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Abstract

Although deep neural networks have achieved super-human performance on many
classification tasks, they often exhibit a worrying lack of robustness towards ad-
versarially generated examples. Thus, considerable effort has been invested into
reformulating Empirical Risk Minimization (ERM) into an adversarially robust
framework. Recently, attention has shifted towards approaches which interpolate
between the robustness offered by adversarial training and the higher clean accu-
racy and faster training times of ERM. In this paper, we take a fresh and geometric
view on one such method—Probabilistically Robust Learning (PRL) [Robey et al.,
2022]. We propose a geometric framework for understanding PRL, which allows
us to identify a subtle flaw in its original formulation and to introduce a family of
probabilistic nonlocal perimeter functionals to address this. We prove existence
of solutions using novel relaxation methods and study properties as well as local
limits of the introduced perimeters.

1 Introduction

The fragility of DNN-based classifiers in the face of adversarial examples [[Goodfellow et al., 2014},
Chen et al., 2017, |Qin et al ., [2019, (Cai et al., [2021]] and distributional shifts [[Quinonero Candela:
et al.,|2008, [Hendrycks et al.,|2021]] is by now nearly as familiar as their successes. In light of this,
a multitude of works (see propose replacing standard Empirical Risk Minimization
(ERM) [Vapnik, |1999] with a more robust alternative (see, e.g., Madry et al.|[2017]]). Unfortunately
there is no free lunch: robust classifiers frequently exhibit degraded performance on clean data and
significantly longer training times [Tsipras et al., 2018]]. Consequently, identifying frameworks which
balance performance and robustness is of pressing interest to the Machine Learning (ML) community,
and over the past several years many such frameworks have been proposed [Zhang et al.,|2019} Wang
et al., 2020, Robey et al.,|2022]]. Moreover, it is crucial that the mechanism by which such frameworks
balance these competing aims be understood.

Beginning with the Probabilistically Robust Learning (PRL) of Robey et al.|[2022] we analyze such
frameworks geometrically. This perspective reveals a subtle, paradoxical aspect of PRL: sometimes
the adversary modeled by this framework corrects, instead of exploits, the learner! Fortunately, the
geometric perspective we propose suggests a natural remedy which leads to an interpretation of the
corrected PRL as regularized ERM where a certain nonlocal notion of length (or perimeter) of the
decision boundary acts as a regularizer. We exemplify this correction in[Figure I] The interpretation
of PRL as perimeter-regularized ERM leads us to further generalizations, and we provide a novel
view of the Conditional Value at Risk (CVaR) relaxation of PRL proposed by Robey et al.|[2022]].
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(a)|Robey et al.|[2022]: The probabilistically non-
robust region (magnified) reduces the loss.

(b) Our model: The probabilistically non-robust
region is correctly identified and penalized.

Figure 1: Penalization effect of the original model [Robey et al.|[2022]] (left) and ours (right): The
solid black is the decision boundary of a non-robust classifier induced by the set A. Both models
penalize the numbers of green points in the yellow region and red points in the teal region. However,
the original model favors non-robust regions of A for which most perturbations correct the class. Our
model identifies this region as non-robust and penalizes it accordingly.

1.1 From empirical risk minimization to robustness

Given an input space X, an output space )/, a probability measure p € P(X x ), a loss function
£:Y x Y — R, and a hypothesis class H, the standard risk minimization problem is

Jnf B [E((2),9) M

For training classifiers which are robust against adversarial attacks |Goodfellow et al.|[2014]], Madry
et al. [2017]] suggested adversarial training:

inf B, )~ U(h(a"),y) | - 2
jnf Eoy)mn L,esgim) (h(") y)] @)

Here X is assumed to have the structure of a metric space and B, (z) for ¢ > 0 denotes the (open or
closed) ball of radius ¢ around .

