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A DATASET DETAILS AND EXPERIMENTAL SETUP

• Adult (Dua & Graff, 2017): The Adult dataset contains 65,123 samples with 14 attributes.
The goal is to predict whether an individual’s annual income exceeds 50K, and the sensitive
attribute is chosen as race.

• COMPAS (Larson et al., 2016): The ProPublica COMPAS dataset contains 7,215 samples
with 10 attributes. The goal is to predict whether a defendant re-offend within two years.
Following the protocol in earlier fairness methods (Zafar et al., 2017), we only select white
and black individuals in COMPAS dataset, which contains 6,150 samples in total. The
sensitive attribute in this dataset is race.

• German (Dua & Graff, 2017): The German credit risk dateset contains 1,000 samples with
9 attributes. The goal is to predict whether a client is highly risky, and the sensitive attribute
in this dataset is sex.

• CelebA (Liu et al., 2015): CelebA dataset contains 202,599 samples with 40 binary at-
tributes. We choose gender as target label, and the sensitive attribute in this dataset is age.

The classifier is chosen as ResNet-18 for CelebA and MLP for the other three datasets, and all
methods are trained under the same data partition. During adversarial training, the perturbation
level is set as 0.2 for Adult dataset, 0.005 for COMPAS dataset, 0.01 for German dataset and 0.1
for CelebA dataset, where the the perturbation level is empirically determined to achieve the largest
perturbation while still ensuring convergence.

B EMPIRICAL VERIFICATION OF THEORETICAL RESULTS

We empirically validate our discussion regarding the relationship between DI and EOd attack as in
Corollary 1. As shown in Fig 2, under a successful DI attack, EOd always reaches its maximum,
and a successful DI attack also leads to a successful EOd attack. We also empirically verify the
effectiveness of upper-bounds stated in Theorem 1. The following results on CelebA dataset shows
the change of cross-entropy loss for samples from different groups by baseline and fair adversarial
training under different perturbation levels:

ϵ Method DFair
FN,male DFair

FN,female
0.1 Baseline 0.16±0.03 0.18±0.02
0.1 Adversarial training (preprocessing) 0.07±0.02 0.09±0.02
0.1 Adversarial training (in-processing) 0.07±0.02 0.11±0.02
0.1 Adversarial training (post-processing) 0.08±0.01 0.09±0.02
0.3 Baseline 0.23±0.02 0.26±0.03
0.3 Adversarial training (preprocessing) 0.09±0.02 0.11±0.02
0.3 Adversarial training (in-processing) 0.10±0.02 0.12±0.02
0.3 Adversarial training (post-processing) 0.10±0.02 0.09±0.01

Table 2: Change of cross-entropy loss for FN samples on CelebA dataset under fairness attacks with
ϵ = 0.1 and ϵ = 0.3. Experiments are repeated three times.

As shown in Table 2, under fair adversarial training, both advantaged and disadvantaged groups
show improvements in DFair compared with the baseline, which validates our theoretical results,
that is, the alignment between fairness robustness and accuracy robustness.

C RESULTS ON VARYING ϵ

Results of varying ϵ on Adult, COMPAS, German and CelebA dataset can be found in Fig. 4-7. As
shown in the figures, larger perturbation levels result in classifiers that are more robust to adversarial
perturbations against fairness for both vanilla adversarial training and fair adversarial training during
testing.
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(a) EOd (adv) (b) EOd (adv+pre) (c) EOd (adv+in) (d) EOd (adv+post)

(e) DI (adv) (f) DI (adv+pre) (g) DI (adv+in) (h) DI (adv+post)

(i) Accuracy (adv) (j) Accuracy (adv+pre) (k) Accuracy (adv+in) (l) Accuracy (adv+post)

Figure 4: Change of accuracy, DI and EOd under DI attack with varying training perturbation ϵ on
Adult dataset.

