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Abstract

Although deep neural networks have achieved super-human performance on many1

classification tasks, they often exhibit a worrying lack of robustness towards ad-2

versarially generated examples. Thus, considerable effort has been invested into3

reformulating Empirical Risk Minimization (ERM) into an adversarially robust4

framework. Recently, attention has shifted towards approaches which interpolate5

between the robustness offered by adversarial training and the higher clean accu-6

racy and faster training times of ERM. In this paper, we take a fresh and geometric7

view on one such method—Probabilistically Robust Learning (PRL) [Robey et al.,8

2022]. We propose a geometric framework for understanding PRL, which allows9

us to identify a subtle flaw in its original formulation and to introduce a family of10

probabilistic nonlocal perimeter functionals to address this. We prove existence11

of solutions using novel relaxation methods and study properties as well as local12

limits of the introduced perimeters.13

1 Introduction14

The fragility of DNN-based classifiers in the face of adversarial examples [Goodfellow et al., 2014,15

Chen et al., 2017, Qin et al., 2019, Cai et al., 2021] and distributional shifts [Quinoñero Candela16

et al., 2008, Hendrycks et al., 2021] is by now nearly as familiar as their successes. In light of this,17

a multitude of works (see Section 1.4) propose replacing standard Empirical Risk Minimization18

(ERM) [Vapnik, 1999] with a more robust alternative (see, e.g., Madry et al. [2017]). Unfortunately19

there is no free lunch: robust classifiers frequently exhibit degraded performance on clean data and20

significantly longer training times [Tsipras et al., 2018]. Consequently, identifying frameworks which21

balance performance and robustness is of pressing interest to the Machine Learning (ML) community,22

and over the past several years many such frameworks have been proposed [Zhang et al., 2019, Wang23

et al., 2020, Robey et al., 2022]. Moreover, it is crucial that the mechanism by which such frameworks24

balance these competing aims be understood.25

Beginning with the Probabilistically Robust Learning (PRL) of Robey et al. [2022] we analyze such26

frameworks geometrically. This perspective reveals a subtle, paradoxical aspect of PRL: sometimes27

the adversary modeled by this framework corrects, instead of exploits, the learner! Fortunately, the28

geometric perspective we propose suggests a natural remedy which leads to an interpretation of the29

corrected PRL as regularized ERM where a certain nonlocal notion of length (or perimeter) of the30

decision boundary acts as a regularizer. We exemplify this correction in Figure 1. The interpretation31

of PRL as perimeter-regularized ERM leads us to further generalizations, and we provide a novel32

view of the Conditional Value at Risk (CVaR) relaxation of PRL proposed by Robey et al. [2022].33
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A ≜ class green

Ac ≜ class red

(a) Robey et al. [2022]: The probabilistically non-
robust region (magnified) reduces the loss.

A ≜ class green

Ac ≜ class red

(b) Our model: The probabilistically non-robust
region is correctly identified and penalized.

Figure 1: Penalization effect of the original model [Robey et al., 2022] (left) and ours (right): The
solid black is the decision boundary of a non-robust classifier induced by the set A. Both models
penalize the numbers of green points in the yellow region and red points in the teal region. However,
the original model favors non-robust regions of A for which most perturbations correct the class. Our
model identifies this region as non-robust and penalizes it accordingly.

1.1 From empirical risk minimization to robustness34

Given an input space X , an output space Y , a probability measure µ ∈ P(X × Y), a loss function35

ℓ : Y × Y → R, and a hypothesis classH, the standard risk minimization problem is36

inf
h∈H

E(x,y)∼µ [ℓ(h(x), y)] . (1)

For training classifiers which are robust against adversarial attacks Goodfellow et al. [2014], Madry37

et al. [2017] suggested adversarial training:38

inf
h∈H

E(x,y)∼µ

[
sup

x′∈Bε(x)

ℓ(h(x′), y)

]
. (2)

Here X is assumed to have the structure of a metric space and Bε(x) for ε ≥ 0 denotes the (open or39

closed) ball of radius ε around x.40

The recent work by Robey et al. [2022] offered an alternative to adversarial training in order to41

reduce the (in general) large trade-off between accuracy and robustness inherent in (2), see Tsipras42

et al. [2018], Robey et al. [2022] for discussion. Instead of requiring classifiers to be robust to all43

available attacks around a point x—as enforced through the supremum in (2)—one may consider44

a less stringent notion of robustness, only requiring classifiers to be robust to 100 × (1 − p)% of45

possible attacks when attacks are drawn from a certain distribution px centered at x. For this, the46

authors introduced the so-called p-ess sup operator for p ∈ [0, 1) and suggested replacing (2) by47

inf
h∈H

E(x,y)∼µ

[
p- ess sup

x′∼px

ℓ(h(x′), y)

]
, (3)

where {px}x∈X is a family of probability distributions. The prototypical example to keep in mind48

for X = Rd is the uniform distribution over the ε-ball around x, i.e., px := Unif(Bε(x)), which is49

particularly relevant when dealing with adversarial attacks on image classifiers.50

For a probability distribution p and a function f , the quantity p- ess supx′∼p f(x
′) is defined as the51

smallest value t ∈ R such that the probability of a randomly chosen point x′ ∼ p satisfying f(x′) > t52

is smaller than p, which reduces to the usual essential supremum of f with respect to p if p = 0:53

p- ess sup
x′∼p

f(x′) := inf {t ∈ R : Px′∼p [f(x
′) > t] ≤ p}.

To better understand the model (3) we temporarily restrict our attention to binary classification (i.e.,54

Y = {0, 1}) using indicator functions of admissible sets (i.e.,H := {1A : A ∈ A}). Note that we55

identify the two expressions 1A(x) = 1x∈A. We focus on the 0-1 loss ℓ(ỹ, y) = 1ỹ ̸=y which equals56

one if y ̸= ỹ and zero otherwise. In this scenario (1) reduces to the geometric problem57

inf
A∈A

{
Rstd(A) := E(x,y)∼µ [y1x∈Ac + (1− y)1x∈A]

}
, (4)
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and minimizers are called Bayes classifiers. Similarly, adversarial training (2) can be rewritten as58

inf
A∈A

{
Radv(A) := E(x,y)∼µ

[
y1x∈(Ac)⊕ε + (1− y)1x∈A⊕ε

]}
, (5)

where for a set A ∈ A its fattening by ε-balls is defined as A⊕ε :=
⋃

x∈A Bε(x). Hence (5) enforces59

that all points with distance at most ε to the decision boundary be adversarially robust.60

On the other hand the PRL model (3) reduces to61

inf
A∈A

{
Rprob(A) := E(x,y)∼µ

[
y1Px′∼px

[x′∈Ac]>p + (1− y)1Px′∼px
[x′∈A]>p

]}
, (6)

where A⊕ε is replaced by a “probabilistic fattening”, i.e., one considers the set of all x for which the62

probability that a neighboring point sampled from px lies inside A is larger than p. To the best of our63

knowledge, existence of solutions for (6) or even (3) has not been proved so far.64

1.2 Geometric modification of probabilistically robust learning65

To motivate our geometric modification of the PRL model from Robey et al. [2022], it is insightful to66

investigate the regularization effect that PRL has compared to standard risk minimization. We let67

ρi(•) := µ(• × {i}) denote the non-normalized conditional distributions of the points with label i.68

Subtracting the standard risk in (4) from the one in (6) and disintegrating using ρ0 and ρ1 we obtain69

Rprob(A)− Rstd(A)

=

∫
X
1Px′∼px

[x′∈A]>p − 1x∈A dρ0(x) +

∫
X
1Px′∼px

[x′∈Ac]>p − 1x∈Ac dρ1(x).
(7)

We highlight that this expression does not constitute a non-negative functional of A. Hence the loss70

function in (6) is not a regularized version of the standard risk (4) and in fact can be strictly smaller.71

This observation reveals a subtle flaw in the approach of Robey et al. [2022]: Points which lie in thin72

or spike-like regions of A penetrating the other class and that are more likely to have the label zero73

than the label one (meaning they lie in the set {ρ0 > ρ1}) yield negative contributions in (7) and74

are hence favored. Such a scenario is visualized on the left side of Figure 1. From an adversarial75

perspective this means that points which are already misclassified are attacked nevertheless, which76

can lead to the bizarre situation that the adversary helps the learner by putting these points in the77

correct class with high probability, thereby reducing both adversarial robustness and clean accuracy.78

We fix this by designing a probabilistically robust risk as non-negative regularization of the standard79

risk. For this we define probabilistic perimeter functionals which only penalize points which are80

classified correctly and admit a large portion of attacks around them, see the right side of Figure 1.81

1.3 Our contributions82

Our main contributions are the following:83

• We address the geometric limitation of the model by Robey et al. [2022] by introducing a84

family of perimeter regularizations.85

• We prove existence of soft and hard binary classifiers under weak conditions on the family86

of perimeters and hypothesis classes, using novel relaxation techniques.87

• We investigate the relationship between the introduced family of perimeters and local88

perimeters in Euclidean space for small adversarial budgets.89

• We extend our models to encompass general loss functions and hypothesis classes. Our90

numerical experiments demonstrate that our geometric correction can enhance the adversarial91

robustness of probabilistically robust classifiers without compromising clean accuracy.92

