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APPENDICES

A PROOF OF LEMMA 4.1

Lemma A.1 For any interval k, and t ∈ [(k − 1) τ, kτ)

‖wi(t)− vk(t)‖ ≤ gi(t− (k − 1)τ) (25)

gi(x) =
δi

β + μi,k
((η(β + μi,k) + 1)x − 1) (26)

Following the proof method from the reference (Wang et al., 2019) which is conducted using math-
ematical induction, we obtain Lemma A.1, where an additional term μi,k is introduced due to the
proximal term added in the local training objective function.

Proof. To prove Lemma 4.1, we first establish the upper bound of the difference between the local
training parameter wi in federated learning and the parameter vk in centralized learning, i.e., Lemma
A.1. Next, we substitute the definitions into the equations and simplify to demonstrate the upper
bound of the difference between the global aggregation parameter w in federated learning and the
parameter vk in centralized learning. Finally, we apply the method of cancellation through addition
and subtraction to obtain the upper bound of the upper bound of the difference between the optimal
parameter w∗ in federated learning and the parameter vk in centralized learning.

However, since the μi,k values differ across learners, it is necessary to account for the separate
calculations for each learner when performing the geometric series summation. We first derive the
upper bound of the difference between two consecutive iterations based on the definition formulas
of w and vk. Then, by summing and modifying the form of the inequality on the left-hand side, we
substitute the upper bound of the consecutive differences to derive the form of the function h(x).

To simplify the notation in the proof, we define ∇F p(w (t− 1) , μ̄k) = ∇F (w (t− 1)) +
μ̄k (w (t− 1)−wk,global).

‖w (t)− vk (t)‖
(a)
=
∥∥∥w (t− 1)− η

n

∑
i
∇F p

i (wi (t− 1, μi,k))− vk (t− 1) + η∇F p (vk (t− 1), μ̄k)
∥∥∥

(b)

≤ ‖w (t− 1)− vk (t− 1)‖+ η

n

∑
i
‖∇F p

i (wi (t− 1, μi,k))−∇F p (vk (t− 1), μ̄k)‖
(c)

≤ ‖w (t− 1)− vk (t− 1)‖+ η (β + μ̄k)

∑
i ‖wi (t− 1)− vk (t− 1)‖

n
(d)

≤ ‖w (t− 1)− vk (t− 1)‖+ η (β + μ̄k)

∑
i g (t− 1− (k − 1) τ)

n

(e)
= ‖w (t− 1)− vk (t− 1)‖+ ηδ

∑
i

β+μ̄k

β+μi,k

(
(η (β + μi,k) + 1)

t−1−(k−1)τ − 1
)

n
. (27)

Equation (a) is expanded based on the defined update formula, inequality (b) is simplified using the
triangle inequality, inequality (c) follows from Assumption 1, inequality (d) applies the conclusion
of Lemma A.1, and equation (e) is expanded accordingly.

By applying addition and subtraction cancellation and substituting the terms, we obtain the following
proof formula.
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‖w∗ (t)− vk (t)‖
(a)
=

t∑
x=(k−1)τ+1

[‖w∗ (x)− vk (x)‖ − ‖w∗ (x− 1)− vk (x− 1)‖]

(b)

≤ηδ

t∑
x=(k−1)τ+1

∑
i

β+μ̄k

β+μi,k

(
(η (β + μi,k) + 1)

t−1−(k−1)τ − 1
)

n

(c)
=ηδ

t−(k−1)τ∑
y=1

∑
i

β+μ̄k

β+μi,k

(
(η (β + μi,k) + 1)

y−1 − 1
)

n

(d)
=ηδ

t−(k−1)τ∑
y=1

∑
i

β+μ̄k

β+μi,k
(η (β + μi,k) + 1)

y−1

n
− ηδ (t− (k − 1) τ)

∑
i

β+μ̄k

β+μi,k

n

(e)
=ηδ

∑
i

β+μ̄k

β+μi,k

1−(η(β+μi,k)+1)t−(k−1)τ

−η(β+μi,k)

n
− ηδ (t− (k − 1) τ)

∑
i

β+μ̄k

β+μi,k

n

(f)
= δ

∑
i

β+μ̄k

β+μi,k

(η(β+μi,k)+1)t−(k−1)τ−1
β+μi,k

n
− ηδ (t− (k − 1) τ)

∑
i

β+μ̄k

β+μi,k

n
=h (t− (k − 1) τ) . (28)

Equation (a) is expanded using the method of addition and subtraction cancellation, inequality (b)
substitutes the above formula, and equations (c)–(f) are further simplified and summed to obtain the
corresponding form of the function h(x).

