389

390

391

392

393
394
395
396
397
398
399
400
401
402

404

405
406
407
408
409
410
411
412

413
414
415
416
417
418
419
420
421
422
423

424

425
426
427
428
429
430
431

Multi-Strategy Deployment-Time Learning and
Adaptation for Navigation under Uncertainty
Supplementary Material

A CycleGAN Implementation and Training

We use the official PyTorch implementation of CycleGAN provided by Zhu et al. [19] on GitHub'.
As mentioned in Sec. 4.3, we train two models: one for 50 epoch and another for 100 epochs. We
use the default parameters for training except that we use a batch size of 8 and no learning rate
scheduling is done. We use learning rate of 0.0002 with Adam optimizer. The images are of size
512 x 128 and we perform default resizing and cropping as a preprocessing step. 1261 images from
10 distinct maps in Maze-Green (where Tprerran 1S trained) are set aside as target domain images,
and we sample 1300 images from the source domain (either Maze-Gray or Maze-Blue) collected
during deployment for training the CycleGAN model. Using only 1300 images from deployment-
time environments additionally helps to get an unbiased estimate of performance when replaying
CycleGAN-adapted policy mcyegan On older trials from which the images were collected.

B Learning over Subgoals Planning: Subgoal Property Estimator Network
Implementation and Training

As discussed in Sec. 3.3, all learning-informed policies rely on the learning over subgoals planning
(LSP) abstraction for planning, a model-based approach that relies on a learned model to estimate
subgoal properties: statistics of unseen space associated with each of the robots temporally-extended
high-level actions to explore unseen space. The subgoal property estimator network Ny correspond-
ing to mpgerrany 1S trained with data-collected in 500 distinct maps in Maze-Green where the robot
navigates using the myonrearnen policy. Data labelling procedure is similar to the one described for
Trscraren (S€C. 4.3) except that at training time the underlying map is known and so can be used to
generate ground truth labels for subgoal properties Pg, Rg and Ry corresponding to all subgoals.

The subgoal property estimator network N is trained via supervised learning using the data col-
lected during an offline training phase. Our neural network architecture and training procedure
resemble that of Paudel and Stein [13]. The network takes as input a 512 x 128 panoramic image
centered on a subgoal, relative distance to the subgoal and relative distance to the goal. The image
is encoded by passing through 4 convolutional layers and then concatenated with features corre-
sponding to relative distances to subgoal and goal after which the concatenated features are passed
through 9 convolutional layers and finally 5 fully connected layers to output 3 subgoal properties
Ps, Rs and Rp. We use a learning rate of 0.002 with a decay factor of 0.5 every epoch and train
for 8 epochs with Adam optimizer. We use cross-entropy loss for learning logits associated with Pg
and L2 loss for learning Rg and Rr. The deployment-time training of subgoal property estimators
for mscrarcn follows a similar architecture and procedure.

C Offline Alt-Policy Replay Details

As discussed in Sec. 3.2, we use offline alt-policy replay to replay the behavior of a policy without
deploying it. To replay the behavior of a policy 7/, we leverage the record Z, collected during
trial k£ under a deployed policy 7. At every time step during offline alt-policy replay, the robot
leverages the final partial map mg,, observed in trial k£ to simulate the laser scan and updates its
observed map as the robot moves. The frontiers—boundaries between free and unknown space—
revealed in the observed map corresponds to the subgoal-actions that the robot can take to explore
the region. To get the robot-view panoramic image corresponding to a subgoal-action, we retrieve

'https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

11



432
433
434

436
437
438
439

440

441
442
443
444
445
446
447
448

449

451

452

existing image in record Zj, that is closest to and in line of sight to the subgoal and recenter it at
the subgoal. This image is used to estimate the subgoal properties Ps, Rg and R using a neural
network corresponding to 7’ which is then used to compute the next high-level action using Eq. (4).
The robot then simulates the low-level motion primitive to move towards the selected subgoal and
this process is repeated. At any point during simulated navigation, if the robot attempts to enter a
region that is unknown in the final partial map mg,, via a frontier, we mask that frontier and force
the robot to pick a different subgoal-action. The net distance travelled to reach the goal via this
procedure is the replay cost of policy 7'

D Cross Validation for Reevaluating Older Trials

As mentioned in Sec. 4.3, we use 5-fold cross validation to get an unbiased estimate of the per-
formance of updated policies. Since our policies trained during deployment from scratch (7scgarcn)
are based on the same data in record Z that is also used for offline alt-policy replay to reevaluate
older trials after updating the policies, such cross-validation approach overcomes the risk of overes-
timation of performance during replay due to data leak. With 5-fold cross validation, 5 policies are
trained, each on the data from four-fifth of older trials, and replayed on the remaining one-fifth of
the trials to get the revised performance estimates for all older trials. Finally, a new policy is trained
on data from all previous trials and made available for the robot to choose from in the next trial.

E Sample Images from Deployment-Time Visual Domain Adaptation
Image samples transformed from deployment-time environments (Maze-Gray or Maze-Blue) to the

training-time environment (Maze-Green) are shown in Fig. 6. The CycleGAN models trained after
40th trial are used to generate the images.

m
- - htd -
- — - e - — -— —

- -
“
) - ot -

Maze-Gray to Maze-Green

Maze-Blue to Maze-Green

Figure 6: Images transformed from deployment-time environments (input) to look like training-time
environments (output) with CycleGAN-based visual domain adaptation.