D PROOF OF COROLLARY 1

Proof. The objective for EOd attack can be written as the following form:
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This shows that the EOd attack is lower-bounded by the weighted DI attack as in equation 1. Specif-
ically, under a successful DI attack, we have f(x) = 1,∀x ∈ S.a and f(x) = 0,∀x ∈ S.a′ , and the
lower bound can be simplified as

LEOd ≥
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which shows that a successful DI attack always implies a successful EOd attack.
Remark 3. A successful EOd attack does not always imply a successful DI attack. Assume∑
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14



Under review as a conference paper at ICLR 2024

(a) EOd (adv) (b) EOd (adv+pre) (c) EOd (adv+in) (d) EOd (adv+post)

(e) DI (adv) (f) DI (adv+pre) (g) DI (adv+in) (h) DI (adv+post)

(i) Acr (adv) (j) Acr (adv+pre) (k) Acr (adv+in) (l) Acr (adv+post)

Figure 5: Change of accuracy, DI and EOd under DI attack with varying training perturbation ϵ on
COMPAS dataset.
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(a) EOd (adv) (b) EOd (adv+pre) (c) EOd (adv+in) (d) EOd (adv+post)

(e) DI (adv) (f) DI (adv+pre) (g) DI (adv+in) (h) DI (adv+post)

(i) Acr (adv) (j) Acr (adv+pre) (k) Acr (adv+in) (l) Acr (adv+post)

Figure 6: Change of accuracy, DI and EOd under DI attack with varying training perturbation ϵ on
German dataset.

attack, all the predictions in the disadvantaged group will become correct, while all the predictions
in the advantaged group will become incorrect, and the disparate impact will not be maximized as
both groups contain positive predictions.

E PROOF OF COROLLARY 2

Proof. The objective for accuracy attack for sample xi can be written as
max

δ
LCE((xi + ϵ), yi), ∥ϵ∥ ≤ ϵ0, (6)

Consider the DI attack in equation 1, we have the objective for DI attack as follows:

max
δ

αi
f(xi + ϵ)

|S.ai
|

, ∥ϵ∥ ≤ ϵ′,

where αi = −1 for ai = 0 and αi = 1 for ai = 1. For positive samples, we can further write
equation 6 as

max
δ

− log(f(xi + ϵ)), ∥ϵ∥ ≤ ϵ0,

where the perturbation is expected to minimize the predicted soft label, which is in alignment with
the objective for DI when αi = −1, i.e., for TP and FN disadvantaged samples, the two attacks are
in alignment. Similarly, for negative samples, we have equation 6 as

max
δ

− log(1− f(x+ ϵ)), ∥ϵ∥ ≤ ϵ′,
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(a) EOd (adv) (b) EOd (adv+pre) (c) EOd (adv+in) (d) EOd (adv+post)

(e) DI (adv) (f) DI (adv+pre) (g) DI (adv+in) (h) DI (adv+post)

(i) Acr (adv) (j) Acr (adv+pre) (k) Acr (adv+in) (l) Acr (adv+post)

Figure 7: Change of accuracy, DI and EOd under DI attack with varying training perturbation ϵ on
CelebA dataset.

where the perturbation is expected to maximize the predicted soft label, which is in alignment with
the objective for DI when αi = 1, i.e., for TN and FP advantaged samples, the two attacks are in
alignment. Specifically, for gradient-based attacks, we have the two kinds of attack equivalent.

F PROOF OF THEOREM 1

Proof. Let f be the function of classifier, consider the positive testing set {(xi, 1, ai), 1 ≤ i ≤ N}
for simplicity, at t-th iteration, we have the linear approximation of testing CE loss under the fairness
attack as follows:

LCE(x
t) = − log(f(xt)) = − log(f(xt−1)− δt−1,Fair) = − log(f(xt−1)) +

δt−1,Fair

f(xt−1)
+ rL(x

t−1),

(7)
where δt−1,Fair is the change of soft label induced by the fairness attack at t-th iteration, and rL(x) is
the remainder of Taylor’s expansion. For gradient-based attack, the predicted soft label for fairness
adversarial sample can be formulated as

f(xt)

=f(xt−1 + αsign(∇xt−1LDI))

=f(xt−1) + α(∇xt−1f(xt−1))T sign(∇xt−1LDI) + rf (x
t−1),

(8)

where LDI is the relaxed DI loss and rf (x) is the remainder of Taylor’s expansion. Let Dt,Fair :=
|L(xt) − L(xt−1)| be the change of CE loss under the fairness attack at t-th iteration, according to
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equation 7 and equation 8 we have

Dt,Fair = |LCE(x
t)− LCE(x

t−1)|

= | − log(f(xt−1)) +
δt−1,Fair

f(xt−1)
+ rL(x) + log(f(x))|

≈ |α(∇xt−1f(xt−1))T sign(∇xt−1LDI)|
f(xt−1)

.

