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APPENDICES

A PROOF OF LEMMA 4.1

Lemma A.1 For any interval k, and t € [(k — 1) 7, kT)

Iwit) = vi(®)ll < ga(t — (k — 1)7) 25)
gi(z) = ﬁfli,k“”(ﬁ ) + 17— 1) 26)

Following the proof method from the reference (Wang et al., 2019) which is conducted using math-
ematical induction, we obtain Lemma A.1, where an additional term g, ; is introduced due to the
proximal term added in the local training objective function.

Proof. To prove Lemma 4.1, we first establish the upper bound of the difference between the local
training parameter w; in federated learning and the parameter v, in centralized learning, i.e., Lemma
A.1. Next, we substitute the definitions into the equations and simplify to demonstrate the upper
bound of the difference between the global aggregation parameter w in federated learning and the
parameter vy, in centralized learning. Finally, we apply the method of cancellation through addition
and subtraction to obtain the upper bound of the upper bound of the difference between the optimal
parameter w* in federated learning and the parameter vy, in centralized learning.

However, since the ji; ,, values differ across learners, it is necessary to account for the separate
calculations for each learner when performing the geometric series summation. We first derive the
upper bound of the difference between two consecutive iterations based on the definition formulas
of w and vy. Then, by summing and modifying the form of the inequality on the left-hand side, we
substitute the upper bound of the consecutive differences to derive the form of the function h(zx).

To simplify the notation in the proof, we define VEFP(w (t—1),ar) = VF(w(t—1)) +
fig (W (t — 1) — Wi giobal)-

[w (t) = vi ()]l

Dlw e = 1) = 27 VF (wi (= L)) = v (= 1) + 09 F? (v (6= 1), i)

w1 v = D+ LS IV (w1 L))~ VP (v = 1, )|
S llwi (1)~ vi (= 1)

Diiw (= 1) = vic (= 1) 40 (B + )

n
< g(t—1—(k—1
SIIW(t—l)—vk(t—1)||+n(ﬂ+ﬂk)Zzg(t - (k—1)7)
e > ﬂ+§kk (n (B + pix) + 1) |
Dliw (= 1) = vi (t = 1) + o = ( ) ) o7

Equation (a) is expanded based on the defined update formula, inequality (b) is simplified using the
triangle inequality, inequality (c) follows from Assumption 1, inequality (d) applies the conclusion
of Lemma A.1, and equation (e) is expanded accordingly.

By applying addition and subtraction cancellation and substituting the terms, we obtain the following
proof formula.
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—h(t—(k—1)7). (28)

Equation (a) is expanded using the method of addition and subtraction cancellation, inequality (b)
substitutes the above formula, and equations (c)—(f) are further simplified and summed to obtain the
corresponding form of the function h(x).

Based on Lemma 4.1, we can conclude within a given interval, as the number of training iterations
increases and 1, 1, becomes larger, the value of the function h(z) also increases, indicating a larger
upper bound on the difference between the local training parameters w; and the parameters vy,
obtained using a centralized learning approach. However, when the number of training iterations is
small, an appropriately chosen f; , value can keep h(x) from becoming too large. This indirectly
demonstrates that the adaptive parameter f; ;, can facilitate better convergence.

B PROOF OF LEMMA 4.2

Lemma B.1 When n < m,for any k and t € [(k—1)7,k7),
crease. ’

v (t) — w*|| will not in-

Proof.
v (¢ +1) = w|*
v () = 9V F? (v (), i) — w

v (6) = W~ 20[VF (v (6). )] (v (6) = w*) + P |VE (vie (). ) | (29)

Equation (a) substitutes the defined update formula, and equation (b) expands the square.

According to Reference (Wang et al., 2019), we obtain the following inequality.
EP (i (1), fix) = FP (" i) <[VEP (i (), )] (v (1) = W)

1 2
o |IVFP(vi (), k) — VEP (W, )] (30
Q(B‘Fﬂkﬂ| (Vi (t), i) (W, ) (30)
Substituting the definition of 8y, (¢), we obtain the following inequality.
* 1 — % —
0 < 6 (1) <[VFP (vi (8), )] (Vi (t) = W*) = sm=———= | VF? (v (£), fix) — VF? (W, i) |*
2(8 + )

€29
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e+ 1) - w|
(@)
< v () = w* | = ﬂ_:_?,kHVFp (Vi (1), fix) = ix (W* = Wi grobar)||* + 17| VP (vi (1), fir) ||
(b)
< e 0 = Wl = 5V (v () — 2l + IV F (v (0) +
(e 4
< lvi ()~ wl - (ﬁfmﬂ’) IV O + (520 4 2 ) O (v 0)
7411%5277 2.9 2>
+< ﬁ+ﬂk+'u2£ nl. (32)

Inequality (a) is obtained by substituting the above formula, inequality (b) is derived by substituting
the upper bound of the proximal term, and further expansion and simplification yield inequality (c).

