-questions. The reward is defined as:

R = Rfinal +
1

n

n∑
i=1

RsubQ[i] +Refficiency.

Final Answer Accuracy (Rfinal): +1.0 if final answer matches ground truth (EM or GPT-EM),
else 0.

Sub-question Verification (RsubQ[i]): +0.5 if guess is aligned with retrieval; −1.0 if hallucinated
and not corrected.

Efficiency Penalty (Refficiency):

Refficiency = −λ× Numretrievals, λ = 0.05.

I.4 GRPO OPTIMIZATION

We apply GRPO within the Easy-R1 framework using group size 4. This encourages action chains
that are accurate and efficient, without reliance on handcrafted prompts.

I.5 EXPERIMENTAL RESULTS

We fine-tuned Qwen2.5-7B in a single-turn QA setting under action chain supervision. Integrated
into our Conv-CoA system, the RL-trained model exhibited consistent improvements:

• Final Answer Accuracy: 73.5% → 78.2%

• Avg. # Sub-Questions: 5.7 → 3.9 (improved decomposition efficiency)

• Verification Score (Conv-MRFS alignment ratio): −0.3 → 0.1

• Avg. # Retrievals per Query: 5.2 → 4.0 (retrieval only when necessary)

Notably, the RL model learned to avoid unsupported guesses: in ∼28% of cases it explicitly
declined to answer low-confidence sub-questions (vs. 9% before). This demonstrates adoption of
retrieval-verification reasoning rather than naive parametric guessing.

J ADDITIONAL EXPERIMENTS

J.1 HYPERPARAMETER SENSITIVITY

We conduct sensitivity analyses on two key hyperparameters: the consistency threshold T in Conv-
MRFS and the top-k value in document retrieval. As shown in tables 7 and 8, our settings are robust.
Increasing T makes the system more conservative, with accuracy peaking at T = 0.75 but slightly
higher latency due to more frequent fallbacks. For top-k, larger values raise latency from heavier
document processing; while k = 10 yields marginal accuracy gains over k = 5, the added cost is
substantial. Overall, T = 0.75 and k = 5 strike the best balance between accuracy and efficiency,
justifying our choices in the main experiments.

J.2 EVALUATION PERFORMANCE ON STANDARD EXTRACT MATCH

In order to show standard Extract Match (EM) shows the exact same performance with GPT-EM, we
evaluate our methods with other baselines under standard EMs. As shown in table 9, our method
consistently outperforms baselines, even under this stricter and fully reproducible evaluation setting.
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Table 7: Threshold T Sensitivity (Conv-MRFS).
Threshold T QReCC Accuracy TopiOCQA Accuracy Avg Latency (s)

0.60 70.5 83.0 20.5
0.70 71.0 83.5 20.7
0.75 71.2 83.7 21.0
0.80 70.6 83.2 21.3

Table 8: Top-k Retrieval Sensitivity.
Top-k QReCC Accuracy TopiOCQA Accuracy Avg Latency (s)

3 70.1 82.9 18.2
5 71.2 83.7 21.0
10 71.0 83.6 26.4

Table 9: Abilities of Question Answering (EM).
Dataset 0-shot Few CoT SC ToT LM ToolF SA React DSP CoA Ours

QReCC 30.3 31.1 40.5 59.2 43.3 46.9 70.2 57.9 61.0 57.4 77.5 82.1
Topi 32.5 33.2 43.7 68.3 49.1 52.6 72.3 60.4 63.5 61.2 75.2 90.3

Table 10: Backbone Model Performance on TopiOCQA.
Backbone Model TopiOCQA Accuracy (GPT-EM) Avg. Sub-Questions Latency (s)

GPT-3.5-Turbo 83.7 4.3 21
Qwen2.5-7B 73.5 5.7 25
Qwen2.5-3B 70.5 4.9 30

Table 11: Effect of Average Number of Rounds on TopiOCQA.
Avg. # of Rounds TopiOCQA Accuracy (%) Latency (s)

3 83.7 10
6 84.2 13
9 83.9 16

12 84.1 20
13 83.7 21

J.3 PERFORMANCE ACROSS DIFFERENT BACKBONE LLMS

To assess the robustness of our method across backbone LLMs, we conduct an ablation study with
Qwen2.5-7B and Qwen2.5-3B (Qwen et al., 2025). As shown in table 10, we evaluate on TopiOCQA
using GPT-EM. Replacing GPT-3.5-Turbo with smaller open-source models leads to accuracy drops,
mainly due to reduced parametric knowledge. This increases reliance on external retrieval and
summarization, causing higher latency—particularly with the 3B model.

Despite this degradation, our method still outperforms baselines that use GPT-3.5-Turbo. We attribute
this to the framework’s design: final answer quality depends more on effective decomposition
and reasoning structure than on memorized knowledge. Thus, even smaller models can maintain
high factual accuracy when paired with verification and substitution, confirming the framework’s
model-agnostic nature.
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J.4 ABLATION STUDY ON CONVERSATION LENGTH

We conduct an additional experiment to evaluate the impact of conversation length on Conv-CoA
performance. As shown in table 11, our system maintains consistently high accuracy (above 83.7%)
across varying conversation lengths, with only minor fluctuations. Owing to contextual knowledge
compression (CKS) and the parallelized retrieval–verification pipeline, latency increases gradually
with length but remains within an acceptable range, demonstrating robustness and scalability for
multi-turn conversational QA.

K DISCLOSURE OF LLM USAGE

In our paper and project, we use large language models (LLMs), such as GPT-5, to help revise the
text for greater conciseness and precision.
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