Consider FN sample xFN,0 from disadvantaged group and FN sample xFN,1 from advantaged group,
since the gradient of f w.r.t. x is Lipschitz with constant K, we have the difference of change in CE
loss under DI attack at t-th iteration as follows:
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(9)

where n is the dimension of input feature. Since ∇xf(x) is Lipschitz, we have

∥∇xf(x1)∥2 − ∥∇xf(x0)∥2 ≤ ∥∇xf(x1)−∇xf(x0)∥2 ≤ Kd(x1, x0),

where the first sign is due to triangle inequality. By Jensen’s inequality we have ∥x∥2 ≤ ∥x∥1 ≤√
n∥x∥2, and

∥∇xf(x1)∥1 − ∥∇xf(x0)∥1 ≤ ∥∇xf(x0)−∇xf(x1)∥1 ≤
√
nKd(x1, x0). (10)
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, plugging equation 10 back into equation 9,

we have
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(11)
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where d(x, y) := ∥x − y∥2 is the distance between the two feature. Taking the summation over T
iterations, we have

|DFair
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where δt−1,Acc
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fθ(x
t−1,Fair
FN,0 )∥1 is the change of xFN,0’s predicted label under ϵ-level

accuracy attack at t-th iteration since both are equivalent regarding xFN,0. Since the above inequality
holds true for all disadvantaged TP samples and DAcc

FN,1 = DFair
FN,1, we can further write equation 12

as
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This shows that under the fairness attack, the difference of change in performance regarding
marginal advantaged FN samples are upper-bounded by the robustness of marginal disadvantaged
FN samples up to an additive constant. For f under normal training and f ′ under normal train-
ing, we have similar upper-bound except that we now have δ

′t−1,Acc
FN,0 ≥ δt−1,Acc

FN,0 , which indicates
that the adversarial classifier achieves tighter upper-bound than that of a normal classifier. For
∥∇
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G PROOF OF THEOREM 2

Proof. Let eya be the error rate in the subgroup Sya, let ba be the base rate in group a, denote
as meaFair the fairness measure mea after the fairness attack, we have the following expression
regarding DI after the fairness attack:
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(13)
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where ∆Fair
sub,a := maxi∈{sub,a} δ

Fair
i is the maximum prediction shift within the subgroup, Psub,a is

the CDF of psub,a, and the inequality is due to that the worst-case prediction shift upper-bounds the
overall shift in the distribution of soft prediction. Since Psub,a is Lipschitz continuous with constant
Msub,a (psub,a is uniformly bounded by Msub,a), we can further simplify equation 13 as

DIFair

≤
∣∣b1(1− e11)PTP,1(0.5) + (1− b1)e01PFP,1(0.5) + (1− b1)(1− e01)PTN,1(0.5−∆Fair
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(DAcc

j +Hj) + ∆Acc
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j∈SFN,0

(DAcc
j +Gj)),

where M = max{MTP,0,MFP,0,MTN,1,MFN,1}, and the two minimization terms in the last in-
equality correspond to the upper-bounds in Theorem 1 and Remark 1. Since the fairness robustness
and accuracy robustness are equivalent regarding xTP,0 and TN,1, and Dj , Hj and Gj are determined
by the intrinsic distance between samples and the accuracy robustness of xFP,1 and xFN,0, we can
conclude that DIFair is upper-bounded by static fairness, i.e., the DI term, and the accuracy robust-
ness δAcc

TP,0, minj∈SFP,1(D
Acc
j + Hj), ∆Acc

TN,1 and minj∈SFN,0
(DAcc

j + Gj), which validates our fair
adversarial training framework.