From the conclusion of B.1, it can be observed that when the condition n < m is satisfied,
Mk

the second term on the right-hand side of the inequality (c) is negative. If the absolute value of
the second term is sufficiently large, it is possible to ensure that ||vy(t) — w*|| is non-increasing.
Additionally, the value of p; ;, influences the setting of 7. Under this constraint, the larger the value
of 4; 1, the smaller 7 should be set.

Lemma B.2 Forany k, n < Jte[(k—=1)7, kr),

B+mdxu K’

FP(vi(t+1)) = FP(vi(t)) < —n (1 - W) : (33)

Proof. Based on the study from reference (Wang et al., 2019), we derive Lemma B.2, which derives
the upper bound of the difference in objective function values between two consecutive training it-
erations in a centralized learning method with a proximal term added to the objective function. By
examining the right-hand side of the inequality, it is evident that the inclusion of the proximal term
in the objective function makes fij, affect the value of this upper bound. As jij increases, the upper
bound decreases. A larger control parameter ji; leads to a greater impact on the proximal term’s
variation during training. A smaller difference in the objective function values between consecutive
iterations indicates Smoother training. While this smoothness helps reduce fluctuations during train-
ing, it may also slow down the training process, underscoring the importance of properly designing
the control parameter fi.

Lemma B.3 Forany k, n < tel(k—1)7kr)

m
1 1 (B+ fk)n
ek<t+1>‘ek<t>>°’”(1‘ 2 ) G4

1

where w = mln T,
v ((k=1)7)—w=*

We define 0y (t) = FP(vy(t), ix) — FP(W™*, fix,) as the difference between the parameter obtained
using the centralized learning approach and the optimal parameter in the objective function. The
proof approach is similar to that in the reference (Wang et al., 2019), leading to the following lemma.

Proof. We then utilize the previously defined lemmas to prove Lemma 4.2. By applying the conclu-
sion of Lemma B.2 and summing over the entire interval, we obtain the following formula:
kr—1

1 1 B 1 1 B+ fin
AR CENE P> <9k<z+1>_9k<z)) ZT“’”G_ 2 ”)' 59

z=(k—1)7

Next, by summing over all intervals k based on the above conclusion, we derive the following
formula:

K 1 1 K 5+ﬂk ﬁ“‘LZK: ,L_Lk.
Z<9k(k7')_9k((k—l)7-)) >k§_:1m77(1— 5 n)=Kwn (1—K2k1n

k=1
(36)
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Rearrange the terms on the left-hand side of the inequality, we obtain the following formula:

. | Btk dimadn |, N~ !
0, (T)  61(0) =t (1 - 2 7 Z <9k+1 kT) Ok (k7)> o0

=1

Next, we derive the case for two consecutive intervals.

1 1
0k+1 (k’T) gk (/{T)
70]6 (k’l‘) — 9k+1 (k‘T)
B 9k (kT) 9;€+1 (kJT)

a 1

@ (FP(vi(kT), ix) — FP (W™, i) — FP (Vg1 (KT), figy1) + FP (W™, figg1))
9k (k’T) 0k+1 (k’T)

(b) 1

(E? (Vi (k7), ix) = FP (w (k7)) , fikt1)

fk+1
2

- Gk EkT) 0k+1 (k’T)

—%HW* — Wi globatll” +

©—(p+ 1) h(r) - 4"
O (kT) Opgq (kT)

*

2
Iw* = W1 giopatl |

(38)

Equation (a) is obtained by substituting the definition of 6y, equation (b) is further simplified, and
inequality (c) follows from Assumption 1 and the upper bound of the proximal term.

Similarly, considering the summation over all intervals, we obtain the following formula:

1

KZ:1< ) = Ph () + & (T + in) €2
— 6k+1 kT 1 6

K—1
ph (1) + 3 2 (e + fix)€?
=1

=— (K -1) (39)

2

By employing addition and subtraction cancellation and rearranging, we obtain the following for-
mula:

K—1
_ h(r)+ 35 > (firgr + fin)€?