1.4 Related work93

Adversarial training was developed by Goodfellow et al. [2014], Madry et al. [2017] as an approach94

to train networks that are less sensitive to adversarial attacks. Shafahi et al. [2019] reduced its95

computational complexity by reusing gradients from the backpropagation when training neural96
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networks. Wong et al. [2020] showed that training with noise perturbations followed by a single97

signed gradient ascent (FGSM) step can be on par with adversarial training while being much98

cheaper. This approach was picked up and improved upon by Andriushchenko and Flammarion99

[2020] based on gradient alignment. Different authors also investigated test-time robustification of100

pretrained classifiers using randomized smoothing [Cohen et al., 2019] or geometric / gradient-based101

approaches [Schwinn et al., 2021, 2022]. While some of the previous models use a combination102

of random perturbations and gradient-based adversarial attacks to robustify classifiers, Robey et al.103

[2022] proposed probabilistically robust learning, which is entirely based on random perturbations.104

PRL aims to interpolate between clean and adversarial accuracy and enjoys the favorable sample105

complexity of vanilla empirical risk minimization; see also Raman et al. [2023] for more insights on106

this issue. Connections between adversarial training and local perimeter regularization of decision107

boundaries were explored by García Trillos and Murray [2022] and then rigorously tied by Bungert108

and Stinson [2022]. Our work is in line with a series of papers [Pydi and Jog, 2021, Awasthi et al.,109

2021a,b, Frank and Niles-Weed, 2022, Frank, 2022, Bungert et al., 2023, García Trillos et al., 2023]110

that explore the existence of solutions to adversarial training problems in different settings. These111

existence proofs involve dealing with different kinds of measurability issues, depending on whether112

open or closed balls Bε(x) are used in the attack model. For open balls one can work with the113

Borel σ-algebra A = B(X ) [Bungert et al., 2023], whereas closed balls require the use of the114

universal σ-algebra to make sure that A⊕ε is measurable [Pydi and Jog, 2021, Awasthi et al., 2021a,b].115

Recently, these results were improved by García Trillos et al. [2023] who also proved for the case of116

multi-class classification that even for the closed ball model Borel measurable classifiers (albeit not117

necessarily indicator functions of measurable sets) exist and that for all but countably many values of118

the adversarial budget ε > 0 the open and the closed ball models have the same minimal value.119

2 Geometry and existence of probabilistically robust classifiers120

2.1 The binary classification setting with 0-1 loss121

In this section we shall introduce our baseline model, which is based on a suitable geometric122

regularization of the standard risk. Later we shall embed it into a family of models. For clarity we123

first discuss hard classifiers (characteristic functions of sets) and then soft classifiers (functions with124

values in [0, 1]). The generalization to general models and loss functions is postponed to Section 3.125

We start by defining the probabilistic perimeter for p ∈ [0, 1) of an admissible set A ∈ A as follows:126

ProbPer(A) := ρ0 ({x ∈ Ac : Px′∼px [x
′ ∈ A] > p})

+ ρ1 ({x ∈ A : Px′∼px
[x′ ∈ Ac] > p}) .

(8)

ProbPer(A) penalizes correctly classified points x for which more than 100×p% of their neighbors,127

sampled from px, constitute an attack. The perimeter can be rewritten in integral form:128

ProbPer(A) =

∫
X
1x∈A∨ Px′∼px

[x′∈A]>p − 1x∈A dρ0(x)

+

∫
X
1x∈Ac ∨ Px′∼px

[x′∈Ac]>p − 1x∈Ac dρ1(x)

(9)

=

∫
X
1x∈Ac1Px′∼px

[x′∈A]>p dρ0(x) +

∫
X
1x∈A1Px′∼px

[x′∈Ac]>p dρ1(x). (10)

The first reformulation (9) should be compared to (7), while the one in (10) will be useful later129

on. The use of the term perimeter to describe the functional ProbPer will become more apparent130

shortly in Section 2.4, and at this point it is worth highlighting that ProbPer is always a non-negative131

quantity. This motivates introducing the following regularized risk132

ProbR(A) := Rstd(A) + ProbPer(A), A ∈ A. (11)

Our first theorem states that ProbR equals the expected maximum of the sample-wise standard risk133

and the probabilistically robust risk from Robey et al. [2022], cf. (4) and (6).134

Theorem 1. For all A ∈ A it holds that135

ProbR(A) = E(x,y)∼µ

[
max

{
1Px′∼px

[1A(x′ )̸=y]>p,11A(x) ̸=y

}]
. (12)
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The interpretation of the statement of this theorem in the light of Figure 1 is clear: Only if a point136

x is correctly classified—meaning 11A(x)̸=y = 0—the probabilistically robust regularization kicks137

in through the first term in the maximum. Points which are incorrectly classified will always be138

penalized even if most attacks correct the label, i.e., if 1Px′∼px
[1A(x′ )̸=y]>p = 0. Thus, minimizing139

ProbR instead of Rprob corrects the pathology identified in Section 1.2.140

2.2 Extensions in the binary classification setting141

Given the formula of ProbPer in (10), several natural extensions suggest themselves. E.g., one may142

replace the indicator function 1t>p with a different function Ψ(t) to define other notions of perimeter143

ProbPerΨ(A) :=

∫
X
1x∈AcΨ(Px′∼px [x

′ ∈ A]) dρ0(x)

+

∫
X
1x∈AΨ(Px′∼px

[x′ ∈ Ac]) dρ1(x)

(13)

as well as their corresponding probabilistically robust losses144

ProbRΨ(A) := Rstd(A) + ProbPerΨ(A). (14)

For Ψ(t) := 1t>p the perimeter ProbPerΨ reduces to ProbPer and so do the associated risks. Of145

particular interest is Ψp(t) := min {t/p, 1}—the smallest concave function that lies above Ψ(t) =146

1t>p—which will allow us to develop deep connections between the theoretical and computational147

aspects of probabilistically robust learning. Our relaxation using the function Ψ is very similar to148

the one by Raman et al. [2023] who proved PAC learnability if Ψ is Lipschitz, see Appendix A.6 for149

more details. In order to rigorously study ProbRΨ we first make our setting precise.150

Assumption 1. We let X be a set and A ⊂ 2X be a σ-algebra. We assume that:151

• (X × Y,A⊗ 2{0,1}, µ) is a probability space;152

• (X ,A, ρ) is a probability space, where we define ρ(•) := µ(• × {0, 1});153

• {px}x∈X is a family such that (X ,A, px) is a probability space for ρ-almost every x ∈ X .154

The following theorem establishes existence of minimizers of the risk ProbRΨ for concave and155

non-decreasing functions Ψ. This existence result is astonishing since the standard method of156

calculus of variations is not directly applicable, with the reason being that problem (15) does not157

provide enough compactness for lower semicontinuity of the perimeter functional ProbPerΨ. Instead,158

the proof is based on convex relaxations to soft classifiers where we use a lower semicontinuous159

surrogate functional and a total variation defined through a coarea formula which—if Ψ is concave160

and non-decreasing—lower-bounds the surrogate.161

Theorem 2. Suppose Ψ : [0, 1] → [0, 1] is concave and non-decreasing, and that Assumption 1162

holds. Then, there exists a solution to the problem163

inf
A∈A

ProbRΨ(A). (15)

Furthermore, ProbRΨ can also be interpreted as a sample-wise maximum, analogous to Theorem 1.164

Theorem 3. For all A ∈ A and measurable Ψ : [0, 1]→ [0, 1] it holds165

ProbRΨ(A) = Rstd(A) + ProbPerΨ(A)

= E(x,y)∼µ

[
max

{
Ψ(Px′∼px

[1A(x
′) ̸= y]) ,11A(x)̸=y

}]
.

Note that for the non-concave function Ψ(t) = 1t>p an existence proof along the lines of Theorem 2166

is not available since certain relaxation techniques therein rely on concavity of Ψ. However, in the167

next section we shall provide an existence theorem for soft classifiers which is valid for very general168

functions Ψ, including Ψ(t) = 1t>p.169
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2.3 Extension to soft classifiers170

Another natural extension features “soft classifiers” instead of indicator functions of admissible171

sets. Such classifiers are particularly relevant since they include the neural network based models172

with Softmax activation in the last layer which are used in practice. We start by defining a suitable173

regularization functional for soft classifiers. Given aA-measurable function u : X → [0, 1] we define174

JΨ(u) :=

∫
X
(1− u(x))Ψ (Ex′∼px

[u(x′)]) dρ0(x)

+

∫
X
u(x)Ψ (Ex′∼px [1− u(x′)]) dρ1(x)

(16)

which satisfies JΨ(1A) = ProbPerΨ(A) for every choice of Ψ. Hence, it is a natural generalization175

of the perimeter to soft classifiers and one could call JΨ a total variation. However, it is neither176

positively homogeneous nor convex so this name would be misleading. Instead, for the proof of177

Theorem 2 we shall construct a suitable total variation functional ProbTVΨ which upper-bounds JΨ.178

The next theorem asserts existence of soft classifiers for the regularized risk minimization using JΨ for179

very general functions Ψ and hypothesis classesH, requiring only that Ψ be lower semicontinuous.180

For example, every continuous function and also Ψ(t) = 1t>p for p ∈ [0, 1] satisfies this. The181

existence theorem is valid for all hypotheses classes which are closed in a suitable sense.182

Theorem 4. Under Assumption 1, for every lower semicontinuous function Ψ : [0, 1]→ [0, 1], and183

whenever H is a weak-* closed hypothesis class of A-measurable functions u : X → [0, 1] in the184

sense of Definition 1 in the appendix, there exists a solution to the problem185

inf
u∈H

E(x,y)∼µ [|u(x)− y|] + JΨ(u).

