
Multi-Strategy Deployment-Time Learning and389

Adaptation for Navigation under Uncertainty390

Supplementary Material391

A CycleGAN Implementation and Training392

We use the ofcial PyTorch implementation of CycleGAN provided by Zhu et al. [19] on GitHub1.393

As mentioned in Sec. 4.3, we train two models: one for 50 epoch and another for 100 epochs. We394

use the default parameters for training except that we use a batch size of 8 and no learning rate395

scheduling is done. We use learning rate of 0.0002 with Adam optimizer. The images are of size396

512× 128 and we perform default resizing and cropping as a preprocessing step. 1261 images from397

10 distinct maps in Maze-Green (where πPRETRAIN is trained) are set aside as target domain images,398

and we sample 1300 images from the source domain (either Maze-Gray or Maze-Blue) collected399

during deployment for training the CycleGAN model. Using only 1300 images from deployment-400

time environments additionally helps to get an unbiased estimate of performance when replaying401

CycleGAN-adapted policy πCYCLEGAN on older trials from which the images were collected.402

B Learning over Subgoals Planning: Subgoal Property Estimator Network403

Implementation and Training404

As discussed in Sec. 3.3, all learning-informed policies rely on the learning over subgoals planning405

(LSP) abstraction for planning, a model-based approach that relies on a learned model to estimate406

subgoal properties: statistics of unseen space associated with each of the robots temporally-extended407

high-level actions to explore unseen space. The subgoal property estimator networkNθ correspond-408

ing to πPRETRAIN is trained with data-collected in 500 distinct maps in Maze-Green where the robot409

navigates using the πNONLEARNED policy. Data labelling procedure is similar to the one described for410

πSCRATCH (Sec. 4.3) except that at training time the underlying map is known and so can be used to411

generate ground truth labels for subgoal properties PS , RS and RF corresponding to all subgoals.412

The subgoal property estimator network Nθ is trained via supervised learning using the data col-413

lected during an ofine training phase. Our neural network architecture and training procedure414

resemble that of Paudel and Stein [13]. The network takes as input a 512 × 128 panoramic image415

centered on a subgoal, relative distance to the subgoal and relative distance to the goal. The image416

is encoded by passing through 4 convolutional layers and then concatenated with features corre-417

sponding to relative distances to subgoal and goal after which the concatenated features are passed418

through 9 convolutional layers and nally 5 fully connected layers to output 3 subgoal properties419

PS , RS and RF . We use a learning rate of 0.002 with a decay factor of 0.5 every epoch and train420

for 8 epochs with Adam optimizer. We use cross-entropy loss for learning logits associated with PS421

and L2 loss for learning RS and RF . The deployment-time training of subgoal property estimators422

for πSCRATCH follows a similar architecture and procedure.423

C Ofine Alt-Policy Replay Details424

As discussed in Sec. 3.2, we use ofine alt-policy replay to replay the behavior of a policy without425

deploying it. To replay the behavior of a policy π
′, we leverage the record Zk collected during426

trial k under a deployed policy π. At every time step during ofine alt-policy replay, the robot427

leverages the nal partial map mnal observed in trial k to simulate the laser scan and updates its428

observed map as the robot moves. The frontiers—boundaries between free and unknown space—429

revealed in the observed map corresponds to the subgoal-actions that the robot can take to explore430

the region. To get the robot-view panoramic image corresponding to a subgoal-action, we retrieve431

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

11



existing image in record Zk that is closest to and in line of sight to the subgoal and recenter it at432

the subgoal. This image is used to estimate the subgoal properties PS , RS and RF using a neural433

network corresponding to π′ which is then used to compute the next high-level action using Eq. (4).434

The robot then simulates the low-level motion primitive to move towards the selected subgoal and435

this process is repeated. At any point during simulated navigation, if the robot attempts to enter a436

region that is unknown in the nal partial map mnal via a frontier, we mask that frontier and force437

the robot to pick a different subgoal-action. The net distance travelled to reach the goal via this438

procedure is the replay cost of policy π
′.439

D Cross Validation for Reevaluating Older Trials440

As mentioned in Sec. 4.3, we use 5-fold cross validation to get an unbiased estimate of the per-441

formance of updated policies. Since our policies trained during deployment from scratch (πSCRATCH)442

are based on the same data in record Z that is also used for ofine alt-policy replay to reevaluate443

older trials after updating the policies, such cross-validation approach overcomes the risk of overes-444

timation of performance during replay due to data leak. With 5-fold cross validation, 5 policies are445

trained, each on the data from four-fth of older trials, and replayed on the remaining one-fth of446

the trials to get the revised performance estimates for all older trials. Finally, a new policy is trained447

on data from all previous trials and made available for the robot to choose from in the next trial.448

E Sample Images from Deployment-Time Visual Domain Adaptation449

Image samples transformed from deployment-time environments (Maze-Gray or Maze-Blue) to the450

training-time environment (Maze-Green) are shown in Fig. 6. The CycleGAN models trained after451

40th trial are used to generate the images.

Figure 6: Images transformed from deployment-time environments (input) to look like training-time
environments (output) with CycleGAN-based visual domain adaptation.

452

12