Similarly, we have the following upper-bound regarding EOdFair:
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where the first term in the last inequality corresponds to static fairness, i.e., EOd without fairness
perturbation, and the second term corresponds to accuracy robustness.

H PROOF OF THEOREM 3

Proof. Let f be the function of classifier, consider xTP,0, we have the predicted soft label for sample
xTP,0 under accuracy attack at t-th iteration as follows:

f(xt,Acc
TP,0 )

=f(xt−1,Acc
TP,0 + αsign(∇xt−1,Acc

TP,0
LCE))

≈f(xt−1,Acc
TP,0 ) + α(∇xt−1,Acc

TP,0
f(xt−1,Acc

TP,0 ))T sign(− 1

f(xt−1,Acc
TP,0 )

∇xt−1,Acc
TP,0

f(xt−1,Acc
TP,0 ))

=f(xt−1,Acc
TP,0 ) + α(∇xf(x

t−1,Acc
TP,0 ))T sign(∇xt−1,Acc

TP,0
LCE)

=f(xt−1,Acc
TP,0 )− α∥∇xt−1,Acc

TP,0
f(xt−1,Acc

TP,0 )∥1

=f(xt−1,Acc
TP,0 )− δt−1,Fair

TP,0 ,
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fwhere δt,Fair
TP,0 := α∥∇xt−1,Acc

TP,0
f(xt−1,Acc

TP,0 )∥1 is the change of xTP,0’s predicted label under ϵ-level fair-
ness attack at t-th iteration since both are equivalent regarding xTP,0. This shows that disadvantaged
TP samples that attains δ-level robustness under ϵ-level fairness attack also attains similar robustness
w.r.t. accuracy attack.

For xTP,1, let δt,Acc
TP,1 := |f(xt,Acc

TP,1 ) − f(xt−1,Acc
TP,1 )|, we have its change in predicted soft label under

accuracy attack at t-th iteration as follows:

δ(xt,Acc
TP,1 )

=|f(xt,Acc
TP,1 )− f(xt−1,Acc

TP,1 )|

=|f(xt−1,Acc
TP,1 + αsign(∇xt−1,Acc

TP,1
LCE))− f(xt−1,Acc

TP,1 )|

≈α(∇xt−1,Acc
TP,1

f(xt−1,Acc
TP,1 ))T sign(∇xt−1,Acc

TP,1
LCE)

=α∥∇xt−1,Acc
TP,1

f(xt−1,Acc
TP,1 )∥1

≤δt,Fair
TP,0 +

√
nαKd(xt−1,Acc

TP,0 , xt−1,Acc
TP,1 ).

(14)

Taking the summation over all iterations, we have

δAcc
TP,1 ≤ δFair

TP,0 +

T∑
t=1

√
nαKd(xt−1,Acc

TP,0 , xt−1,Acc
TP,1 ), (15)

where δFair
TP,0 is the change of predicted soft label of sample xTP,0 under ϵ-level fairness attack. Since

the inequality hold true for all xTP,0, we can further write equation 15 as

δAcc
TP,1 ≤ min

xTP,0∈S10
δFair

TP,0 +

T∑
t=1

√
nαKd(xt−1,Acc

TP,0 , xt−1,Acc
TP,1 ).

And the lower bound δAcc
TP,1 ≥ 0 naturally holds true for samples under accuracy attack. This shows

that for samples in the advantaged group, the change of predicted soft label under accuracy attack
is lower-bounded by the fairness robustness of its neighbor sample(s) in the disadvantaged group
up to an additive constant. For f ′′ under adversarial training w.r.t. fairness and f under normal
training, we have similar upper-bound except that we now have δFair

TP,0 ≥ δ
′′Fair
TP,0 , which indicates that

the adversarial classifier achieves tighter upper-bound than that of a normal classifier.

I RESULTS OF ROBUSTNESS AGAINST DI ATTACK

We include the results of fair adversarial training in Tab. 3-30 and Fig. 9 to better distinguish
between different fairness methods. Results of classifiers under DI attack on COMPAS and German
dataset are shown in Fig. 2. in Fig. 8.