1 1 B+ LS g =
0 () 0,(0) = Ten (1 - 2") —(E-1) 2 :

(40)

Then, subtracting % from the reciprocal of the difference in objective functions with the proximal
term yields the following equation:

1 1
FP(w(T), firc) = FP(W*, firc) O (T)
_ O (T) = (F" (W (T), i) — F* (W", [ixc))

(EP (w (1), i) = FP (W, e )) O (T)

@ FP(vi(T), i) — FP (w(T), ixc

(F? (w (T), firc) = F7 (W*, [ixc)) O
Qo+ (r)
g2 '

— | —

7)

(41)
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Equation (a) is obtained by substituting the definition of 6y, and inequality (b) is derived by applying
Lemma 4.1 along with the preceding derivation.

1 1
Fr(w(T), i) — FP (w*, i) 61 (0)
K-1
a 1K o ph(r) + 5 3 (Fnsr + fin)€’ _
(gTwn <1 Btz %3;:21 ukn> (K - 1) ? k=1€2 B (p+u1;2£)h(7)

O SN (@ fik). 42
2 7_52 82 282 kzﬂ (/J’k-‘rl + ,uk) ( )

® (w <1_ﬂ+}<2£iwkn> _ph<r>) fxckh(r) & X

Inequality (a) is obtained by combining the two preceding proofs, and equation (b) is further simpli-
fied and organized.

Since 01#(0) > 0, by combining the results from the above derivation, we arrive at the conclusion of

Lemma 4.2.
1
Fr(w(T), px) — FP (W™, fix)
1 1

“F (w (T, i) — PP (W' jin) 01 (0)
1 K _ _ 2 K-1
ET <W7’] (1 o 6 + " Zk:l Mk 7]) - Ph (T)> _ ,quh (7') _ i Z (ﬂk—i—l 4 ,ak) (43)

TE 9 9
2 2 2 262
k=1

Taking the absolute values of the above results and continuing to simplify yields the following
formula.

FP(w(T), i) — FP (W", i)

- 1
- B3 SI ph(n)\ _ axeh(r) _ e 'S .

T ((U?’] (1 o 2 77) T re2 ) B €2 T 262 Z (/J'k+l + Mk)

k=1
1
= Fra . (44)
h(T i h(T 2 _ _
T(nap—i?)) _lK§2( ) _26? (Uk+1 + k)
k=1

C SUPPLEMENTARY PROOF FOR THEOREM 1

Proof. Here, we assume that the control parameter value for the model parameters resulting from
the algorithm output Wy, giober 18 fixr. During the training process, the model parameters continu-
ously approach the optimal quality, so the final output of the algorithm reflects the optimal quality
concentrated in the latter part of the training. Additionally, u; ;. is not updated after every training
iteration, the specific update frequency depends on the variations in By, and Hy. Thus, jix can be
considered the control parameter value corresponding to Wi, giobai-

However, during the derivation of ¢y , an additional term related to p;; and & ap-
pears in the upper bound due to the conclusion of 4.2, leading to the result ¢ =

1 1 ph(T)+ Ty, ER(T)+ o S0 (B, —1y,)
2neT + An2p2T? neT :
FP(w*, ix) < +eo + (p + ix&) ph (1), which leads to the conclusion of Theorem 1.

We obtain FP(Wy giobais Li) —
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Figure 6: Impact of the optimal local update times 7 (datasets: MNIST, classifier: SVM): (1) Loss
on training data using FedADM, (2) Loss on training data using FedProx, (3) Prediction accuracy
on testing data using FedADM, and (4) Prediction accuracy on testing data using FedProx.

D IMPLEMENT DETAILS FOR EXPERIMENTS

D.1 EXPERIMENT ENVIRONMENTS

Table 1: Details of experimental datasets and models

Dataset Total Images Training Set  Testing Set Models
MNIST 70,000 60,000 10,000 SVM/CNN
Fashion-MNIST 70,000 60,000 10,000 SVM
CIFAR-10 60,000 50,000 10,000 CNN

Table 2: Overview of training and control parameters

Parameters Values
Linear search range 10
Maximum local update times T,,x 100
Control parameter SVM: 0.025
p 14 CNN: 5 x 1075
Gradient descent step size n 0.01
Resource budget R 60 seconds
Constraint value & 0.1
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Figure 7: Performance comparison of different methods with different total resource R (datasets:

MNIST, classifier: CNN).
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Loss Value
S = N W ks U

Figure 8: Training performance of our method (dataset: MNIST and CIFAR-10, classifiers: CNN).
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