
ANAVI: Audio Noise Awareness by Visual Interaction
Supplementary Material

A Real-world Experiments1

A.1 Real-world Audio Data Collection2

Setup We compare the model’s prediction with how loud the robot would be in the real world in3

Section 4. We describe how we collected the data and provide real-world acoustic measurements in4

Table 1. In this experiment, we fix the robot at a location and vary the listener locations.5

We want accessible commodity hardware to ensure easy replicability for researchers so they can use6

existing resources. We also want to ensure that an easy setup on a mobile robot for future research.7

To this end, we use mobile phones to capture images, record audio and measure distances.8

In ideal settings, we would move the robot to multiple different rooms/apartments and then record9

the audio. However, practically, robots can be hard to move across apartments and this limits data10

collection. Thus, an easier method to gather audio responses is to record the robot sound onto a11

device (e.g. phone or laptop). Then instead of moving the robot to other locations, we can just take12

our device and play back the sound. An added benefit of using recorded audio is that we reduce the13

variability of the source sound across acoustic measurements for the listener at different locations.14

Here we are the steps that we followed after we had recorded our the Stretch and Unitree audio onto15

our laptop. Our laptop acts as a proxy for the two robots in our experiments, and we place it at the16

location where we want to pretend the robot is at.17

1. Decide an origin (robot location), and take a panorama picture. We select indoor locations like18

bedrooms, living area, dining area, open and closed working spaces, corridors, stairs, auditori-19

ums and more.20

2. Place speaker device with the recorded robot audio at the origin. We used our laptop and set the21

volume to its maximum. The speaker volume is fixed across all acoustic measurements.22

3. Measure distance and direction for a listener location. We used the ‘Measure’ app to record the23

relative distance between the sound source and the listener location.24

4. Place a microphone for recording at the listener location. We used an iPhone for recording.25

5. Start the recording on the device and walk back to the origin to play the robot action sound.26

We note that the walk to the origin and back needs to be trimmed from the audio file so that it27

only contains the main audio. We thus found it helpful to first say ‘Action’, then play the audio28

file for robot action (at max volume) and then say, ‘Cut’. After ‘Cut‘ we walked back to the29

microphone (iPhone in our case) and stopped the recording. Saying ‘Action’ and ‘Cut’ helps30

to trim the audio faster by looking at the audio waveform to trim and only saving the audio in31

between. Researchers working in pairs can skip this complication and just use hand signals to32

denote starting and stopping the audio recording and speaker sound.33

6. Extract the max decibels from the recorded audio files.34

To estimate the max decibels at the origin (sound source), we need to know the volume gain adjust-35

ment on the original waveform. We guesstimate it to be a factor of 10, that is 20 dB. Note, the model36

is likely to have sim-to-real gap and our estimated value also accounts for the systematic error in37

the model’s predictions. To obtain the model’s prediction for the max decibel level by each robot’s38

action, we use a linear approximation, that is, multiplying the normalized max dB output with the39

estimated max decibels at the origin (sound source). We report the error between this value obtained40

with linear approximation and that from the recorded audio files in the main paper.41
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Figure 1: Panorama taken from the sound source location. Note the directions west, north are in the
room, facing east is a wall and the south direction leads out of the room into the hallway.

Table 1: Real Audio for a Bedroom in a Single Family House.

Distance-Direction Line-of-
sight

Outside
the room

Stretch
Real dB

Unitree Go2
Real dB

1m-west yes no 54.2 69.7
1m-south yes yes 52.1 67.1
1m-south-1m-east no yes 49.7 66.1
2m-north yes no 51.7 67.3
2m-south yes yes 50.5 66.7
2m-north-2m-west no no 45.3 61.1
3m-west yes no 48.6 65.4
3m-south yes yes 48.2 65.4

Discussion Table 1 shows the real audio recorded for Stretch at the fastest forward velocity and42

Unitree Go2 in running mode using our set-up. We keep the speaker at the origin corresponding to43

Fig. 1 and vary our listener location. As we can see in the figure, moving west or north stays in the44

room while moving south or east corresponds to moving outside the room. We first compare the45

dB between “1m-west” and “1m-south” and observe how moving the sensor out the room decreases46

dB (as expected). We see this difference consistently although with smaller values as the distance47

from the source increases. This highlights how architectural geometries can have non-trivial impacts48

on audio (as expected). Additionally, we observe how line-of-sight between the source and listener49

affects the dB values. In case of obstacles like the bed or wall, the dB values decrease faster as50

compared to longer distances with line-of-sight (e.g. “1m-south-1m-east” is lower than “2m-north”).51