J MORE RESULTS ON ROBUSTNESS AGAINST ACCURACY ATTACK

We show the results on robustness against accuracy attack on COMPAS, GERMAN and CelebA
datasets in Fig. 10-12.
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(a) EOd (COMPAS) (b) DI (COMPAS) (c) Accuracy (COMPAS)

(d) EOd (German) (e) DI (German) (f) Accuracy (German)

(g) EOd (CelebA) (h) DI (CelebA) (i) Accuracy (CelebA)

Figure 8: Change in accuracy, DI and EOd under DI attack on COMPAS, German and CelebA
datasets. Our adversarial training methods (preprocessing, in-processing, post-processing) obtain
improved fairness (lower EOd and DI) and higher accuracy with significant margin.

M adv+pre adv+in adv+post
0.000 0.800 0.800 0.800
0.050 0.790 0.800 0.790
0.100 0.795 0.795 0.790
0.150 0.794 0.794 0.790
0.200 0.794 0.794 0.790
0.250 0.784 0.794 0.784
0.300 0.788 0.788 0.781
0.350 0.771 0.781 0.771
0.400 0.778 0.778 0.771
0.450 0.776 0.776 0.774
0.500 0.771 0.771 0.772

Table 3: results of accuracy for adversarial fair training on Adult dataset under DI attack.
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(a) Black TPR (Adult) (b) White TPR (Adult) (c) Black TNR (Adult) (d) White TNR (Adult)

(e) Black TPR (COM-
PAS)

(f) White TPR (COM-
PAS)

(g) Black TNR (COM-
PAS)

(h) White TNR (COM-
PAS)

(i) Male TPR (German) (j) Female TPR (German) (k) Male TNR (German) (l) Female TNR (German)

(m) Young TPR (CelebA) (n) Young TNR (CelebA) (o) Elder TPR (CelebA) (p) Elder TNR (CelebA)

Figure 9: Change of true positive rate (TPR) and true negative rate (TNR) under DI attack on the
four datasets.
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M adv+pre adv+in adv+post
0.000 0.029 0.039 0.016
0.050 0.117 0.137 0.098
0.100 0.129 0.111 0.119
0.150 0.128 0.108 0.108
0.200 0.114 0.104 0.114
0.250 0.123 0.093 0.123
0.300 0.114 0.074 0.104
0.350 0.099 0.059 0.090
0.400 0.086 0.046 0.096
0.450 0.103 0.073 0.113
0.500 0.152 0.152 0.132

Table 4: results of EOd for adversarial fair training on Adult dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.050 0.050 0.050
0.050 0.067 0.067 0.067
0.100 0.066 0.056 0.063
0.150 0.066 0.054 0.066
0.200 0.070 0.050 0.070
0.250 0.077 0.047 0.072
0.300 0.068 0.043 0.068
0.350 0.080 0.040 0.087
0.400 0.090 0.040 0.090
0.450 0.087 0.047 0.087
0.500 0.088 0.058 0.083

Table 5: results of DI for adversarial fair training on Adult dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.268 0.275 0.282
0.050 0.286 0.286 0.286
0.100 0.243 0.243 0.246
0.150 0.235 0.231 0.235
0.200 0.227 0.226 0.227
0.244 0.225 0.225 0.225
0.300 0.205 0.205 0.211
0.350 0.183 0.188 0.186
0.400 0.184 0.184 0.181
0.450 0.195 0.193 0.193
0.500 0.203 0.203 0.207

Table 6: results of white TPR for adversarial fair training on Adult dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.973 0.973 0.973
0.050 0.970 0.970 0.970
0.100 0.977 0.977 0.977
0.150 0.979 0.979 0.979
0.200 0.982 0.982 0.982
0.250 0.983 0.983 0.983
0.300 0.981 0.981 0.981
0.350 0.967 0.977 0.967
0.400 0.964 0.974 0.964
0.450 0.957 0.967 0.957
0.500 0.958 0.958 0.958

