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ABSTRACT

This paper focuses on session-based item recommendation and the challenges
of using Reinforcement Learning (RL) in recommender systems. While tradi-
tional RL methods rely on one-hot encoded vectors as user state, they often fail
to capture user-specific characteristics, which may provide misleading results. In
contrast, recently, Graph Neural Networks (GNNs) have emerged as a promis-
ing technique for learning user-item representations effectively. However, GNNs
prioritize static rating prediction, which does not fully capture the dynamic na-
ture of session-based recommendations. To address these limitations, we propose
a novel approach called GNN-RL-based Recommender System (GRRS), which
combines both frameworks to provide a unique solution for the session-based rec-
ommendation !. We demonstrate that our method can leverage the strengths of
both GNNs and RL while overcoming their respective shortcomings. Our experi-
ments on several logged public datasets validate the efficacy of our approach over
various SOTA algorithms. Additionally, we offer a solution to the offline training
problem, which is often encountered by RL algorithms when employed on logged
datasets, which may be of independent interest.

1 INTRODUCTION

Recommender systems are vital in e-commerce, online movie streaming, and many other web plat-
forms. With the explosive increase in the number of users and items, designing an efficient and
effective recommender agent is crucial. Traditional methods like matrix factorization aimed to ex-
ploit the hidden structures, like low-rank, in the partially observed user-item reward matrix (see
(Gopalan et al., 2016; Sen et al., 2016) and references therein) and follow a greedy strategy to rec-
ommend items. These existing methods are suboptimal as they fail to capture the dynamic nature
of evolving user preferences over time. Therefore, it is crucial to adopt session-based recommender
systems to effectively address these challenges.

In literature, the session-based recommendation was first introduced in (Hidasi et al., 2015), which
deals with recommending a set of items to a user that he/she is most likely to consume in a session.
One can define a session as a set of user-item interactions during which the user’s preference is
assumed to be stationary. This setting is highly relevant in e-commerce and over-the-top (OTT)
media platforms and imposes distinct challenges as user behaviour may change across sessions.
To address this, some works have employed Recurrent Neural Networks Hidasi et al. (2016) and
its variants such as Hidasi et al. (2015); Dabral et al. (2023). Furthermore, collaborative filtering
techniques Su & Khoshgoftaar (2009) have been used to model the evolving user tastes by keeping
track of the history of individual users and performing clustering on the 1-0 encoded vectors to group
similar users together. This can help in generalizing recommendations across users with similar
buying/watched/liked histories. A potential stumbling block for these methods arises when there are
users with similar tastes (e.g., users who like products of a similar genre) but with no common liked
items (i.e., no long-range user-association). This can lead to unpleasant recommendations followed
by misleading user preference modeling, adversely affecting the user’s long-term engagement with
the system. We discuss this problem in detail with a motivating example in Sec.3.

Recently, GNN He et al. (2020) based embeddings have proven effective in capturing long-term
user association. In addition, GNN-based features are compact and can scale easily compared to

'Code available at https://anonymous . 4open.science/r/iclr24_gnn_rl/
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1-0 encoded feature vectors, whose size grows with the number of items. Thus, GNN is a unique
method to generalize and combine collaborative and content-based filtering methods. However, in
general, GNNs do not capture the inherent sequential nature of session-based recommendation sys-
tems Zhang et al. (2021). In order to address this challenge, preliminary approaches such as Zhang
et al. (2021); Chang et al. (2023) have been proposed to make the GNNs more apt for sequential
recommendation, but these methods are computationally expensive.

On the other hand, Reinforcement Learning (RL) is well-known to handle sequential data. In partic-
ular, when we model the user-item interaction system as a discounted infinite-state Markov Decision
Process (MDP), which efficiently takes care of long-term user behaviour. Historically, multiarmed
bandits (single-state RL) Li et al. (2010); Shi et al. (2023) followed by full-state RL-based algo-
rithms like Deep-Q Learning, Actor-critic, Proximal Policy Optimization Lin et al. (2023), and
similar other methods have been applied for the task of item-recommendation and have performed
reasonably successfully. However, state representation always plays a vital role in all these methods.