A.2 Zero-Shot Sim-to-Real52

We collect real-world panorama of indoor environments to visualize the model’s predictions. We53

focus on sim-to-real performance of the audio prediction, as once accurately estimated, these values54

can be weighted against distance for audio-informed planners.55

Setup To collect real world panoramas, we requested graduate students to contribute these56

panoramic images, by capturing their surrounding indoor environment for acoustic profiling. Con-57

tributors used their mobile phones at zoom level 1x and took a single panoramic image which we58

then resized to 256×1024. The images are then fed into a neural network that predicts the maximum59

decibel level at a given distance and direction from the robot. The ANP neural network is trained60

on a dataset of simulated Matterport renderings, and we qualitatively evaluate its performance on a61

dataset of real-world panoramas. Below we use Figure 2 to explain our visualizations.62

The first row shows the real-world panorama. The leftmost and rightmost edges correspond to 45◦,63

and we change angles in clockwise direction from left-to-right. The reason for non-increasing order64

of angles on x-axis is that panorama’s are taken left-to-right, that is, clockwise, whereas angles are65

measured anti-clockwise. Note that the cardinal directions indicated on the plots does not imply that66

the panoramo starting direction and are only for illustration purposes.67
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Figure 2: Setup for ANP Predictions on Real World Images. This image visualizes ANP model
predictions similar to Figure 7 from the main paper. The top row depicts a real-world panaromic
image. The second row plots the maximum decibels of room impulse response ŷANP (max dB RIR).
Note again that max dB RIR is normalized between 0 to 1. The third row plots the difference
between the model’s prediction and the linear regression prediction, i.e. ŷANP − ŷlinreg.

The second row shows heatmap plot with the model’s prediction for different distance and direction68

values. The direction is shown on x-axis, covering 360◦, and the distances on y-axis range from 0 to69

10 meters. Note that the direction is aligned with the visual image, i.e. it starts from -45◦ to 0, then70

reduces 270◦, 180◦ 90◦, and finally to 45◦.71

In the third row, we plot the difference from the distance based baseline. Since the distance based72

baseline doesn’t depend on the image, we visualize the variation in our model’s prediction from73

the baseline. Here the green indicates where the model predicts significantly higher normalized74

max dB values than distance-based linear regression model, and purple indicates significantly lower75

normalized max dB values than naive baseline. Note that the dB values are normalized from 0 to 1.76

Discussion We see that the model mostly predicts that the max dB values monotonically decrease77

with distance, though it may vary with direction. This is an important initial sign of life, as im-78

age features are very high-dimensional as compared to a scalar number used for relative distance.79

Nevertheless, the model largely learns to attend to the distance as input.80

Does our model understand acoustic features beyond distance? In Figure 3, we show cherry-picked81

examples of (3a) an open office area , (3b) a bedroom in a single family house. In Fig. 3a, we82

observe that the model predicts high dB values at larger distances in open spaces, as in north-east83

direction. In terms of the difference with the baseline, we observe that the model predicts higher84

sound intensity than the baseline at larger distances. In Fig. 3b, we observe that the model predicts85

low values at larger distance for some areas where there is a wall. Walls acts as an obstacle for86

sound intensity (see east direction). Additionally, we observe that the model predicts higher values87

at larger distances in open spaces, within the room (see west and north directions), than in the outside88

corridor (see south direction). In the second subplot, we note that our model predicts higher max dB89

RIR than the baseline at larger distances, and lower values near the sound source.90

Through the qualitative real-world data evaluation, we note several sim-to-real gaps. First, the real91

images are higher quality than the Habitat environment’s Matterport3D renderings. This includes92

differences in how visually environment attributes as inferred, such as depth, material texture, and93
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(a) Open office area. High dB values predicted at
larger distances for open spaces (see east), and at
shorter distances in the corners, near walls (see west
and south-west). ANP predicts higher sound inten-
sity than the baseline, especially at larger distances,
as shown in green.

(b) Bedroom in a single family house Low dB val-
ues predicts near wall as an obstacle (see east) and
outside the room (see south). High dB values at larger
distances in open spaces (see west). ANP predicts
higher values than the baseline at larger distances
(green), and lower values near source (purple).