Example 1. Let us consider three interesting hypothesis classes of weak-* closed classifiers for186

which Theorem 4 applies. More detailed explanations are given in Appendix A.8.187

1. The simplest such class H is the class of all A-measurable soft classifiers u : X → [0, 1]188

which could be referred to as agnostic classifiers since they are not parametrized.189

2. An example with more practical relevance is the class of (feedforward or residual) neural190

networks defined on the unit cube X := [−1, 1]d with uniformly bounded parameters191

H :=
{
ΦL ◦ · · · ◦ Φ1 : [−1, 1]d → [0, 1] : Φl(•) = Al •+σl(Wl •+bl),

∥(Al,Wl, bl)∥ ≤ C ∀l ∈ {1, . . . , L}
}
,

where we assume that the activations σl : R→ R are continuous. Note that the boundedness192

of the weights cannot be relaxed. To see this, consider the (very simplistic) neural network193

un(x) = tanh(wnx) for x ∈ [−1, 1] and wn ∈ R. For wn → ∞ it is easy to see that un194

converges to u(x) := sign(x) which does not lie in the same hypothesis class.195

3. Finally, one can also consider the class of hard linear classifiers on Rd. Letting θ(t) := 1t>0196

denote the Heaviside function, this class is given by197

H :=
{
θ(w · x+ b) : w ∈ Rd, |w| = 1, b ∈ [−∞,∞]

}
,

where one interprets u(x) := θ(w · x+ b) as u ≡ 1 if b =∞ and u ≡ 0 if b = −∞. If the198

distributions ρ0, ρ1, and px are sufficiently nice, thenH has the desired closedness property.199

2.4 Properties and asymptotics of ProbPerΨ200

In this section we shall discuss the interpretation of the functional ProbPerΨ defined in (13) as a201

perimeter. We do this in two ways.202

First, we focus on the case where Ψ is concave and non-decreasing and prove that ProbPerΨ is a203

submodular functional. If, in addition, Ψ is assumed to satisfy Ψ(0) = 0, then ProbPerΨ(X ) =204

ProbPerΨ(∅) = 0. Following Chambolle et al. [2015], for Ψ satisfying these properties one can205

interpret ProbPerΨ as a generalized perimeter, i.e., a functional that can be used to measure the206

“size” of the boundary of a set. In Appendix A.3 we introduce ProbPerΨ’s induced (generalized)207

total variation and use it in the proof of Theorem 2; note that, as discussed by Bungert et al. [2023],208

the adversarial problem (5) also induces a generalized perimeter with associated total variation.209
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Theorem 5. If Ψ(0) = 0, then ProbPerΨ(X ) = ProbPerΨ(∅) = 0. If Ψ is concave and non-210

decreasing, then the functional ProbPerΨ is submodular, meaning that211

ProbPerΨ(A ∪B) + ProbPerΨ(A ∩B) ≤ ProbPerΨ(A) + ProbPerΨ(B) ∀A,B ∈ A.
Example 2. For Ψ(t) = t our perimeter reduces to the perimeter on the random walk space (X , p),212

introduced by Mazón et al. [2020]: ProbPerΨ(A) =
∫
X\A

∫
A
dpx dρ0(x) +

∫
A

∫
X\A dpx dρ1(x).213

Second, we consider more general Ψ and show that ProbPerΨ is related to a standard local perimeter214

when the adversarial budget approaches zero; for the case of adversarial training such a connection was215

proved by Bungert and Stinson [2022] where the authors utilized the notion of Gamma-convergence216

of functionals. We take a first step in this direction by proving that for sufficiently smooth sets the217

probabilistic perimeter converges to a local one if the family of probability distributions px localizes218

suitably. For example, one could think of px := Unif(Bε(x)), which converges to a point mass at x219

if ε→ 0. To make our setting precise, we pose the following general assumption:220

Assumption 2. We assume that X = Rd, Ψ(0) = 0, Ψ is measurable and bounded, and ρ1, ρ0 have221

continuous densities with respect to the Lebesgue measure which we shall also denote as ρ1, ρ0.222

Furthermore, we assume that there is ε > 0 and a measurable function K : X × Rd → [0,∞) such223

that for every x ∈ Rd we have the representation224

dpx(x
′) = ε−dK

(
x,

x′ − x

ε

)
dx′.

We also assume that for every x ∈ X we have K(x, •) ∈ L1(Rd),
∫
Rd K(x, z) dz = 1, and225

K(x, z) = 0 if |z| > 1, and that for every z ∈ Rd the mapping x 7→ K(x, z) is C1.226

Proposition 1. Under Assumption 2, if A has a compact C1,1 boundary and either Ψ is continuous227

or there exists a constant c > 0 such that K(x, z) ≥ c for all x ∈ X and |z| ≤ 1, then228

lim
ε→0

1

ε
ProbPerΨ(A) =

∫
∂A

σ0,Ψ [x, n(x)] ρ0(x) + σ1,Ψ [x, n(x)] ρ1(x) dHd−1(x) (17)

where we let n(x) denote the normal to ∂A at a point x ∈ ∂A, and for any vector v ∈ Rd we define229

σ0
Ψ [x, v] :=

∫ 1

0

Ψ

(∫
{z·v≤−t}

K(x, z) dz

)
dt, σ1

Ψ [x, v] :=

∫ 1

0

Ψ

(∫
{z·v≥t}

K(x, z) dz

)
dt.

Remark 1. If K is radially symmetric and independent of x ∈ X , then σ0
Ψ = σ1

Ψ =: σΨ is just a230

constant. E.g., for K(x, z) := |B1(0)|−1
1|z|≤1 and Ψ(t) = 1t>p it is trivial that for p = 0 we have231

σΨ = 1. However, for p ≥ 1
2 one easily sees σΨ = 0, hence the limiting perimeter equals zero and232

there is no regularization effect. Using the function Ψ(t) = min {t/p, 1} corrects this degeneracy.233

Notably, for radially symmetric K the limiting perimeter in (17) coincides, provided σΨ > 0, with234

the one derived for adversarial training (problem (5)) by Bungert and Stinson [2022], although they235

considered more general (potentially discontinuous) densities ρi. In particular, our result indicates236

that for very small adversarial budgets the regularization effect of both probabilistically robust237

learning and adversarial training is dominated by the perimeter in (17). While Proposition 1 already238

completes half of the proof (namely the limsup inequality) of Gamma-convergence of 1
ε ProbPerΨ239

to the limiting perimeter, the remaining liminf inequality is beyond the scope of this paper. Proving240

that the convergence (17) does not only hold for sufficiently smooth sets as assumed in Proposition 1241

but even in the sense of Gamma-convergence is an extremely important topic for future work since242

only Gamma-convergence allows to deduce from the convergence of the perimeters that also the243

solutions of probabilistically robust learning converge to certain regular Bayes classifiers as ε→ 0,244

see Bungert and Stinson [2022, Section 4.2].245

3 General models246

We now shift our attention to training general hypotheses h ∈ H using general loss functions247

ℓ : Y × Y → R. Motivated by Theorems 1 and 3 we propose the following probabilistically robust248

optimization problem:249

inf
h∈H

E(x,y)∼µ

[
max

{
p- ess sup

x′∼px

ℓ(h(x′), y), ℓ(h(x), y)

}]
. (18)
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In the mathematical finance or economics literature the p-ess sup operator is better known as the value250

at risk (VaR) of a random variable at level p and it is notoriously hard to optimize. VaR is closely251

related to other risk measures like, for instance, the conditional value at risk (CVaR) which is convex252

and easier to optimize [Robey et al., 2022, Rockafellar et al., 2000]. For a function f : X → R and a253

probability distribution p the CVaR at level p is defined as254

CVaRp(f ; p) := inf
α∈R

α+
Ex′∼px

[
(f(x′)− α)+

]
p

. (19)

It is easy to see that p- ess supx′∼p f(x
′) ≤ CVaRp(f ; p). Using CVaR in place of the p- ess sup255

operator, a tractable version of (18) is256

inf
h∈H

E(x,y)∼µ

[
max

{
CVaRp(ℓ(h(•), y); px), ℓ(h(x), y)

}]
. (20)

We emphasize that, if the loss function ℓ(•, •) is convex in its first argument, then (20) is a convex257

function of the hypothesis h. Furthermore, CVaR is positively homogeneous and hence also (20) is258

positively homogeneous in the loss function. So, taking the maximum of the samplewise CVaR and259

standard risk is meaningful as both terms scale in the same way.260

In the binary classification case we can prove the following interesting result that the CVaR relax-261

ation corresponds precisely to using the risk ProbRΨ with a special piecewise linear and concave262

function Ψ for which our theory from Section 2.2 applies. In Appendix A.5 we prove a more general263

version of the following statement, replacing the [ • ]+ operation in (19) with a Leaky ReLU.264

Theorem 6. Let the function Ψp : [0, 1]→ [0, 1] be defined as Ψp(t) := min {t/p, 1}. Then it holds265

CVaRp

(
11A(•)̸=y; p

)
= Ψp (Px′∼p [1A(x

′) ̸= y])

and as a consequence for all A ∈ A:266

E(x,y)∼µ

[
max

{
CVaRp(11A(•)̸=y; px),11A(x)̸=y

}]
= ProbRΨp

(A).