In this paper, we propose a novel approach to leverage features of RL and GNNs to effectively
extract the state representations and improve the item recommendations. Furthermore, state repre-
sentations’ importance is given in Sec. 3 to illustrate how the better state representations lead to
better recommendations. Additionally, we devise a strategy to handle the offline training problem
from which many RL-based recommender systems often suffer, leading to poor recommendations.

1.1 CONTRIBUTIONS

Our contribution can be summarized as follows:

* We propose a Graph Neural Network-based Reinforcement Learning Agent for the task of session-
based item-recommendation, which we call GRRS (Alg. 1 and Alg.3). This combination of the
previously well-studied frameworks for the recommendation task has been successfully imple-
mented for the first time to the best of our knowledge.

* We provide a novel method to tackle the infamous “offline training problem” Prudencio et al.
(2023) faced by standard RL-based recommendation systems, which can be of independent in-
terest. Towards this, we utilize the off-policy nature of the DQN algorithm Sutton et al. (2000),
along with the properties of the underlying Markov Decision Process (MDP) to create an artifi-
cial experience replay buffer (ARB). This helps to eradicate the troublesome distributional shift
accompanying many RL algorithms working on static datasets (Sec.4).

* To reinforce our claims, we apply proposed methods to various standard datasets, viz., MovieLens-
Im, MovieLens-100K Harper & Konstan (2015) and Goodreads Wan & McAuley (2018) and
show its superiority over SOTA algorithms. In addition to the version presented in Algl and
Alg.3, we perform various modifications thereof to improve the time complexity and compare all
the results with each other (Sec.5). We also perform ablation studies to show the need and efficacy
of our approach, which is essentially a two-step process.

1.2 ORGANIZATION

The paper is organized as follows: Sec.2 introduces the problem setting and the MDP model, Sec.
3 provides the motivation behind this work and the reason we choose to combine two well-known
recommendation techniques, Sec.4 shows our algorithm (1) with network warming (Alg. 1), and (2)
the fully adaptive scheme (Alg. 3). Sec.5 presents the simulations we carry out on logged datasets,
and we conclude in Sec. 6.

2 PROBLEM SETUP

We consider the problem of session-based recommendation, where there are M users to which
there are N items to be displayed. In session-based recommendations, user-item interactions are
arranged temporally in the form of sessions/episodes. The learning agent can observe the history of
the arriving user (and of previous users) H; (which constitutes the past user ids and their watched
histories) and use this information to predict a set of items which the user is most likely to consume
in the next-session. Recommending favourable items to users maximizes user satisfaction, leading
to increased long-term revenue extraction for the learning agent.
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Towards this, we model the problem as a discounted-MDP (M(S, A, P,r,v)). The state space S
is defined as a subset of R?, where every vector in S represents the state of the system. The action
space A is the set of all items that are available to be displayed to the arriving user. P (. | s, a) is
defined as the transition probability kernel, which gives a probability distribution over the next state
given the current state s € S and action a € A. 7(s,a,s’) denotes the immediate reward that the
agent receives upon playing action a, in state s and transitioning to state s’. + denotes a discount
factor and is a number in [0, 1). The discount factor is used to weigh the future rewards.

The dynamics of the transition kernel are assumed to be deterministic, as will be evident in Sec.4
where we present our method in full detail. In particular, we assume that the next state s’ of the
user upon an action a can be simulated via a simple weighted averaging scheme (eq.2). We find
that doing this helps introduce a temporal evolution of the user state, which helps capturing the
non-stationary nature of user preferences over time.

3 MOTIVATION AND BACKGROUND

Users abg
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Figure 1: A toy example to illustrate the advantage of using GNN-features as states.

In this section, we describe a scenario where one-hot features based on user histories fail to capture
the underlying structure in user preferences, leading to poor recommendations. We consider a toy
example with 3 users and 9 items (see Fig. 1). The figure shows all the interactions until the current
time step t. The nodes marked yellow represent items of genre type 1. The nodes marked red
represent items of genre type 2. Consider the features representing user 1 and user 3. Clearly,
the preferences of users 1 and 3 match closely as they are attracted towards items of the same
genres. However, if one-hot encoded feature vectors (based on items watched) are used, then at
time step ¢ + 1, (sgne=hot gone=hot)y — ( put (sone=hot gone=hot) > (. Hence, this may lead
to recommending unfavourable items to user 1 (and similarly to user 3). On the other hand, GNN
embeddings (features) are calculated with the following equation.