Based on Lemma 4.1, we can conclude within a given interval, as the number of training iterations
increases and μi,k becomes larger, the value of the function h(x) also increases, indicating a larger
upper bound on the difference between the local training parameters wi and the parameters vk

obtained using a centralized learning approach. However, when the number of training iterations is
small, an appropriately chosen μi,k value can keep h(x) from becoming too large. This indirectly
demonstrates that the adaptive parameter μi,k can facilitate better convergence.

B PROOF OF LEMMA 4.2

Lemma B.1 When η ≤ 1
β+maxμi,k

,for any k and t ∈ [(k − 1) τ, kτ), ‖vk(t)−w∗‖ will not in-
crease.

Proof.

‖vk (t+ 1)−w∗‖2
(a)
=‖vk (t)− η∇F p (vk (t), μ̄k)−w∗‖2
(b)
=‖vk (t)−w∗‖2 − 2η[∇F (vk (t), μ̄k)]

T
(vk (t)−w∗) + η2‖∇F (vk (t), μ̄k)‖2. (29)

Equation (a) substitutes the defined update formula, and equation (b) expands the square.

According to Reference (Wang et al., 2019), we obtain the following inequality.

F p (vk (t) , μ̄k)− F p (w∗, μ̄k) ≤[∇F p (vk (t), μ̄k)]
T
(vk (t)−w∗)

− 1

2 (β + μ̄k)
‖∇F p (vk (t), μ̄k)−∇F p (w∗, μ̄k)‖2. (30)

Substituting the definition of θk (t), we obtain the following inequality.

0 ≤ θk (t) ≤[∇F p (vk (t), μ̄k)]
T
(vk (t)−w∗)− 1

2 (β + μ̄k)
‖∇F p (vk (t), μ̄k)−∇F p (w∗, μ̄k)‖2.

(31)
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‖vk (t+ 1)−w∗‖
(a)

≤ ‖vk (t)−w∗‖ − η

β + μ̄k
‖∇F p (vk (t), μ̄k)− μ̄k (w

∗ −wk,global)‖2 + η2‖∇F p (vk (t), μ̄k)‖2

(b)

≤ ‖vk (t)−w∗‖ − η

β + μ̄k
‖∇F (vk (t))− 2μ̄kξ‖2 + η2‖∇F (vk (t)) + μ̄kξ‖2

(c)

≤ ‖vk (t)−w∗‖ −
(

η

β + μ̄k
− η2

)
‖∇F (vk (t))‖2 +

(
4μ̄kξη

β + μ̄k
+ 2μ̄kξη

2

)
∇F (vk (t))

+

(
−4μ̄2

kξ
2η

β + μ̄k
+ μ̄2

2ξ
2η2
)
. (32)

Inequality (a) is obtained by substituting the above formula, inequality (b) is derived by substituting
the upper bound of the proximal term, and further expansion and simplification yield inequality (c).

From the conclusion of B.1, it can be observed that when the condition η ≤ 1
β+maxμi,k

is satisfied,

the second term on the right-hand side of the inequality (c) is negative. If the absolute value of
the second term is sufficiently large, it is possible to ensure that ‖vk(t)−w∗‖ is non-increasing.
Additionally, the value of μi,k influences the setting of η. Under this constraint, the larger the value
of μi,k, the smaller η should be set.

Lemma B.2 For any k, η ≤ 1
β+maxμi,k

, t ∈ [(k − 1) τ, kτ),

F p(vk(t+ 1))− F p(vk(t)) ≤ −η
(
1− η (β + μ̄k)

2

)
. (33)

Proof. Based on the study from reference (Wang et al., 2019), we derive Lemma B.2, which derives
the upper bound of the difference in objective function values between two consecutive training it-
erations in a centralized learning method with a proximal term added to the objective function. By
examining the right-hand side of the inequality, it is evident that the inclusion of the proximal term
in the objective function makes μ̄k affect the value of this upper bound. As μ̄k increases, the upper
bound decreases. A larger control parameter μ̄k leads to a greater impact on the proximal term’s
variation during training. A smaller difference in the objective function values between consecutive
iterations indicates Smoother training. While this smoothness helps reduce fluctuations during train-
ing, it may also slow down the training process, underscoring the importance of properly designing
the control parameter μ.