An immediate consequence of Theorem 6 is that for binary classification (20) has a solution.267

Corollary 1. Under Assumption 1 and in the setting of Theorem 6 problem (20) has a solution.268

In Appendix A.5 we collect a few more observations concerning the CVaR, especially focussing on269

its behavior for p > 1. These geometric properties, the homogeneity with respect to the loss function,270

its potentially favorable sample complexity (see the discussion in Appendix A.6), and its versatility271

for algorithmic implementation make (20) a notable generalization of the adversarial training problem272

(2). Notice that when p→ 0 one formally recovers (2) from (20).273

4 Numerical results274

We build upon the code of Robey et al. [2022]. The algorithmic realization of (20) is a straightforward275

adaptation of their algorithm, which alternatingly minimizes the inner optimization problem that276

defines CVaR and the outer optimization to find a suitable classifier, see Algorithm 1 in Appendix B.277

In our experiments, we conduct a comparative analysis between their algorithm (denoted as “Original”278

in Table 1) and Algorithm 1 in the appendix which is based on (20) (denoted as “Geometric”).279

We report the clean, and adversarial accuracies (subject to PGD attacks), as well as accuracies on280

noise-augmented data and quantile accuracies for different values of p (see [Robey et al., 2022,281

(6.1)] for the definition) averaged over three runs; see Appendix B.2 for more training details. Our282

experiments are conducted on MNIST and CIFAR-10 and to ensure a fair comparison we adhere to the283

hyperparameter settings described by Robey et al. [2022], such that both the original and geometric284

algorithms utilize the same set of hyperparameters for each specified value of p. The corresponding285

results for several baseline algorithms including empirical risk minimization and adversarial training286

can be found in their paper. We perform model selection based on the best clean validation accuracy.287

The results in Table 1 show that for moderate values of p our geometric modification induces higher288

adversarial robustness than the original PRL without loss of clean accuracy (see, in particular, the289

results for MNIST with p = 0.1 and for CIFAR-10 with p = 0.3). In the noise augmented metrics as290

well as for extreme values of p close to 0 or equal to 0.5 both algorithms behave comparably. The291

latter can be expected from out theoretical results, in particular Proposition 1.292
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Note that the original or the geometric version of PRL should not be expected to match the adversarial293

robustness of classifiers trained with PGD attacks [Madry et al., 2017] or other worst-case optimization294

techniques. Instead, they shine with superior clean accuracies and easier training while maintaining295

probabilistic and a certain degree of adversarial robustness, as also observed by Robey et al. [2022].296

We also remark that our sweep over different values of p confirms that increasing this parameter297

interpolates between low and high clean accuracies. However, it should be noted that it does not298

necessarily result in a direct interpolation between high and low adversarial or probabilistic accuracy,299

as claimed by Robey et al. [2022]. These observations hold true for both the original algorithm and300

our geometric modification, and despite utilizing their code and hyperparameters, we were unable to301

reproduce the exact results reported by Robey et al. [2022, Tables 1-4].302

Table 1: Accuracies [%] of the geometric and original algorithm for different values of p.
Data p Algorithm Clean Adv Aug Aug-0.1 Aug-0.05 Aug-0.01

M
N

IS
T

0.01 Geometric 99.20 12.19 99.04 98.18 97.69 96.38
Original 99.19 10.76 98.90 97.94 97.38 95.67

0.1 Geometric 99.28 14.20 99.22 98.70 98.45 97.86
Original 99.32 8.94 99.22 98.70 98.46 97.80

0.3 Geometric 99.29 3.02 99.21 98.76 98.53 97.95
Original 99.27 3.02 99.22 98.77 98.55 98.01

0.5 Geometric 99.27 1.80 99.21 98.72 98.44 97.93
Original 99.26 1.68 99.19 98.72 98.47 97.80

C
IF

A
R

-1
0

0.01 Geometric 80.65 0.15 78.13 73.44 72.13 68.80
Original 81.73 0.24 79.16 74.61 73.19 69.96

0.1 Geometric 88.15 0.14 85.96 82.55 81.46 78.81
Original 88.28 0.19 85.61 82.21 81.06 78.28

0.3 Geometric 90.43 11.80 88.70 85.17 83.93 80.93
Original 89.97 7.20 88.62 85.07 83.75 80.87

0.5 Geometric 91.51 1.93 88.94 85.53 84.18 81.21
Original 90.74 1.99 88.94 85.54 84.35 81.57

5 Discussion and Conclusion303

In this paper we considered probabilistically robust learning (PRL), originally proposed by Robey304

et al. [2022]. We corrected a subtle but crucial theoretical flaw in the original formulation by305

introducing a regularization of the standard risk with nonlocal perimeters measuring the susceptibility306

of the decision boundary towards high-probability adversarial attacks. For binary classification we307

proved existence of optimal hard classifiers and of very general classes of soft classifiers including308

neural networks. We also provided an asymptotic expansion for smooth decision boundaries to309

show that for small adversarial budgets the probabilistic perimeters discussed in the paper induce the310

same regularization effect as adversarial training. For general (not necessarily binary) problems we311

showed that the natural loss function to choose is the sample-wise maximum of the standard loss and312

conditional value at risk (CVaR).313

One limitation of PRL is that it does not completely solve the accuracy vs. robustness trade-off,314

which remains a challenging problem. Furthermore, while the formal limit of PRL as p→ 0 is the315

worst-case adversarial problem, the algorithms for solving PRL exhibit limitations for very small316

values of p (in the computation of CVaRp). Still, the results for moderately large values of p are317

encouraging and future work should focus on understanding of this trade-off better.318

The rich mathematical theory developed in this paper opens up new avenues for research, such as the319

explicit design of probabilistic regularizers for algorithms and exploring the variational convergence320

of the probabilistic perimeter and its implications for adversarial robustness.321
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A Proofs and theoretical aspects406

A.1 Reformulation of the loss functions407

In this section we will prove Theorems 1 and 3, which state that the proposed loss functionals equal408

the expected maximum of the sample-wise standard risk and the probabilistically robust risk from409

Robey et al. [2022]. Furthermore, we will prove Theorem 6, which states that the CVaR relaxation of410

the proposed regularization problem is equivalent to choosing a special piecewise linear function Ψ.411

Proof of Theorem 1. We use the integral representations of the standard risk (4) and the proposed412

probabilistic perimeter (9) to express the risk functional ProbR(A) as follows413

ProbR(A) =

∫
X
1x∈A dρ0(x) +

∫
X
1x∈Ac dρ1(x)

+

∫
X
1x∈A∨ Px′∼px

[x′∈A]>p − 1x∈A dρ0(x)

+

∫
X
1x∈Ac ∨ Px′∼px

[x′∈Ac]>p − 1x∈Ac dρ1(x).

=

∫
X
1x∈A∨ Px′∼px

[x′∈A]>p dρ0(x) + 1x∈Ac ∨ Px′∼px
[x′∈Ac]>p dρ1(x)

=

∫
X
max

{
1Px′∼px

[x′∈A]>p,1x∈A

}
dρ0(x) +

∫
X
max

{
1Px′∼px

[x′∈Ac]>p,1x∈Ac

}
dρ1(x),

where we used the fact that the indicator function of the union of two sets equals the maximum of the414

two indicator functions. Reverting the disintegration yields the claim:415

ProbR(A) = E(x,y)∼µ

[
max

{
1Px′∼px

[1A(x′ )̸=y]>p,11A(x) ̸=y

}]
.

416

Theorem 1 is a special case of the more general Theorem 3 which we prove in the following.417

Proof of Theorem 3. The proof is similar to that of Theorem 1 after noting that for Ψ : [0, 1]→ [0, 1]418

1x∈A + 1x∈AcΨ(Px′∼px
[x′ ∈ A]) = max {1x∈A,Ψ(Px′∼px

[x′ ∈ A])}

which can easily be shown by checking cases. Then:419

ProbR(A) =

∫
X
1x∈A dρ0(x) +

∫
X
1x∈Ac dρ1(x) +

∫
X
1x∈AcΨ(Px′∼px

[x′ ∈ A]) dρ0(x)

+

∫
X
1x∈AΨ(Px′∼px

[x′ ∈ Ac]) dρ1(x)

=

∫
X
[1x∈A + 1x∈AcΨ(Px′∼px [x

′ ∈ A])] dρ0(x)

+

∫
X
[1x∈Ac + 1x∈AΨ(Px′∼px

[x′ ∈ Ac])] dρ1(x)

=

∫
X
max {1x∈A,Ψ(Px′∼px [x

′ ∈ A])} dρ0(x)

+

∫
X
max {1x∈Ac ,Ψ(Px′∼px

[x′ ∈ Ac])} dρ1(x)

and the claim follows via reverting the disintegration as in the proof of Theorem 1.420

Before proving Theorem 6 we will prove the following stronger theorem.421
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Theorem 7. For β ≥ 0 define422

ϕβ(t) :=

{
t t ≥ 0,

βt t < 0,

and423

CVaRp,β(f ; p) := inf
α∈R

α+
Ex′∼p [ϕβ(f(x

′)− α)]

p
.