1
k41, _ Z 1k E=1.9 i W
A ) B> gLy ey
BENbhd(A) VINbhA(A)[\/|NDRA(B)|

where A and B denote arbitrary nodes in the user-item graph. Nhbd(A) (Nhbd(B)) denotes the
nodes connected to the node A (B). Clearly, if GNN-based embeddings are used as state vectors, one
obtains a positive correlation between s§V~ and s§™V with the value of number of hops K > 4,

which would aid in reasonable item recommendation.

In order to reinforce this point, we show in Fig. 1 the node embeddings of the three users after
passing through the GNN block. We see that users 1 and 3 appear proximally closer to each other as
compared to user 2. This leads to better state approximation than their one-hot counterpart, which
in turn would be helpful for recommendation when passed through the RL block next.

To formally see the effect of proximity of states on the quality of the recommendation, we state a
result that holds under the following assumptions.

Assumption 1. There exists a L, > 0, such that for all states s,s' € S, a € A, we have
r(s,a) = r(s’,a)| < Ly [|s = s'[l,.

Assumption 2. There exists a Lp > 0, such that for all s,s',§ € S, a € A, we have
|B(s'|s,a) — P(s'|$,a)] < Lp s — 5|,
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These assumptions define a smooth MDP, where a change in the states does not lead to drastic
changes in the reward functions and the transition kernels. With these assumptions, we make the
following assertion.

Theorem 1. With assumptions 1 and 2, for any s,5 € S and a € A, the following continuity
property for the optimal state-action value Q* holds true:

Q% (s,0) = Q"(5,a)[ < L [|s = 5l ,

where, Lq is a problem-specific constant.

Proof Sketch. The proof is a simple consequence of assumptions 1 and 2, followed by some ele-
mentary properties of discounted MDPs. The details are deferred to the appendix. O

Note 1. Assume that the actual (unknown) state of the system is s and that given by the pre-trained-
GNN block be 3NN and by the one-hot vector encoding be 3°"¢~"°t (generated by the movies
watched by the current user). Let us also assume that all of these vectors belong to R® for suitably
large d. By the above result, the closer the actual state is to its approximation, the closer the corre-
sponding optimal QQ—values for the real and the approximated states will be. Hence, it is reasonable
to expect Q-value estimates with better state approximation would lead to better recommendations.

4 ALGORITHM

This section presents the GNN-RL-based Recommender System (GRRS) scheme in Alg. 1. We
explain its individual blocks in detail below.

4.1 GNN BLOCK

We use Graph Convolutional Network (GCN) as a feature extractor as described in Sec3. In par-
ticular, we use the LightGCN version of the graph neural network, introduced in He et al. (2020),
a computationally lighter version of the GCN. However, LightGCN performs empirically similarly
to the full-blown version with much less computational and training complexity. Most of the GNN-
based recommender systems employed in literature are employed for batch operations where the
main tasks considered are edge prediction and matrix completion van den Berg et al. (2017); Zhang
et al. (2022); Zhang & Chen (2019); Shen et al. (2021).

Depending on the computational resources available, we show two schemes that use the GNN and
RL blocks in different ways.

* With network warming. We depict this scheme in Fig. 3. Here, we pre-train the GNN block over

the train data offline. This gives a feature vector of every node (users and items) in the training
graph (i.e., the user-item interaction graph for the train data). We call this the embedding matrix
E. We do this pretraining in batch-mode. The loss function to be minimized in this pretraining
is chosen as the Bayesian Personalized Ranking (BPR) loss He et al. (2020), which encourages
observed user-item predictions to have increasingly higher values than unobserved ones.
After obtaining E, a straightforward way to use it is to assign each node in the graph its embedding
vector. However, by doing this, we lose the sequential nature of the problem and do not capture
the dynamics of the user state evolution as she/he is shown items sequentially. In order to describe
the evolving nature of the user state, we employ a simple technique shown in Alg.2, which is
essentially a weighting and summing of the different item embeddings that the user has consumed
in the past. One can also choose to sum any number 0 < J < length(user history). We show an
illustration of this state-selection scheme in Fig.2. We show some simulations with the choice of
J in Sec.5 to illustrate its effect on the performance of GRRS. Note that we can sum together the
user embeddings with the item embeddings as shown in Alg.2 since all the nodes are represented
in the same vector space He et al. (2020).