The recent work by Robey et al.| [2022] offered an alternative to adversarial training in order to
reduce the (in general) large trade-off between accuracy and robustness inherent in[(2)] see Tsipras
et al.| [2018]], Robey et al.|[2022]] for discussion. Instead of requiring classifiers to be robust to all
available attacks around a point z—as enforced through the supremum in [2)—one may consider
a less stringent notion of robustness, only requiring classifiers to be robust to 100 x (1 — p)% of
possible attacks when attacks are drawn from a certain distribution p, centered at x. For this, the
authors introduced the so-called p-ess sup operator for p € [0, 1) and suggested replacing by

AL By |P-esssup ((h(z'),y)| , 3)
where {p, }.cx is a family of probability distributions. The prototypical example to keep in mind
for X = R? is the uniform distribution over the e-ball around z, i.e., p,. := Unif(B.(x)), which is
particularly relevant when dealing with adversarial attacks on image classifiers.

For a probability distribution p and a function f, the quantity p-esssup,., f (2') is defined as the
smallest value ¢ € R such that the probability of a randomly chosen point 2’ ~ p satisfying f(z') >t
is smaller than p, which reduces to the usual essential supremum of f with respect to p if p = 0:
p-esssup f(z') :=inf {t € R : Pyyp [f(2') > t] < p}.
x/~p

To better understand the model [(3)] we temporarily restrict our attention to binary classification (i.e.,
Y = {0,1}) using indicator functions of admissible sets (i.e., H := {14 : A € A}). Note that we
identify the two expressions 1 4 () = 1,c4. We focus on the 0-1 loss £(g, y) = 15, which equals
one if y # § and zero otherwise. In this scenario[(T)] reduces to the geometric problem

inf { Rta(A) = B g [ylocas + (1= y)Loeal |, )
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and minimizers are called Bayes classifiers. Similarly, adversarial training[(2)|can be rewritten as

,%relil { RadV(A) = ]E(zvy)’v# [yle(Ac)®€ + (1 - y)lzeA@g} }7 ©)
where for a set A € A its fattening by e-balls is defined as A%* := |, 4 B(x). Henceenforces
that all points with distance at most ¢ to the decision boundary be adversarially robust.

On the other hand the PRL model [(3)]reduces to

jlelil { Rprob(A) = E(x’y)w’u {ylPI/NM[I’GAC]>P + (1 — y)lpz/Npm[x/eA]>p} }a 6)
where A€ is replaced by a “probabilistic fattening”, i.e., one considers the set of all « for which the
probability that a neighboring point sampled from p, lies inside A is larger than p. To the best of our
knowledge, existence of solutions for [(6)] or even[(3)| has not been proved so far.

1.2 Geometric modification of probabilistically robust learning

To motivate our geometric modification of the PRL model from Robey et al.|[2022], it is insightful to
investigate the regularization effect that PRL has compared to standard risk minimization. We let
pi(®) := u(e x {i}) denote the non-normalized conditional distributions of the points with label 1.
Subtracting the standard risk in[(4)]from the one in[(6)]and disintegrating using py and p; we obtain

Rprob (A) - Rstd (A)

N
= /X 1p,, ., [w'ea>p — lzeadpo(z) + /X 1p,, , [weac>p — locac dp1 ().
We highlight that this expression does not constitute a non-negative functional of A. Hence the loss
function in [(6)|is not a regularized version of the standard risk [(4)] and in fact can be strictly smaller.
This observation reveals a subtle flaw in the approach of Robey et al.| [2022]: Points which lie in thin
or spike-like regions of A penetrating the other class and that are more likely to have the label zero
than the label one (meaning they lie in the set {py > p1}) yield negative contributions in and
are hence favored. Such a scenario is visualized on the left side of From an adversarial
perspective this means that points which are already misclassified are attacked nevertheless, which
can lead to the bizarre situation that the adversary helps the learner by putting these points in the
correct class with high probability, thereby reducing both adversarial robustness and clean accuracy.

We fix this by designing a probabilistically robust risk as non-negative regularization of the standard
risk. For this we define probabilistic perimeter functionals which only penalize points which are
classified correctly and admit a large portion of attacks around them, see the right side of

1.3 Our contributions
Our main contributions are the following:
* We address the geometric limitation of the model by |[Robey et al.|[2022]] by introducing a

family of perimeter regularizations.

* We prove existence of soft and hard binary classifiers under weak conditions on the family
of perimeters and hypothesis classes, using novel relaxation techniques.

* We investigate the relationship between the introduced family of perimeters and local
perimeters in Euclidean space for small adversarial budgets.

* We extend our models to encompass general loss functions and hypothesis classes. Our
numerical experiments demonstrate that our geometric correction can enhance the adversarial
robustness of probabilistically robust classifiers without compromising clean accuracy.