The for any set A ∈ A and for β ≤ p < 1 it holds424

CVaRp,β (1A; p) = Ψp,β (p(A))

where the concave and non-decreasing function Ψp,β : [0, 1] → [0,∞) is defined as Ψp,β(t) =425

min {t/p, 1− β/p(1− t)}.426

Proof. Suppose that f = 1A for some set A ∈ A. In that case we can write427

CVaRp,β(f ; p) = inf
α∈R

α+ ϕβ(1− α)
p(A)

p
+ ϕβ(−α)

1− p(A)

p
.

Notice that the function428

ζ(α) := α+ ϕβ(1− α)
p(A)

p
+ ϕβ(−α)

1− p(A)

p
, α ∈ R,

is continuous and piecewise linear with kinks at α = 0 and α = 1. Moreover, since β ≤ p < 1 it429

holds ζ(α) ≥ ζ(1) for α > 1 and ζ(α) ≥ ζ(0) for α < 0 such that the minimum of ζ is attained at430

either α = 0 or α = 1. Thus431

CVaRp,β(f ; p) = min{ζ(0), ζ(1)} = min

{
p(A)

p
, 1− β

p
(1− p(A))

}
.

432

Proof of Theorem 6. The first claim of Theorem 6 is a special case of Theorem 7 by choosing β = 0.433

The second claim follows by combining the first one with Theorem 3.434

A.2 Lower semicontinuity of the functional JΨ435

An essential tool for the proof of Theorems 2 and 4 is lower semicontinuity of the functional JΨ,436

which we recall was defined in (16) as437

JΨ(u) :=

∫
X
(1− u(x))Ψ (Ex′∼px [u(x

′)]) dρ0(x) +

∫
X
u(x)Ψ (Ex′∼px [1− u(x′)]) dρ1(x)

for a measurable function u : X → [0, 1]. We have to construct a suitable topology for proving lower438

semicontinuity of this functional (recall Assumption 1) and define the probability measures439

ρ := ρ0 + ρ1, (21)

ν(A) :=
1

2

∫
X
px(A) dρ(x) +

1

2
ρ(A), A ∈ A. (22)

The measure ρ equals the first marginal of µ and models the distribution of all data, irrespective of440

the label. The first summand of the measure ν is the convolution of ρ with the family of probability441

measures {px}x∈X .442

By construction we have the following two important absolute continuity properties which we shall443

use without further reference:444

ν(A) = 0 =⇒
[
ρ(A) = 0 and px(A) = 0 for ρ-almost every x ∈ X

]
,

ρ(A) = 0 =⇒
[
ρ0(A) = 0 and ρ1(A) = 0

]
.
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A simple example for X = Rd is ρ := 1
N

∑N
i=1 δxi and px := Unif(Bε(x)) in which case445

ν =
1

2N

N∑
i=1

(
Unif(Bε(xi)) + δxi

)
is a sum of absolutely continuous measures on ball centered at xi and the empirical measure of the446

points xi.447

The suitable topology in which we shall prove lower semicontinuity is the weak-* topology of448

L∞(X ; ν) which is the dual space of L1(X ; ν) since ν is a fortiori a σ-finite measure [Dunford and449

Schwartz, 1958, IV.8.3, Theorem 5].450

Definition 1. Under Assumption 1 we say that a sequence of functions (un)n∈N ⊂ L∞(X ; ν)451

converges to u ∈ L∞(X ; ν) in the weak-* sense (written un
∗
⇀ u) as n→∞ if452

lim
n→∞

∫
X
unφdν =

∫
X
uφdν ∀φ ∈ L1(X ; ν). (23)

The absolute continuity properties of ν allow us to deduce the following lemma453

Lemma 1. Under Assumption 1 let (un)n∈N ⊂ L∞(X ; ν) satisfy un
∗
⇀ u in the sense of Definition 1.454

Then it holds455

lim
n→∞

Ex′∼px
[un(x

′)] = Ex′∼px
[u(x′)] for ρ-almost every x ∈ X .

Proof. The Radon–Nikodým theorem and weak-* convergence imply that for ρ-almost every x ∈ X456

it holds457

lim
n→∞

Ex′∼px
[un(x

′)] = lim
n→∞

∫
X
un(x

′) dpx(x
′) = lim

n→∞

∫
X
un(x

′)
dpx
dν

(x′) dν(x′)

=

∫
X
u(x′)

dpx
dν

(x′) dν(x′) =

∫
X
u(x′) dpx(x

′) = Ex′∼px [u(x
′)]

since dpx

dν ∈ L1(X ; ν).458

Proposition 2 (Lower semicontinuity of JΨ). Under Assumption 1 let (un)n∈N ⊂ L∞(X ; ν) be459

a sequence of functions with values in [0, 1] satisfying un
∗
⇀ u in the sense of Definition 1, and460

let Ψ : [0, 1] → [0, 1] be lower semicontinuous. Then 0 ≤ u ≤ 1 holds ν-almost everywhere and461

furthermore462

JΨ(u) ≤ lim inf
n→∞

JΨ(un).

Proof. First we show that 0 ≤ u ≤ 1. By the weak-* lower semicontinuity of the L∞-norm we get463

u ≤ 1 from the fact that 0 ≤ un ≤ 1. To show that u ≥ 0 we assume that on a measurable set N with464

ν(N) > 0 it holds u < 0. Then from the weak-* convergence and the fact that un ≥ 0 we obtain465

0 >

∫
X
u1N dν = lim

n→∞

∫
X
un1N dν ≥ 0

which is a contradiction. Therefore, u ≥ 0 holds ν-almost everywhere.466

Since both terms in the definition of JΨ are dealt with symmetrically, we assume without loss of467

generality and for an easier notation that ρ1 = 0 and rewrite JΨ as468

JΨ(u) =

∫
X
(1− u(x))Ψ (Ex′∼px [u(x

′)]) dρ0(x).

Since Ψ is lower semicontinuous there exists a sequence of continuous functions Ψδ : [0, 1]→ [0, 1]469

which converge to Ψ in the pointwise sense as δ → 0 and satisfy Ψδ ≤ Ψ. For instance, the functions470

Ψδ(t) := inf
s∈[0,1]

Ψ(s) +
1

δ
|s− t| , t ∈ [0, 1],
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do the job. Lemma 1 implies that Ex′∼px [un(x
′)]→ Ex′∼px [u(x

′)] for ρ-almost every x as n→∞.471

Since Ψδ is continuous, we get Ψδ (Ex′∼px [un(x
′)])→ Ψδ (Ex′∼px [u(x

′)]) for ρ-almost every x as472

n→∞. Since 0 ≤ un ≤ 1 and hence Ψδ (Ex′∼px [un(x
′)]) is uniformly bounded, the convergence473

even holds true in L1(X ; ρ0) and therefore474

lim
n→∞

∫
X
(1− un(x))Ψδ (Ex′∼px [un(x

′)]) dρ0(x)

=

∫
X
(1− u(x))Ψδ (Ex′∼px

[u(x′)]) dρ0(x).

(24)

Next we would like to use the Fatou lemma to take the limit as δ → 0 on both sides. For this we475

notice that the sequence of functions476

fδ(x) := (1− un(x))Ψδ (Ex′∼px [un(x
′)])

converges to (1− un(x))Ψ (Ex′∼px
[un(x

′)]) pointwise as δ → 0 and satisfies the bounds fδ ≥ 0.477

Thanks to the non-negativity we can apply the standard Fatou lemma. Using Ψδ ≤ Ψ and (24) we get478

JΨ(u) =

∫
X
(1− u(x))Ψ (Ex′∼px

[u(x′)]) dρ0(x)

≤ lim inf
δ→0

∫
X
(1− u(x))Ψδ (Ex′∼px

[u(x′)]) dρ0(x)

= lim inf
δ→0

lim
n→∞

∫
X
(1− un(x))Ψδ (Ex′∼px [un(x

′)]) dρ0(x)

≤ lim inf
n→∞

∫
X
(1− un(x))Ψ (Ex′∼px

[un(x
′)]) dρ0(x)

= lim inf
n→∞

JΨ(un).

479

A.3 The geometric problem for concave Ψ480

We remind the reader of the definition of the following perimeter functional:481

ProbPerΨ(A) :=

∫
X
1x∈AcΨ(Px′∼px

[x′ ∈ A]) dρ0(x) +

∫
X
1x∈AΨ(Px′∼px

[x′ ∈ Ac]) dρ1(x).

We first show that ProbPerΨ is a submodular function when Ψ is a concave non-decreasing function.482

For this, we first need a lemma.483

Lemma 2. Let Ψ : [0,∞) → R be a concave and non-decreasing function, and let 0 ≤ a ≤ b ≤484

b′ ≤ a′ be real numbers with a+ a′ ≤ b+ b′. Then485

Ψ(a) + Ψ(a′) ≤ Ψ(b) + Ψ(b′).