Table 7: results of white TNR for adversarial fair training on Adult dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.268 0.248 0.262
0.050 0.208 0.168 0.201
0.100 0.168 0.148 0.168
0.150 0.141 0.141 0.151
0.200 0.134 0.134 0.134
0.250 0.141 0.141 0.141
0.300 0.131 0.144 0.135
0.350 0.141 0.140 0.143
0.400 0.154 0.151 0.158
0.450 0.141 0.141 0.143
0.500 0.074 0.074 0.094

Table 8: results of black TPR for adversarial fair training on Adult dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.989 0.989 0.984
0.050 0.989 0.981 0.987
0.100 0.990 0.992 0.992
0.150 0.993 0.997 0.995
0.200 0.993 0.993 0.993
0.250 0.991 0.991 0.991
0.300 0.990 0.986 0.991
0.350 0.991 0.993 0.990
0.400 0.986 0.990 0.990
0.450 0.988 0.984 0.988
0.500 0.978 0.982 0.976

Table 9: results of black TNR for adversarial fair training on Adult dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.625 0.627 0.635
0.010 0.624 0.609 0.634
0.050 0.617 0.601 0.627
0.100 0.607 0.607 0.604
0.150 0.603 0.610 0.603
0.200 0.607 0.610 0.602
0.250 0.612 0.606 0.612
0.300 0.603 0.592 0.603
0.350 0.598 0.579 0.598
0.400 0.595 0.567 0.595
0.450 0.588 0.558 0.588
0.500 0.586 0.551 0.586

Table 10: results of accuracy for adversarial fair training on COMPAS dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.044 0.240 0.024
0.010 0.197 0.584 0.147
0.050 0.735 0.979 0.565
0.100 0.960 1.146 0.910
0.150 1.131 1.231 1.041
0.200 1.214 1.289 1.254
0.250 1.348 1.387 1.348
0.300 1.463 1.502 1.463
0.350 1.513 1.598 1.513
0.400 1.623 1.645 1.623
0.450 1.676 1.665 1.676
0.500 1.705 1.710 1.705

Table 11: results of EOd for adversarial fair training on COMPAS dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.070 0.133 0.050
0.010 0.154 0.302 0.134
0.050 0.37 0.488 0.297
0.100 0.396 0.572 0.356
0.150 0.471 0.614 0.471
0.200 0.588 0.643 0.588
0.250 0.645 0.692 0.645
0.300 0.716 0.750 0.716
0.350 0.765 0.798 0.765
0.400 0.809 0.822 0.809
0.450 0.830 0.832 0.830
0.500 0.844 0.855 0.844

Table 12: results of DI for adversarial fair training on COMPAS dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.31 0.336 0.3
0.010 0.267 0.229 0.297
0.050 0.072 0.014 0.172
0.100 0.000 0.000 0.021
0.150 0.000 0.000 0.003
0.200 0.000 0.000 0.000
0.250 0.000 0.000 0.000
0.300 0.000 0.000 0.000
0.350 0.000 0.000 0.000
0.400 0.000 0.000 0.000
0.450 0.000 0.000 0.000
0.500 0.000 0.000 0.000

Table 13: results of white TPR for adversarial fair training on COMPAS dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.914 0.788 0.914
0.010 0.935 0.864 0.935
0.050 1.000 0.983 1.000
0.100 1.000 1.000 1.000
0.150 1.000 1.000 1.000
0.200 1.000 1.000 1.000
0.250 1.000 1.000 1.000
0.300 1.000 1.000 1.000
0.350 1.000 1.000 1.000
0.400 1.000 1.000 1.000
0.450 1.000 1.000 1.000
0.500 1.000 1.000 1.000

Table 14: results of white TNR for adversarial fair training on COMPAS dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.339 0.525 0.339
0.010 0.385 0.573 0.365
0.050 0.565 0.596 0.565
0.100 0.599 0.672 0.599
0.150 0.635 0.720 0.635
0.200 0.695 0.749 0.695
0.250 0.760 0.793 0.760
0.300 0.808 0.828 0.808
0.350 0.836 0.858 0.836
0.400 0.868 0.862 0.868
0.450 0.890 0.858 0.890
0.500 0.894 0.870 0.894