* The fully adaptive scheme. We present this algorithm in detail in Alg.3. This scheme starts by
randomly initializing the weights of both the GNN and RL blocks and updates their weights in
every round, as and when a data tuple (s, a,s’,r) is obtained. This method is more computa-
tionally expensive since all the weights (of the GNN block and the DQN block) are learned in
each round, along with the graph evolution. The schematic flow of this method can be found in
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Actual sequence of
items watched
*

Figure 2: An illustration of the state evolution by the weighted averaging scheme. The red points
represent the item embeddings, and the yellow star represents the user embedding. The figures
illustrate the effect of the weightings on the user. The user feature moves towards the recently
consumed item features.

the appendix in Fig.4. Here, we evolve the graph sequentially as and when an item is recom-
mended to a user. In particular, let at round ¢ of episode m, the history available to the agent is
He = {ul,48,r8,u®, i 10, u0 100 10, ut i 1h b il ey WA Y
coou™ gy ™y u™}, then the graph at round ¢ will be built causally on the history #;. Then,
this graph is passed through the LightGCN layer, where the users and items are associated with
a feature vector, which will, over time, tend to encapsulate the properties of the neighbors of the
individual users and items. The user u;"* will be similarly represented by a feature vector (embed-
ding) s; € R%. We use this vector s, as the state of the system at round ¢, which is then fed to the
RL block for item recommendation.

4.2 RL BLOCK

We employ a Deep Q-network (DQN)Mnih et al. (2013) for the RL agent. DQN is a Q-learning
algorithm where the Q-function is approximated by a Deep Neural Network (DNN). DQN is a off-
policy, bootstrapped algorithm, which makes it suitable to use when the episodes’ initial states are
chosen arbitrarily Sutton et al. (2000).

4.2.1 ”OFFLINE TRAINING” ISSUE IN RL.

An infamous consequence of using reinforcement learning on static logged datasets is the offline
training problem (see, e.g., Prudencio et al. (2023) and references therein). The data is usually cast
into tuples of the form (s, a, s’,7), where s is the current state, a is the action taken, s’ is the next
state observed, and r is the immediate reward obtained. Standard RL algorithms assume that the
action taken a is drawn according to the current behaviour policy (the policy given by the current
configuration of the DQN agent). However, since the data is collected with an arbitrary unknown
policy, this results in a distributional shift effecting the performance of the system adversely.

In order to deal with this issue, we create an artificial replay buffer (ARB). We can afford to create
such an entity due to the fact that the transition kernel is assumed to be deterministic. This artificial
replay buffer is defined as follows. Let the current state be s;. Let a; be defined as the action (item)
recommended by the RL agent. Let us define the reward 7; as 41 if the actual action a; (as read
from the dataset) matches a,; else the reward is defined as —1 (we assume a negative reward in case
of a miss in order to avoid the system getting stuck in a local maxima). Next, let 5; be defined as the
next state of the user on application of action a;. The tuple so formed (s;, G, $¢, 7+) is then pushed
to the ARB. After observing the actual item a, (from the dataset), the actual next state s; can again
be computed and is used as the initial state for the next round ¢ + 1, since Q-learning is an off-policy
algorithm and hence the initial state in each round can be chosen arbitrarily (Sutton & Barto, 2018).
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Algorithm 1 GNN-RL based Recommender System (GRRS)

1:

2:
3:
4:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:

Input: Set of episodes £ which contains trajectories of transitions of the form (s, a, s’,r) (see
Sec. 5.1, pretrained GNN embedding matrix E).