Figure 3: We show cherry-picked examples of model’s prediction in (a) an open office area, and (b)
a bedroom in a single family house.

architectural geometry. Second, lighting changes and variations are more drastic in real-world than94

the static Matterport renderings in simulation. This has implications on acoustic noise prediction95

models deployed on the home robots, and we need to improve the robustness to lighting variations96

for the same scene. Third, the height perspective of our images and the relative angle to the ground97

differed between contributors, while this was a fixed constant in simulation. Differences in camera98

height, pan and tilt requires slightly different interpretation of the distances from visual features.99

We observe that the current model performs poorly on these diverse set of real-world panoramic100

images. The first row (Figures 4a and 4b) shows two panoramas of corridors where we expect101

corridors to have high predicted db regardless of sensor distance while the corresponding wall area102

have small values when the distance is large (as then the sensor would be behind the wall). Instead,103

we did not see any noticeable correlation to the corridors. Upon closer inspection on predictions,104

the model seems to struggle with identifying walls and their impact on sound. We expect high105

dB predictions in rooms when the distance falls in the room, but then a large drop-off to low dB106

prediction outside rooms. However in Figures 4c, 4e and 4g, we notice no drop-off in predicted107

values.108

Our results show that zero-shot generalization to real panoramas is not easy. It is unclear if this issue109

lies in simulation inaccuracies, an inadequate ANP model, or the distribution shift to real-world110

panoramas. Future work should address these sim-to-real differences to enable using an ANP model111

effectively in real environments. In future, we hope to bridge the sim2real gap with (1) effective112

domain randomization for camera poses, lighting and robot’s viewing angles, (2) improving model113

training with auxiliary losses, and (3) fine-tuning model with real-world measurements for acoustics,114

distances and visuals, collected from diverse indoor environments.115

B Details of Training with SoundScapes 2.0116

B.1 Training Data Generation117

We generate training data for ANP in simulation using SoundSpaces 2.0. Here we provide additional118

details for the data generation process:119

To ensure uniform sampling across the map, we first divide the map into grids to get 100 points.120

These points serve as circle centers to sample a suitable navigable point within 20 meters radius for121

the robot’s location as the source. We then use the robot’s location as the circle center and sample a122

listener location within 10 meters radius.123
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(a) Single Corridor: ANP model predicts softer (b) Multiple Corridors: Mixed

(c) Single Room: ANP model predicts louder (d) Open Dining Area: ANP model predicts louder

(e) Confined Room: ANP model predicts louder (f) Open Living Room: ANP model predicts softer

(g) Confined Staircase: ANP model predicts softer (h) Wide Hallway: ANP model predicts louder

Figure 4: We see a severe sim-to-real gap when applying the ANP model to real world panoramas.
For each plot, the top row shows a real world panorama, second row the ANP predictions depending
on the distance and angle to the sensor location, and the third row the difference compared a basic
linear regression estimate (green = ANP predicts louder). Unfortunately, the model is unable to
consistently capture meaningful visual features like walls or corridors that would effect dB.

To capture the visual panorama for the robot’s source location, we sample RGB camera observations124

4 times with rotations of 90 degrees at 256× 256 resolution and 90 degrees field-of-view.125
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B.2 Obtaining max decibels target from impulse response126

SoundScapes 2.0 gives the impulse response (how the audio would echo given a single short burst),127

which we must then convert into a max decibel level target given the robot’s audio. From a high128

level, we do this by first convolving the impulse response with the robot audio and then computing129

the corresponding decibel level of the loudest part of the convolved audio. Concretely, we do the130

following steps:131

w(t) = SimulateIR(from = psource, at = preceiver) (1)
W (f) = Fast Fourier Transform(w(t)) (2)
I(f) = (W (f)2)/(ρ ∗ c) (3)
Imax = max I(f) (4)
Imax = clip(Imax,min = 10−12,max = 100.8) (5)

dBmax = 10 log10 Imax + 120 (6)
y = dBmax/128 (7)

Here w(t) is the time-domain waveform generated at the receiver’s location, W (f) is the frequency132

domain waveform, I(f) is the frequency domain sound intensity through air computed by root mean133

square. The ρ is air density and c is speed of sound in air. We use the maximum sound intensity134

and convert it to decibels. To ensure that the decibel values are normalized for training, we assume135

the highest value of decibel as 128 and compute target labels y. Since the faintest sound human ears136

can hear is considered Io = 10−12W/m2, we convert the max sound intensity into to decibels by137

dBmax = 10 log10(Imax/Io) = 10 log10 Imax + 120.138
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