Table 15: results of black TPR for adversarial fair training on COMPAS dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.908 0.736 0.908
0.010 0.866 0.625 0.886
0.050 0.748 0.586 0.798
0.100 0.559 0.525 0.559
0.150 0.524 0.489 0.524
0.200 0.471 0.460 0.471
0.250 0.401 0.406 0.401
0.300 0.35 0.37 0.35
0.350 0.253 0.260 0.253
0.400 0.195 0.217 0.195
0.450 0.174 0.193 0.174
0.500 0.148 0.160 0.148

Table 16: results of black TNR for adversarial fair training on COMPAS dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.724 0.714 0.730
0.050 0.721 0.711 0.726
0.100 0.710 0.700 0.721
0.150 0.690 0.690 0.714
0.200 0.680 0.680 0.703
0.250 0.684 0.684 0.690
0.300 0.680 0.680 0.680
0.350 0.676 0.670 0.676
0.400 0.667 0.667 0.667
0.450 0.665 0.665 0.665
0.500 0.660 0.667 0.665

Table 17: results of accuracy for adversarial fair training on German dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.030 0.030 0.010
0.050 0.140 0.140 0.100
0.100 0.380 0.380 0.380
0.150 0.770 0.770 0.670
0.200 0.960 0.960 0.950
0.250 1.270 1.270 1.250
0.300 1.290 1.340 1.290
0.350 1.310 1.360 1.330
0.400 1.340 1.460 1.340
0.450 1.440 1.540 1.490
0.500 1.500 1.600 1.560

Table 18: results of EOd for adversarial fair training on German dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.060 0.120 0.020
0.050 0.130 0.130 0.110
0.100 0.170 0.170 0.140
0.150 0.260 0.260 0.270
0.200 0.300 0.300 0.340
0.250 0.360 0.360 0.360
0.300 0.410 0.410 0.440
0.350 0.470 0.470 0.470
0.400 0.580 0.580 0.550
0.450 0.640 0.640 0.600
0.500 0.670 0.670 0.710

Table 19: results of DI for adversarial fair training on German dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.364 0.364 0.364
0.050 0.350 0.350 0.350
0.100 0.260 0.260 0.260
0.150 0.130 0.130 0.190
0.200 0.110 0.110 0.110
0.250 0.070 0.070 0.070
0.300 0.000 0.000 0.000
0.350 0.000 0.000 0.000
0.400 0.000 0.000 0.000
0.450 0.000 0.000 0.000
0.500 0.000 0.000 0.000

Table 20: results of male TPR for adversarial fair training on German dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.857 0.857 0.850
0.050 0.870 0.870 0.870
0.100 0.920 0.920 0.920
0.150 1.000 1.000 1.000
0.200 1.000 1.000 1.000
0.250 1.000 1.000 1.000
0.300 1.000 1.000 1.000
0.350 1.000 1.000 1.000
0.400 1.000 1.000 1.000
0.450 1.000 1.000 1.000
0.500 1.000 1.000 1.000

Table 21: results of male TNR for adversarial fair training on German dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.377 0.377 0.377
0.050 0.420 0.420 0.420
0.100 0.510 0.510 0.510
0.150 0.570 0.570 0.570
0.200 0.680 0.680 0.680
0.250 0.750 0.750 0.750
0.300 0.770 0.770 0.770
0.350 0.780 0.780 0.790
0.400 0.800 0.810 0.800
0.450 0.860 0.870 0.860
0.500 0.870 0.890 0.870

Table 22: results of female TPR for adversarial fair training on German dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.833 0.833 0.843
0.050 0.810 0.810 0.820
0.100 0.740 0.740 0.740
0.150 0.670 0.670 0.690
0.200 0.560 0.560 0.560
0.250 0.490 0.490 0.510
0.300 0.480 0.440 0.480
0.350 0.460 0.410 0.460
0.400 0.450 0.340 0.450
0.450 0.400 0.30 0.370
0.500 0.300 0.240 0.230