Initialize: Action-value (Q—function with random weights w.

for e < 0 to num-epochs do

for all episode 7 in {0,1,2, ..., num-episodes} do
Observe user u'.
Select s = State — Selection(E, u®, user — history) (Alg.2)
fort <+ 0 to length-of-episode do
Select action a} according to an € — greedy rule on the current estimated Q-values.
Simulate the next state 5} | according to State — Selection(s}, user — historyU{a}}).
if actual-item-chosen == a! then
=1
else
=1
end if
Store transition (s, af, i, ,,7}) in ARB.
Observe the actual-movie-seen a’}
Obtain the next state s'; | according to State — Selection (s}, user — history U{a’;}).
Sample random mini-batch of size B transitions (s, m, s’ ,,7%) from ARB, j € [B].
if 5%, is a terminal state then
Define y; := 7.
else
Define y; = r; + ymax, Q(S;+] ,a').
end if
Take a gradient descent step on (y; — Q(s;,m;); w)? with step-size cv.
Sty1 € Sii1- _
user — history < user — history U {a';}).
end for
end for
end for

Algorithm 2 State-Selection

1:
2:
3:

4
5:
6
7

Input: GNN-pre-trained embedding matrix E, user ID, user-history I/
if user-history is () then

Assign the node embedding of the user read off from the pre-trained GNN block, i.e., s =
E(user).

. else ul
u
s =E(user) + Y tE(item(k))
k=1
: end if
: RETURN s.

Note 2. We prefer to use the pre-trained-GNN network as a state extractor for the following reasons:

1.

2.

Reduced time-complexity. The pretraining of the GNN block can be done offline. Hence, during
the actual online process, the training is to be done only over the parameters of the DON block,
which reduces the time complexity enormously.

Finite state space. Using a pre-trained GNN block and only picking the embeddings as initial
states in every episode provides working in only a finite state space. This helps as the standard Q-
learning algorithm (i.e., without function approximation) is well-known to converge to the (true)
optimal Q-values Watkins & Dayan (1992) when the state space is finite (and with appropriately
cooled learned rate). Hence, we expect that the DON network gets closer to the (true) optimal
O-function, leading to enhanced item-recommendations.
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4 5
f Graph Update a
< Repeat through the episode >

Figure 3: A schematic of GRRS with pretrained GNN block (warm network).

Algorithm 3 Fully adaptive GRRS

1: for all epoch e in num-epochs do
2:  Initialize empty graph Gy, initialize all node embeddings as randomly drawn from normal
distribution A/(0, 0%) and call the embedding matrix E.

3:  Observe user ID u’

4:  for all episode 7 in £ do
5: Select sy from E
6
7
8

for? < 0 to length-of-episodedo
Select action a} according to an € — greedy rule on the current estimated Q-values.

Gt Gt U{(s},al)}.

9: Simulate the next state &' 11 by passing G' through GCN block.
10: if actual-item-chosen == a! then
11: =1
12 else
13: 7P =—1
14: end if o ‘
15: Store transition (s, aj, 57, 1,7};) in ARB.
16: Observe the actual-movie-seen a’}
17: G+ Gtu{(si.d})}.
18: Simulate the next state s; , ; by passing G* through GCN block.
19: Sample random mini-batch of size B transitions (s, m}, 5, |, 77) from ARB, j € [B].
20: if s’ | is a terminal state then
21: Define y := r7.
22: else _ _ '
23: Dc?ﬁne Y5 = 1; +ymaxy Q(sjq,a’).
24: end if 3
25: Update weights of GNN and hence E; Update weights of DQN.
26: Sf 4 Siiq-
27: end for
28:  end for
29: end for

5 EXPERIMENTAL SETUP

5.1 DATASETS AND PREPROCESSING

We work with three datasets. The statistics of these datasets are highlighted in Table 1. Each of the
above datasets is collection of user-item interactions. These comprise of four essential quantities
that we require:“user ID”, “item ID”, “rating” and “timestamp”. We now describe the method we
use to convert these static datasets to ones that can be fed to the RL agent for learning. We convert
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Table 1: Statistics of the datasets used.