Proof. Let a, a′, b, b′ be as stated. Since Ψ is concave and finite, it satisfies the fundamental theorem486

of calculus and thus it is possible to write487

Ψ(s) = Ψ(a) +

∫ s

a

Ψ′(r) dr, s ≥ a

for a function Ψ′ that is non-increasing and non-negative. It follows that488

Ψ(b)−Ψ(a) =

∫ b

a

Ψ′(r) dr ≥ (b− a)Ψ′(b) ≥ (a′ − b′)Ψ′(b) ≥
∫ a′

b′
Ψ′(r) dr = Ψ(a′)−Ψ(b′),

which is precisely what we wanted to show.489

We are ready to prove Theorem 5490
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Proof of Theorem 5. First, the fact that ProbPerΨ(X ) = ProbPerΨ(∅) = 0 if Ψ(0) = 0 is easy to491

see from the definition of ProbPerΨ. Second, we trivially have492

Px′∼px [x
′ ∈ A ∪B] + Px′∼px [x

′ ∈ A ∩B] ≤ Px′∼px [x
′ ∈ A] + Px′∼px [x

′ ∈ B] .

Define493

a′ := Px′∼px
[x′ ∈ A ∪B] , b′ := Px′∼px

[x′ ∈ B]

b := Px′∼px
[x′ ∈ A] , a := Px′∼px

[x′ ∈ A ∩B] ;

without the loss of generality we can assume that b and b′ defined above satisfy b ≤ b′, for otherwise494

we can simply swap these labels. We can then use Lemma 2 to conclude that:495

Ψ(Px′∼px [x
′ ∈ A ∪B]) + Ψ (Px′∼px [x

′ ∈ A ∩B])

≤ Ψ(Px′∼px
[x′ ∈ A]) + Ψ (Px′∼px

[x′ ∈ B]) .
(25)

The submodularity follows directly once we have verified the following pointwise identity:496

1x∈(A∪B)cΨ(Px′∼px [x
′ ∈ A ∪B]) + 1x∈(A∩B)cΨ(Px′∼px [x

′ ∈ A ∩B])

≤ 1x∈AcΨ(Px′∼px
[x′ ∈ A]) + 1x∈BcΨ(Px′∼px

[x′ ∈ B]) .
(26)

To do this we consider two complementary cases:497

Case 1, x ∈ (A∪B)c: This is equivalent to x ∈ Ac∩Bc. Furthermore, since (A∪B)c ⊂ (A∩B)c498

we also have that x ∈ (A ∩B)c. Hence, all indicator functions in (26) take the value one and (26) is499

the same as (25), which we have already verified.500

Case 2, x ∈ A ∪B: In this case the first indicator function on the left hand side of (26) is zero.501

Case 2.1, x ∈ A ∩B: In this subcase all indicator functions are equal to zero and the inequality is502

trivially satisfied.503

Case 2.2, x ∈ A∪B \(A∩B): Without loss of generality we can assume that x ∈ A\B = A∩Bc.504

In this case only the second indicator function on the left hand side and the second one on the right505

hand side of (26) take the value one and the inequality reduces to the trivial inequality506

Ψ(Px′∼px
[x′ ∈ A ∩B]) ≤ Ψ(Px′∼px

[x′ ∈ B])

which is true since Ψ is non-decreasing and A ∩B ⊂ B.507

Motivated by Theorem 5 we define the associated total variation of a non-negative measurable508

function u : X → [0,∞) in terms of a coarea formula as509

ProbTVΨ(u) :=

∫ ∞

0

ProbPerΨ({u ≥ t}) dt. (27)

By definition ProbTVΨ is positively homogeneous. It also satisfies ProbTVΨ(1A) =510

ProbPerΨ(A) = JΨ(1A) but the functionals ProbTVΨ and JΨ do not coincide for general functions511

u : X → [0, 1]. Instead it holds ProbTVΨ(u) ≤ JΨ(u), as we prove in the following proposition.512

Proposition 3. If Ψ is concave and non-decreasing it holds513

ProbTVΨ(u) ≤ JΨ(u).

Furthermore, for every sequence of measurable sets (An)n∈N ⊂ X such that 1An
converges in the514

weak-* sense to a function u ∈ L∞(X ; ν) as n→∞ it holds515

ProbTVΨ(u) ≤ lim inf
n→∞

ProbPerΨ(An).
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Proof. As in the proof of Proposition 2 we assume without loss of generality that ρ1 = 0. We516

compute517

ProbTVΨ(u) =

∫ 1

0

ProbPerΨ({u ≥ t}) dt

=

∫
X

∫ 1

0

1u(x)<tΨ(Px′∼px [u(x
′) ≥ t]) dtdρ0(x)

=

∫
X

∫ 1

0

1u(x)<tΨ
(
Ex′∼px

[
1{u≥t}(x

′)
])

dtdρ0(x)

=

∫
X

∫ 1

u(x)

Ψ
(
Ex′∼px

[
1{u≥t}(x

′)
])

dtdρ0(x). (28)

Since Ψ is concave and non-decreasing, we get from (28) and Jensen’s inequality that518

ProbTVΨ(u) ≤
∫
X
(1− u(x))Ψ

(
1

1− u(x)

∫ 1

u(x)

Ex′∼px

[
1{u≥t}(x

′)
]
dt

)
dρ0(x)

=

∫
X
(1− u(x))Ψ

(
1

1− u(x)
Ex′∼px

[∫ 1

u(x)

1{u≥t}(x
′) dt

])
dρ0(x)

=

∫
X
(1− u(x))Ψ

(
1

1− u(x)
Ex′∼px [u(x

′)− u(x)]

)
dρ0(x)

≤
∫
X
(1− u(x))Ψ

(
1

1− u(x)
Ex′∼px

[u(x′)(1− u(x))]

)
dρ0(x)

=

∫
X
(1− u(x))Ψ (Ex′∼px

[u(x′)]) dρ0(x) = JΨ(u).

The proof of the second statement of the proposition follows by combining the first one with519

Proposition 2, applied to the sequence un := 1An , which satisfies JΨ(un) = ProbPerΨ(An).520

A remarkable consequence of this lower bound and the lower semicontinuity of JΨ from Proposition 2521

is the following lower semicontinuity of ProbTVΨ for sequences of characteristic functions. For522

this sake, let (An) ⊂ A be a sequence of sets such that 1An

∗
⇀ u in L∞(X ; ν). Then it holds523

ProbTVΨ(u) ≤ JΨ(u) ≤ lim inf
n→∞

JΨ(1An) = lim inf
n→∞

ProbPerΨ(An)

= lim inf
n→∞

ProbTVΨ(1An
).

Remarkably, this observation suffices to prove Theorem 2 although there is no proof for lower524

semicontinuity of ProbTVΨ along general sequences of functions.525

Proof of Theorem 2. Let (An)n∈N ⊂ A be a minimizing sequence such that526

lim
n→∞

Rstd(An) + ProbPerΨ(An) = inf
A∈A

Rstd(A) + ProbPerΨ(A). (29)

The Banach–Alaoglu theorem implies that there exists u ∈ L∞(X ; ν) such that 1An

∗
⇀ u as527

n→∞. The standard risk is trivially lower semicontinuous because ρ≪ ν. Combining this with528

Propositions 2 and 3 and using (29) we obtain529

E(x,y)∼µ [|u(x)− y|] + ProbTVΨ(u) ≤ E(x,y)∼µ [|u(x)− y|] + JΨ(u)

≤ lim inf
n→∞

Rstd(An) + JΨ(1An
)

= lim inf
n→∞

Rstd(An) + ProbPerΨ(An)

= inf
A∈A

Rstd(A) + ProbPerΨ(A).