Table 23: results of female TNR for adversarial fair training on German dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.870 0.840 0.860
0.050 0.850 0.830 0.840
0.100 0.830 0.810 0.810
0.150 0.810 0.790 0.800
0.200 0.760 0.770 0.760
0.250 0.740 0.740 0.740
0.300 0.700 0.710 0.710
0.350 0.680 0.690 0.680
0.400 0.670 0.650 0.660
0.450 0.640 0.630 0.620
0.500 0.620 0.600 0.590

Table 24: results of accuracy for adversarial fair training on CelebA dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.030 0.030 0.040
0.050 0.110 0.110 0.130
0.100 0.200 0.230 0.250
0.150 0.300 0.30 0.30
0.200 0.390 0.440 0.380
0.250 0.490 0.490 0.470
0.300 0.550 0.550 0.520
0.350 0.600 0.640 0.600
0.400 0.650 0.660 0.660
0.450 0.700 0.710 0.690
0.500 0.720 0.780 0.730

Table 25: results of EOd for adversarial fair training on CelebA dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.050 0.070 0.040
0.050 0.090 0.110 0.110
0.100 0.160 0.114 0.130
0.150 0.230 0.210 0.210
0.200 0.260 0.290 0.280
0.250 0.300 0.330 0.340
0.300 0.340 0.360 0.390
0.350 0.390 0.380 0.410
0.400 0.400 0.420 0.440
0.450 0.410 0.440 0.450
0.500 0.440 0.450 0.470

Table 26: results of DI for adversarial fair training on CelebA dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.830 0.840 0.850
0.050 0.880 0.860 0.870
0.100 0.920 0.900 0.940
0.150 0.970 0.950 0.960
0.200 0.990 0.990 1.000
0.250 1.000 1.000 1.000
0.300 1.000 1.000 1.000
0.350 1.000 1.000 1.000
0.400 1.000 1.000 1.000
0.450 1.000 1.000 1.000
0.500 1.000 1.000 1.000

Table 27: results of young TPR for adversarial fair training on CelebA dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.920 0.900 0.910
0.050 0.890 0.880 0.880
0.100 0.880 0.860 0.870
0.150 0.860 0.850 0.860
0.200 0.840 0.820 0.850
0.250 0.810 0.810 0.810
0.300 0.770 0.770 0.790
0.350 0.740 0.700 0.740
0.400 0.710 0.690 0.700
0.450 0.690 0.660 0.690
0.500 0.680 0.640 0.660

Table 28: results of young TNR for adversarial fair training on CelebA dataset under DI attack.
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M adv+pre adv+in adv+post
0.000 0.820 0.830 0.810
0.050 0.800 0.810 0.800
0.100 0.780 0.780 0.790
0.150 0.760 0.770 0.780
0.200 0.730 0.730 0.770
0.250 0.700 0.700 0.720
0.300 0.680 0.680 0.690
0.350 0.660 0.660 0.660
0.400 0.640 0.650 0.640
0.450 0.610 0.630 0.620
0.500 0.600 0.580 0.610

Table 29: results of elder TPR for adversarial fair training on CelebA dataset under DI attack.

M adv+pre adv+in adv+post
0.000 0.900 0.920 0.910
0.050 0.920 0.940 0.940
0.100 0.940 0.970 0.970
0.150 0.950 0.990 0.990
0.200 0.970 1.000 1.000
0.250 1.000 1.000 1.000
0.300 1.000 1.000 1.000
0.350 1.000 1.000 1.000
0.400 1.000 1.000 1.000
0.450 1.000 1.000 1.000
0.500 1.000 1.000 1.000

Table 30: results of elder TNR for adversarial fair training on CelebA dataset under DI attack.

(a) Accuracy (b) DI (c) EOd

Figure 10: Results of a classifier adversarially trained w.r.t. DI. Change of accuracy, DI and EOd
under accuracy attack on COMPAS dataset.
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(a) Accuracy (b) DI (c) EOd

Figure 11: Results of a classifier adversarially trained w.r.t. DI. Change of accuracy, DI and EOd
under accuracy attack on German dataset.

(a) Accuracy (b) DI (c) EOd

Figure 12: Results of a classifier adversarially trained w.r.t. DI. Change of accuracy, DI and EOd
under accuracy attack on CelebA dataset.
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