Dataset Number of users | Number of items | Number of interactions
Goodreads (sampled) 663 1000 73270
MovieLens-1m (sampled) 670 3883 100495
MovieLens-100K 942 1683 100029

the data into chunks, which we call episodes or sessions interchangeably, characterized by a run of
interactions from the same user according to the ascending order of their timestamps. We adhere to
the following steps, similar to Dabral et al. (2023):

Step 1. Sort the ratings according to ascending order of timestamp.

Step 2. Starting with the first entry, group the interactions in a single session until there is a change
in the user or the time difference between successive timestamps is more than some fixed [
units, which we call session-threshold. This marks the end of the current session.

Step 3. GOTO Step 2 and repeat till the end of data.

Note 3. We discard sessions with < b interactions, as very short sessions may not help in effective
learning. Further, we also discard users which have < 3 sessions for all our experiments.

Let us call this set of processed episodes as £.

Creation of train and test set. For every user u, we put the first n,, — 1 episodes in the train set and
the last episode in the test set, where n,, represents the number of sessions of user w.

5.2 RESULTS

Assume that the agent recommends K items to the user. Recall the definition of Recall @K as:

RecallOK — # relevant items which are recommended

# relevant items

For maximum user satisfaction, we aim at maximizing Recall@K. As discussed before, we convert
all the datasets into sessions and preprocess them (e.g., we remove very short sessions and users
with very few ratings) for all our simulations. Details of all the tunable hyper-parameters can be
found in the appendix.

5.2.1 ON MOVIELENS DATASETS.

We carried out experiments on the movielens-1m and movielens-100K datasets. In Table2a, we
compare the performance of GRRS with the current SOTA algorithms. An interesting fact to note
here is that CD-HRNN Dabral et al. (2023) which is very close to the performance of GRRS, uses ad-
ditional context information of the users and the nodes (e.g., BERT embeddings of movie reviews),
which our algorithm does not. GRRS, as presented in this paper, initializes its weight randomly
and relies only on the past ratings of the users He et al. (2020). This is, in fact, more robust since
additional contexts may sometimes be incorrect and misleading He et al. (2020).

We carry some additional simulations on the movielens-1m dataset as shown in Table3 with different
values of J as defined in Sec.4. As expected, the algorithm performs the best with the largest value
of J. Row number 4 in Table3 presents a scenario where, in order to simulate the next state upon a
transition, we weight the item embeddings with an indicator function as shown in eq.2.
|| 1
s = E(user) + Z —I{r(user,item(k)) > 3}E(item(k)) )
k=1 k
Our simulation shows that considering only the higher-rated items for state evolution does not nec-
essarily help achieve higher recall. We suspect that for the dataset we consider, users decide to
consume a particular item only because they like it, irrespective of the rating they provide. This is
probably because MovieLens is not an interactively collected dataset. We also carry out simulations

with the fully adaptive scheme (rows 5 and 6 in Table 3). Surprisingly, we find that the pre-trained
GNN scheme performs better than the fully adaptive scheme in our experiments.
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Further, we conduct experiments on the movielens-100K dataset for ablation studies (Table2b). We
aimed to see the effect of the individual blocks in our method. We conducted the simulation by
first removing the RL block and performing simple dot-product-based recommendations ((He et al.,
2020)). On the other hand, we conduct simulations when the GNN block is removed and we use
simple 1-0 encoded vectors as state to be fed to the RL block. In both these simulations, we find
GRRS comfortably outperforming the rest, reinforcing the advantage of the GNN-RL combination.

Table 2: Simulations

(a) Simulations on Movielens-1m (b) Simulations on Movielens-100K dataset

Method Recall@20 Method Recall@15 | Recall@20
Cd-HRNN | 49.56% GNN followed by dot product | 4.41% 4.96%
HRNN 43.03% 1-0 encoded features + RL 2.13% 2.9%
GNN-RL | 51.07% GNN triggered RL Agent 19.41% 21.25%

Table 3: Simulations on Movielens-1m dataset different configurations

Simulation Recall@20
Full context across episodes (J = length(user history)) 51.07%
1-step association in rounds (J = 1) 48.22%
States fixed (No state evolution, J=0) 38.33%
Episode-wise GNN update (Update GNN weights once after every episode) 44.62%
Round-wise GNN update (Update GNN weights once after every round) 43.07%
Reward weighting transitions 42.16%

5.2.2 ON GOODREADS DATASET.

Next, we conduct simulations on Goodreads, a book rating dataset. This is a vast dataset as it
contains ratings of books over a 100-year span. In order to perform simulations within reasonable
time complexity, we select the top 1000 most-rated books for our simulations. We compared our
results with the HGN method proposed in Ma et al. (2019), which is the current state-of-the-art
method for this dataset. We observe that our method outperforms the SOTA comfortably.