For t ∈ [0, 1] we define At := {u ≥ t}. Trivially we have530

inf
A∈A

Rstd(A) + ProbPerΨ(A) ≤ Rstd(At) + ProbPerΨ(At) ∀t ∈ [0, 1].
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If this inequality were strict for a set of t ∈ [0, 1] with positive Lebesgue measure, integration and the531

coarea formula would give532

inf
A∈A

Rstd(A) + ProbPerΨ(A) <

∫ 1

0

Rstd(At) + ProbPerΨ(At) dt

= E(x,y)∼µ [|u(x)− y|] + ProbTVΨ(u)

≤ inf
A∈A

Rstd(A) + ProbPerΨ(A),

which is a contradiction. Hence, we have proved that533

inf
A∈A

Rstd(A) + ProbPerΨ(A) = Rstd(At) + ProbPerΨ(At)

for Lebesgue almost every t ∈ [0, 1] and any such set At is a minimizer.534

A.4 The soft classifier problems535

The main issue with proving existence of solution for the original problem (i.e., Ψ(t) = 1t>p is not536

concave) is that537

ProbTVΨ(u) ̸≤ JΨ(u)

due to a failure of Jensen’s inequality in this case. The validity of this inequality was central for the538

relaxation arguments in the proofs of Proposition 3 and Theorem 2.539

However, if we already consider the relaxed problem, optimizing over soft classifiers instead of540

characteristic functions and regularizing with JΨ, we obtain an existence proof straightforwardly for541

very general functions Ψ.542

Proof of Theorem 4. The proof works precisely as the proof of Theorem 2, replacing the minimizing543

sequence 1An
by functions un ∈ L∞(X ; ν) which satisfy 0 ≤ un ≤ 1, and utilizing the weak-*544

closedness ofH as well as the lower semicontinuity of JΨ from Proposition 2.545

A.5 CVaR relaxation: Existence for hard classifiers and some considerations546

Proof of Corollary 1. Given the reformulation from Theorem 6 the existence result follows from547

Theorem 2.548

We remark that if p was allowed to be larger than 1, then CVaRp(f ; p) = −∞. Indeed, if p > 1,549

the function ζ defined in the proof of Theorem 7 would satisfy limα→−∞ ζ(α) = −∞. This insight550

allows us to show that the method of Robey et al. [2022] becomes meaningless for values p > 1,551

despite the authors using values bigger than one according to [Robey et al., 2022, Appendix C.4]. In552

contrast, our method just reduces to empirical risk minimization in this case.553

Proposition 4. For a non-negative function f : X → [0,∞] and for p > 1 it holds554

p- ess sup
x′∼p

f(x′) = inf {t > 0 : Px′∼p [f(x
′) > t] ≤ p} = −∞

CVaRp(f ; p) = inf
α∈R

α+
Ex′∼p

[
(f(x′)− α)+

]
p

= −∞.

Proof. For p > 1 (in fact, even for p = 1) it holds for any t ∈ R that Px′∼p [f(x
′) > t] ≤ 1 ≤ p.555

Hence, the infimum over such t equals −∞.556

Similarly, for p > 1 and α ≤ 0, we have, thanks to the non-negativity of f , that557

α+
Ex′∼px

[
(f(x′)− α)+

]
p

=

(
1− 1

p

)
α+

1

p
Ex′∼p [f(x

′)] .

If p > 1, the factor which multiplies α is positive and sending α→ −∞ shows the infimum equals558

−∞.559

Corollary 2. Consequently, for p > 1 and non-negative loss functions ℓ(•, •) the objective in (3)560

(respectively, its CVaR relaxation [Robey et al., 2022, (P-CVaR)]) equals −∞. In contrast, the561

proposed objective (18) and its CVaR relaxation (20) equal the standard risk E(x,y)∼µ [ℓ(h(x), y)] in562

this case.563
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A.6 PAC learnability for Lipschitz continuous Ψ564

Raman et al. [2023] considered PAC learnability of probabilistically robust learning models which565

depend on the probabilistic margin |Ex′∼p [u(x
′)]− y| of u on (x, y) ∼ µ. More precisely (and in566

our notation) they consider the problem567

inf
h∈H

E(x,y)∼µ [Ψ (|Ex′∼px [u(x
′)]− y|)] . (30)

Notably, for Ψ(t) = 1t>p this reduces precisely to the probabilistically robust learning model (3)568

by Robey et al. [2022] in case of using the loss function ℓ(y, ỹ) = |y − ỹ|. However, they prove569

hardness results for such functions Ψ and also prove superior learnability properties if function Ψ is570

Lipschitz continuous. We expect that analogous statements carry over to the problems considered in571

Theorems 2 and 4 if one restricts Ψ to be Lipschitz. An interesting question for future investigation572

is whether concavity of Ψ (which is needed for the first theorem) would suffice to guarantee PAC573

learnability.574

A.7 Pointwise consistency of the perimeter575

Proof of Proposition 1. UnderAssumption 2, a simple change of variables shows576

ProbPerΨ(A) =

∫
Ac

Ψ

(∫
Rd

1A(x+ εz)K(x, z) dz

)
ρ0(x) dx

+

∫
A

Ψ

(∫
Rd

1Ac(x+ εz)K(x, z) dz

)
ρ1(x) dx.

Let τ : Rd → R be the signed distance function to ∂A such that τ(x) ≤ 0 for x ∈ A. Using τ , we577

can rewrite the previous line as578

ProbPerΨ(A) =

∫
{τ(x)≥0}

Ψ

(∫
{τ(x+εz)≤0}

K(x, z) dz

)
ρ0(x) dx

+

∫
{τ(x)≤0}

Ψ

(∫
{τ(x+εz)≥0}

K(x, z) dz

)
ρ1(x) dx.

Recalling that K(x, z) = 0 whenever |z| > 1, the previous line is equal to579

ProbPerΨ(A) =

∫
{0≤τ(x)≤ε}

Ψ

(∫
{τ(x+εz)≤0}

K(x, z) dz

)
ρ0(x) dx

+

∫
{−ε≤τ(x)≤0}

Ψ

(∫
{τ(x+εz)≥0}

K(x, z) dz

)
ρ1(x) dx.

Since A has C1,1 boundary, there exists some ε0 > 0 such that τ is C1,1 in an ε0 neighborhood of ∂A.580

Furthermore, for any ε < ε0 the mapping Tε : ∂A× [−1, 1]→ {x ∈ Rd : τ(x) ∈ [−ε, ε]} given by581

Tε(y, t) = y + εtn(y) is a bijection and limε→0
1
ε det(DTε) = 1 uniformly on ∂A× [−1, 1]. Using582

this change of variables, we may write583 ∫
{0≤τ(x)≤ε}

Ψ

(∫
{τ(x+εz)≤0}

K(x, z) dz

)
ρ0(x) dx

=

∫
∂A

∫ 1

0

det(DTε(y, t))Ψ (aε(y, t)) ρ0(y + εtn(y)) dtdHd−1(y)

and584 ∫
{−ε≤τ(x)≤0}

Ψ

(∫
{τ(x+εz)≥0}

K(x, z) dz

)
ρ1(x) dx

=

∫
∂A

∫ 1

0

det(DTε(y,−t))Ψ (bε(y, t)) ρ1(y − εtn(y)) dtdHd−1(y),
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where we abbreviate585

aε(y, t) :=

∫
{τ(y+ε(tn(y)+z))≤0}

K(y + εtn(y), z) dz

bε(y, t) :=

∫
{τ(y+ε(z−tn(y)))≥0}

K(y − εtn(y), z) dz

In the rest of what follows, we will focus on proving that586

lim
ε→0

∫
∂A

∫ 1

0

det(DTε(y, t))

ε
Ψ(aε(y, t)) ρ0(y + εtn(y)) dtdHd−1(y)

=

∫
∂A

σ0,Ψ[y, n(y)]ρ0(y) dHd−1(y).

An identical argument will show that587

lim
ε→0

∫ 1

0

det(DTε(y,−t))
ε

Ψ(bε(y, t)) ρ1(y − εtn(y)) dtdHd−1(y)

=

∫
∂A

σ1,Ψ[y, n(y)]ρ1(y) dHd−1(y).

Since we know that limε→0
det(DTε(y,t))

ε = 1 and limε→0 ρ0(y+ εtn(y)) = ρ0(y) pointwise almost588

everywhere, the main difficulty lies in passing to the limit in the term involving Ψ. For this we shall589

first prove convergence of aε(y, t) to590

a(y, t) :=

∫
{z·n(y)≤−t}

K(y, z) dz

Since∇τ(y) = n(y) for any y ∈ ∂A, we have the expansion591

τ(y + ε(tn(y) + z)) = ε(t+ z · n(y)) +O(ε2).

It now follows from our assumptions on K that for all y ∈ ∂A and all t ∈ [0, 1]592

lim
ε→0

aε(y, t) = a(y, t).

If Ψ is continuous, the result now follows from dominated convergence. If Ψ is not continuous, then593

we must work harder.594

Let us first assume that K is C1 in both variables. Changing variables z′ = z + εtn(y) we can write595

aε(y, t) =

∫
{τ(y+εz′)≤0}

K(y + εtn(y), z′ − tn(y)) dz′,

and hence596

∂taε(y, t) =

∫
{τ(y+εz′)≤0}

ε∇yK(y + εtn(y), z′ − tn(y)) · n(y) dz′

−
∫
{τ(y+εz′)≤0}

∇z′K(y + εtn(y), z′ − tn(y)) · n(y) dz′.

Since the second term is the complete derivative with respect to z′, we can integrate by parts to obtain597

∂taε(y, t) =

∫
{τ(y+εz′)≤0}

ε∇yK
(
y + εtn(y), z′ − tn(y)

)
· n(y) dz′

−
∫
{τ(y+εz′)=0}

K
(
y + εtn(y), z′ − tn(y)

)
n(y) · ∇τ(y + εz′) dHd−1(z′)

Expanding ∇τ(y + εz) = n(y) +O(ε), we see that598

∂taε(y, t) = −
∫
{τ(y+ε(z+tn(y)))=0}

K(y + εtn(y), z) dHd−1(z) +O(ε),
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where we note that the constant in the big O bound does not depend on the differentiability of K with599

respect to the z variable. If we define f : [0, 1]→ R by setting600

f(t) = Hd−1
(
{|z| < 1} ∩ {z : τ(y + ε(z + tn(y)) = 0}

)
then f is uniformly bounded away from zero on any compact subset of [0, 1) and our assumptions on601

K give us602

−
∫
{τ(y+ε(z+tn(y)))=0}

K(y + εtn(y), z) dHd−1(z) ≤ −cf(t).