Lemma B.3 For any k, η ≤ 1
β+maxμi,k

, t ∈ [(k − 1) τ, kτ)

1

θk (t+ 1)
− 1

θk (t)
≥ ωη

(
1− (β + μ̄k) η

2

)
, (34)

where ω = min
k

1
‖vk((k−1)τ)−w∗‖2 .

We define θk(t) = F p(vk(t), μ̄k) − F p(w∗, μ̄k) as the difference between the parameter obtained
using the centralized learning approach and the optimal parameter in the objective function. The
proof approach is similar to that in the reference (Wang et al., 2019), leading to the following lemma.

Proof. We then utilize the previously defined lemmas to prove Lemma 4.2. By applying the conclu-
sion of Lemma B.2 and summing over the entire interval, we obtain the following formula:

1

θk (kτ)
− 1

θk ((k − 1) τ)
=

kτ−1∑
z=(k−1)τ

(
1

θk (z + 1)
− 1

θk (z)

)
≥τωη

(
1− β + μ̄k

2
η

)
. (35)

Next, by summing over all intervals k based on the above conclusion, we derive the following
formula:
K∑

k=1

(
1

θk (kτ)
− 1

θk ((k − 1) τ)

)
≥

K∑
k=1

τωη

(
1− β + μ̄k

2
η

)
= Kωη

(
1− β + 1

K

∑K
k=1 μ̄k

2
η

)
.

(36)
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Rearrange the terms on the left-hand side of the inequality, we obtain the following formula:

1

θk (T )
− 1

θ1 (0)
≥ Tωη

(
1− β + 1

K

∑K
k=1 μ̄k

2
η

)
+

K−1∑
k=1

(
1

θk+1 (kτ)
− 1

θk (kτ)

)
. (37)

Next, we derive the case for two consecutive intervals.

1

θk+1 (kτ)
− 1

θk (kτ)

=
θk (kτ)− θk+1 (kτ)

θk (kτ) θk+1 (kτ)

(a)
=

1

θk (kτ) θk+1 (kτ)
(F p(vk(kτ), μ̄k)− F p(w∗, μ̄k)− F p(vk+1(kτ), μ̄k+1) + F p(w∗, μ̄k+1))

(b)
=

1

θk (kτ) θk+1 (kτ)
(F p (vk (kτ) , μ̄k) − F p (w (kτ) , μ̄k+1)

− μ̄k

2
‖w∗ −wk,global‖2 + μ̄k+1

2
‖w∗ −wk+1,global‖2

)
(c)

≥− (ρ+ μξ)h (τ)− μξ2

2

θk (kτ) θk+1 (kτ)
. (38)

Equation (a) is obtained by substituting the definition of θk, equation (b) is further simplified, and
inequality (c) follows from Assumption 1 and the upper bound of the proximal term.

Similarly, considering the summation over all intervals, we obtain the following formula:

K−1∑
k=1

(
1

θk+1 (kτ)
− 1

θk (kτ)

)
≥−

K−1∑
k=1

ρh (τ) + 1
2 (μ̄k+1 + μ̄k) ξ

2

ε2

=− (K − 1)

ρh (τ) + 1
2

K−1∑
k=1

(μ̄k+1 + μ̄k)ξ
2

ε2
. (39)

By employing addition and subtraction cancellation and rearranging, we obtain the following for-
mula:

1

θk (T )
− 1

θ1 (0)
≥ Tωη

(
1− β + 1

K

∑K
k=1 μ̄k

2
η

)
− (K − 1)

ρh (τ) + 1
2

K−1∑
k=1

(μ̄k+1 + μ̄k)ξ
2

ε2
.

(40)

Then, subtracting 1
θk(T ) from the reciprocal of the difference in objective functions with the proximal

term yields the following equation:

1

F p (w (T ), μ̄K)− F p (w∗, μ̄K)
− 1

θK (T )

=
θK (T )− (F p (w (T ), μ̄K)− F p (w∗, μ̄K))

(F p (w (T ), μ̄K)− F p (w∗, μ̄K)) θK (T )

(a)
=

F p (vk (T ), μ̄K)− F p (w (T ), μ̄K)

(F p (w (T ), μ̄K)− F p (w∗, μ̄K)) θK (T )

(b)

≥− (ρ+ μ̄Kξ)h (τ)

ε2
. (41)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Equation (a) is obtained by substituting the definition of θk, and inequality (b) is derived by applying
Lemma 4.1 along with the preceding derivation.