Table 4: Simulations on Goodreads dataset

Method Recall@10
Hierarchical Gating Networks (HGN) Ma et al. (2019) | 12.63%
GNN followed by dot product 7.13%
GNN triggered RL Agent (our method) 21.32%

6 CONCLUSION

We introduce a novel approach that integrates Graph Neural Networks (GNNs) and Reinforcement
Learning (RL) for the first time in session-based recommendation systems. We have substantiated
the necessity for this fusion by presenting a scenario that demonstrates how improved state represen-
tations can result in superior recommendations. To validate this claim, we conducted simulations on
three benchmark datasets, where we showcased the effectiveness of our methodology in comparison
to other state-of-the-art algorithms. Additionally, we address the challenge of offline training in RL
algorithms, which arises due to the distributional shift when working with static logged databases.

This work paves the way for a plethora of future directions. One immediate avenue could be to mod-
ify the current algorithm for average reward setting in RL since many available datasets do not have
a natural ferminal state. Further, in this work, we employed a simple weighted averaging scheme
to obtain the next state (in the pre-trained GNN version of GRRS), which can be improved with a
more astute time-encapsulating strategy. Lastly, our future efforts will be focused on addressing the
unresolved challenge, specifically the cold-start problem for new users and items.
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APPENDIX

A  PROOF OF THEOREM 1

Proof. Let s, § € S and a € A be any state and action. Let Q) (., a) be the corresponding optimal
Q-function.

Q" (s,a) — Q*(5,a)| = |r(s,a) —r(8,a) —|—'yz |samaXQ s, al) 'yz \samaXQ (s',a")

s€S sES
<Ir(e,) = 0] 4713 (8(ln 0) = P(615,0) mag @+ )
< - ) —P(s'|3 a
Ir(s,a) = r(5,0)] +7 Y |(B(s'ls. @) = B(']3,0))] | max Q*(s', @)

sES

TH’LLL.L

<Ly lls = 8lly + 7L 18] x |15 — 8],

|8|LP7nmaz ~ ~
- (Lrﬂ? s = 5l, = Lo lls = 3l -

where the first and second inequalities are by triangle inequality, the third is by assumptions 1 and
2, and by using the fact that the max reward is bounded by some 7,,4,. As evident, we define

LQ . L + ,YllePrmaL . D

B FULLY ADAPTIVE GRRS

As discussed in Sec.4, the fully adaptive GNN-based RL recommender system scheme is shown in
Fig.4.

In each episode:

GNN+RL block

Graph representation

users items
. s Item
- = R Deep-RL block | |[recommended
» GNN block r————————— DAN >
User arrives e Graph-based (DQN)
s features/relations -
transformed 2
- 3 ]
t Graph Update a
«+ Repeat through the episode >

Figure 4: GRRS with the fully adaptive scheme where the GNN and the RL blocks are trained and
updated together.

C DETAILS OF HYPER-PARAMETERS USED IN THE SIMULATIONS

In this section, we provide the details of the various hyper-parameters we used in our simulation
studies.
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Table 5: Parameters used for the pretained GNN block.

Parameter Value used

Batch size 128

Learning Rate 0.001

Weight Decay 0.1

Embedding Size 64

Number of GCN layers 4

[ (see Sec.5 for dataset preprocessing) for MovieLens | 1800 (1/2 hour)

[ for Goodreads 15552000 (6 months)

Table 6: Parameters used for the DQN block.

Parameter Value used
DQON layers 1024x2048x4096
emin (Least value of € for the DQN action selection) | 0.01

¥ 0.9

Learning Rate « (see Algl) 0.0005

Batch size 1024
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