Thus, there exists some B > 0 such that for all y ∈ ∂A,603

∂taε(y, t) ≤ Bε− cf(t).

Hence, if we let L[a,b] denote the Lebesgue measure on the interval [a, b], then for any δ > 0604

sufficiently large, we have the following pushforward bound aε(y, ·)#L[0,1−δ] ≤ 1
cfδ−BεL[0,1]605

where fδ = inft∈[0,1−δ) f(t).606

When K is not differentiable with respect to z, we can first approximate K with a sequence of smooth607

kernels to obtain the same pushforward bound as above. Since the constant B does not depend on the608

differentiability of K with respect to z, we can pass to the limit to conclude that the pushforward609

bound610

aε(y, ·)#L[0,1−δ] ≤
1

cfδ −Bε
L[0,1]

holds whenever cfδ > Bε.611

Now let Ψn be a sequence of smooth functions converging to Ψ in L1([0, 1]) whose L∞ norms do612

not exceed ∥Ψ∥L∞([0,1]). Given any bounded function ϕ, and any δ > 0 such that cfδ > Bε we have,613

using a change of variables and the pushforward bound, that614 ∣∣∣∣∫
∂A

∫ 1

0

ϕ(t, y)
(
Ψ(aε(t, y))−Ψn(aε(t, y))

)
dtdHd−1(y)

∣∣∣∣
≤ ∥ϕ∥L∞(∂A×[0,1])

( 1

cfδ −Bε
∥Ψ−Ψn∥L1([0,1]) + 2δ ∥Ψ∥L∞([0,1])

)
Hd−1(∂A).

Hence,615

lim
δ→0

lim
n→∞

lim sup
ε→0

∣∣∣∣∫
∂A

∫ 1

0

ϕ(t, y)
(
Ψ(aε(t, y))−Ψn(aε(t, y))

)
dtdHd−1(y)

∣∣∣∣ = 0.

This estimate shows us that we can replace Ψ by a continuous approximation. As a result, we can616

simply argue as we did above in the case where Ψ was continuous.617

618

A.8 Examples for weak-* closed hypothesis classes619

In this section we continue the discussion in Example 1 and argue why the hypothesis classes620

considered there are indeed closed in the weak-* topology of L∞(X ; ν). In fact, all these classes are621

even weak-* compact.622

1. The class of all A-measurable functions u : X → [0, 1] is a bounded subset of L∞(X ; ν)623

and therefore, by the Banach–Alaoglu theorem, it is weak-* compact.624

2. To argue why neural networks with bounded parameters and continuous activation functions625

are weak-* compact, let (un)n∈N ⊂ H be a sequence. Thanks to finite-dimensional compact-626

ness a subsequence of the associated parameters converge to some limiting parameters. The627

continuity of the activations implies that the associated neural networks converge (uniformly628

in the space of continuous functions on the unit cube [−1, 1]d) to a limiting neural network629

u ∈ H. In particular, the convergence is true in the weak-* sense, which shows that H is630

weak-* compact.631
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3. Finally, we consider the class of hard linear classifiers of the form u(x) = θ(w · x + b)632

where we assume that the distributions ρ0, ρ1, and px are such that ν defined in (22) has a633

density with respect to the Lebesgue measure. A sufficient condition for this to hold is that634

ρ0, ρ1, and px have densities with respect to the Lebesgue measure.635

If (un)n∈N ⊂ H is a sequence of linear classifiers, thanks to finite-dimensional compactness636

a subsequence (which we do not relabel) of the associated parameters (wn, bn) will converge637

to w ∈ Rd with |w| = 1 and b ∈ [−∞,∞]. For simplicity we only consider the case where638

b ̸= ±∞. In this case one can define the half-spaces639

An :=
{
x ∈ Rd : wn · x+ b > 0

}
,

A :=
{
x ∈ Rd : w · x+ b > 0

}
,

where un and u are supported. Then for any ϕ ∈ L1(Rd; ν) it holds640 ∣∣∣∣∫
Rd

(un − u)ϕdν

∣∣∣∣ = ∣∣∣∣∫
An

ϕ dν −
∫
A

ϕ dν

∣∣∣∣ ≤ ∫
An△A

|ϕ| dν

where we used the symmetric difference An△A := (An \A) ∪ (A \An). Note that this641

set is either a double cone (if wn ̸= w) or a strip of width |bn − b| (if wn = w).642

Since ϕ ∈ L1(Rd; ν) and ν is a probability measure, for every ε > 0 there exists a compact643

set K ⊂ Rd such that
∫
Rd\K |ϕ| dν < ε. Using this, we can compute644 ∣∣∣∣∫

Rd

(un − u)ϕdν

∣∣∣∣ ≤ ∫
An△A

|ϕ| dν ≤
∫
(An△A)∩K

|ϕ| dν + ε.

Using that ν has a density with respect to the Lebesgue measure Ld and using also that645

Ld(An△A ∩K)→ 0 as n→∞, we obtain646

lim
n→∞

∣∣∣∣∫
Rd

(un − u)ϕ dν

∣∣∣∣ ≤ ε

and since ε > 0 was arbitrary we get647

lim
n→∞

∫
Rd

(un − u)ϕdν = 0,

which implies the weak-* convergence of un to u ∈ H and hence the weak-* compactness648

ofH.649

Note that for general measures ν the above argument fails. For instance,the sequence of650

linear classifiers un(x) = 1x1>−1/n has the natural limit u(x) = 1x1>0. However, if651

ν = δ0 then
∫
Rd un dν = 1 for all n ∈ N but

∫
Rd udν = 0, meaning that u is not the652

weak-* limit of un.653

B Computational aspects654

B.1 Pseudocode for geometric probabilistically robust learning655

In Algorithm 1 we provide a pseudocode for parametrized classifiers f ≡ fθ : X → Y based on656

stochastic gradient descent with batch size B. Furthermore, it involves a sample size of M samples657

from a distribution px around an input x ∈ X , a learning rate ηα for the inner optimization in CVaR,658

and a learning rate η for the parameter updates. The pseudocode is a straightforward generalization of659

Robey et al. [2022, Algorithm 1] and we implemented it in their code framework.1 The code which660

can be used to reproduce our results is part of the supplementary material of this paper.661

B.2 Training details662

Hyperparameter values specific to Algorithm 1 used in training are presented in Table 2. Follow-663

ing Robey et al. [2022], we use AdaDelta [Zeiler, 2012] for MNIST experiments and SGD with664

1https://github.com/arobey1/advbench
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Algorithm 1 Proposed algorithm for solving (20) for p ∈ (0, 1).

1: for minibatch (xj , yj)
B
j=1 do

2: for T steps do ▷ Approximate solution of inner problem
3: Draw x′

k ∼ pxj , k = 1, . . . ,M

4: gαj
← 1− 1

pM

M∑
k=1

1ℓ(fθ(x
′
k), yj) ≥ αj

5: αj ← αj − ηαgαj

6: end for

7: Sj ← αj +
1

pM

M∑
k=1

(ℓ(fθ(x
′
k), yj)− αj)+ ▷ Approximate value of CVaRp

8: if Sj > ℓ(fθ(xj), yj)) then ▷ If CVaRp kicks in

9: gj ←
1

pM

M∑
k=1

∇θ (ℓ(fθ(x
′
k), yj)− αj)+

10: else ▷ If it doesn’t
11: gj ← ∇θℓ(fθ(xj), yj)
12: end if

13: g ← 1

B

B∑
j=1

gj ▷ Compute full θ-gradient

14: v ← optimizer(g) ▷ AdaDelta or SGD(+M)
15: θ ← θ − ηv ▷ Update parameters
16: end for

momentum for CIFAR-10 experiments. The MNIST experiments use a CNN architecture with two665

convolutional layers (32 and 64 filters, size 3x3), two dropout layers (dropout probabilities 0.25, 0.5),666

and two fully connected layers (dimensions 9216 to 128 and 128 to 10). A ResNet-18 [He et al.,667

2016] is used in the CIFAR-10 experiments. The hyperparameter values used for these algorithms668

are contained in hparams_registry.py in the accompanying code.669

Table 2: Hyperparameters used for training. The probability distribution px is always taken to be the
uniform distribution over the ball Bε(x). Note that p is called beta in the code. For consistency we
always used the same hyperparameter values for the “Geometric” and “Original” versions.

Data p ε ηα M T

M
N

IS
T 0.01 0.3 0.1 20 5

0.1 0.3 1.0 20 5
0.3 0.3 1.0 20 5
0.5 0.3 1.0 20 5

C
IF

A
R

-1
0 0.01 8/255 0.1 20 5

0.1 8/255 1.0 20 5
0.3 8/255 1.0 20 5
0.5 8/255 1.0 20 5

B.3 Computational resources used670

We performed the majority of the prototyping and some experimentation on a LambdaLabs Vector671

workstation equipped with 3 NVIDIA A6000 GPUs. We estimate that we used approximately 500672

GPU-hours on this machine. We supplemented this with 550 GPU-hours of cloud compute—using673

the Lambda GPU cloud—predominately on instances equipped with a single A10 GPU.674
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