1

F p (w (T ), μ̄K)− F p (w∗, μ̄K)
− 1

θ1 (0)

(a)

≥Tωη

(
1− β + 1

K

∑K
k=1 μ̄k

2
η

)
− (K − 1)

ρh (τ) + 1
2

K−1∑
k=1

(μ̄k+1 + μ̄k)ξ
2

ε2
− (ρ+ μ̄Kξ)h (τ)

ε2

(b)
=T

(
ωη

(
1− β + 1

K

∑K
k=1 μ̄k

2
η

)
− ρh (τ)

τε2

)
− μ̄Kξh (τ)

ε2
− ξ2

2ε2

K−1∑
k=1

(μ̄k+1 + μ̄k). (42)

Inequality (a) is obtained by combining the two preceding proofs, and equation (b) is further simpli-
fied and organized.

Since 1
θ1(0)

> 0, by combining the results from the above derivation, we arrive at the conclusion of

Lemma 4.2.

1

F p (w (T ), μ̄K)− F p (w∗, μ̄K)

≥ 1

F p (w (T ), μ̄K)− F p (w∗, μ̄K)
− 1

θ1 (0)

≥T
(
ωη

(
1− β + 1

K

∑K
k=1 μ̄k

2
η

)
− ρh (τ)

τε2

)
− μ̄Kξh (τ)

ε2
− ξ2

2ε2

K−1∑
k=1

(μ̄k+1 + μ̄k). (43)

Taking the absolute values of the above results and continuing to simplify yields the following
formula.

F p (w (T ), μ̄K)− F p (w∗, μ̄K)

≤ 1

T
(
ωη
(
1− β+ 1

K

∑K
k=1 μ̄k

2 η
)
− ρh(τ)

τε2

)
− μ̄Kξh(τ)

ε2 − ξ2

2ε2

K−1∑
k=1

(μ̄k+1 + μ̄k)

=
1

T
(
ηϕ− ρh(τ)

τε2

)
− μ̄Kξh(τ)

ε2 − ξ2

2ε2

K−1∑
k=1

(μ̄k+1 + μ̄k)

. (44)

C SUPPLEMENTARY PROOF FOR THEOREM 1

Proof. Here, we assume that the control parameter value for the model parameters resulting from
the algorithm output wk,global is μ̄K . During the training process, the model parameters continu-
ously approach the optimal quality, so the final output of the algorithm reflects the optimal quality
concentrated in the latter part of the training. Additionally, μi,k is not updated after every training
iteration, the specific update frequency depends on the variations in Bk and Hk. Thus, μ̄K can be
considered the control parameter value corresponding to wk,global.

However, during the derivation of ε0 , an additional term related to μi,k and ξ ap-
pears in the upper bound due to the conclusion of 4.2, leading to the result ε0 =

1
2ηϕT +

√
1

4η2ϕ2T 2 +
ρh(τ)+ τ

T μ̄
T/τ

ξh(τ)+ τ
2T

∑K−1
k=1 (μ̄k+1

−μ̄
k)

ηϕT . We obtain F p(wk,global, μ̄K) −
F p(w∗, μ̄K) ≤ +ε0 + (ρ+ μ̄Kξ) ρh (τ), which leads to the conclusion of Theorem 1.
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Figure 6: Impact of the optimal local update times τ∗ (datasets: MNIST, classifier: SVM): (1) Loss
on training data using FedADM, (2) Loss on training data using FedProx, (3) Prediction accuracy
on testing data using FedADM, and (4) Prediction accuracy on testing data using FedProx.

D IMPLEMENT DETAILS FOR EXPERIMENTS

D.1 EXPERIMENT ENVIRONMENTS

Table 1: Details of experimental datasets and models

Dataset Total Images Training Set Testing Set Models

MNIST 70,000 60,000 10,000 SVM/CNN
Fashion-MNIST 70,000 60,000 10,000 SVM
CIFAR-10 60,000 50,000 10,000 CNN

Table 2: Overview of training and control parameters

Parameters Values

Linear search range γ 10
Maximum local update times τmax 100

Control parameter ϕ
SVM: 0.025
CNN: 5× 10−5

Gradient descent step size η 0.01
Resource budget R 60 seconds
Constraint value ξ 0.1

D.2 EXPERIMENT RESULTS

Figure 7: Performance comparison of different methods with different total resource R (datasets:
MNIST, classifier: CNN).
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Figure 8: Training performance of our method (dataset: MNIST and CIFAR-10, classifiers: CNN).
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