1.4 Related work

Adversarial training was developed by |Goodfellow et al.|[2014]], Madry et al.|[2017] as an approach
to train networks that are less sensitive to adversarial attacks. |[Shafahi et al. [2019]] reduced its
computational complexity by reusing gradients from the backpropagation when training neural
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networks. [Wong et al.|[2020] showed that training with noise perturbations followed by a single
signed gradient ascent (FGSM) step can be on par with adversarial training while being much
cheaper. This approach was picked up and improved upon by |Andriushchenko and Flammarion
[2020] based on gradient alignment. Different authors also investigated test-time robustification of
pretrained classifiers using randomized smoothing [[Cohen et al.,|2019] or geometric / gradient-based
approaches [[Schwinn et al.| 2021} 2022]]. While some of the previous models use a combination
of random perturbations and gradient-based adversarial attacks to robustify classifiers, [Robey et al.
[2022] proposed probabilistically robust learning, which is entirely based on random perturbations.
PRL aims to interpolate between clean and adversarial accuracy and enjoys the favorable sample
complexity of vanilla empirical risk minimization; see alsoRaman et al.| [2023]] for more insights on
this issue. Connections between adversarial training and local perimeter regularization of decision
boundaries were explored by |Garcia Trillos and Murray|[2022]] and then rigorously tied by Bungert
and Stinson| [2022]. Our work is in line with a series of papers [Pydi and Jog| 2021} |Awasthi et al.,
2021albl [Frank and Niles-Weed, 2022, |[Frank| 2022} Bungert et al., [2023| |Garcia Trillos et al., [2023]]
that explore the existence of solutions to adversarial training problems in different settings. These
existence proofs involve dealing with different kinds of measurability issues, depending on whether
open or closed balls B.(z) are used in the attack model. For open balls one can work with the
Borel o-algebra A = B(X) [Bungert et al.l 2023|], whereas closed balls require the use of the
universal o-algebra to make sure that A€ is measurable [Pydi and Jog, [2021}|Awasthi et al.,[2021alb].
Recently, these results were improved by |Garcia Trillos et al.| [2023]] who also proved for the case of
multi-class classification that even for the closed ball model Borel measurable classifiers (albeit not
necessarily indicator functions of measurable sets) exist and that for all but countably many values of
the adversarial budget ¢ > 0 the open and the closed ball models have the same minimal value.

2 Geometry and existence of probabilistically robust classifiers

2.1 The binary classification setting with 0-1 loss

In this section we shall introduce our baseline model, which is based on a suitable geometric
regularization of the standard risk. Later we shall embed it into a family of models. For clarity we
first discuss hard classifiers (characteristic functions of sets) and then soft classifiers (functions with
values in [0, 1]). The generalization to general models and loss functions is postponed to[Section 3|

We start by defining the probabilistic perimeter for p € [0, 1) of an admissible set A € A as follows:
ProbPer(A) := pp ({z € A® : Pyproyp, [z € A] > p})

8
+p1({z €A : Pyryp, [z € A% > p}). ®

ProbPer(A) penalizes correctly classified points = for which more than 100 x p % of their neighbors,
sampled from p,,, constitute an attack. The perimeter can be rewritten in integral form:

ProbPer(d) = [ Locave,.., (weasy ~ Lieado(a)
X
)
+/ lycacve,, , [oreac)>p — Llecac dp1(z)
X

[reac)>p dpi(z).  (10)

~Px

:/ 1w€A“1Pm/NFm[m’€A]>pde(x)+/ lycalp,
X X

The first reformulation [(9)] should be compared to [(7)} while the one in [(T0)| will be useful later
on. The use of the term perimeter to describe the functional ProbPer will become more apparent
shortly in[Section 2.4] and at this point it is worth highlighting that ProbPer is always a non-negative
quantity. This motivates introducing the following regularized risk

ProbR(A) := Rga(A) + ProbPer(A), Ae A (11)

Our first theorem states that ProbR equals the expected maximum of the sample-wise standard risk
and the probabilistically robust risk from [Robey et al|[2022], cf. [(4)]and [(6)]

Theorem 1. Forall A € A it holds that

PI‘ObR(A) = ]E(:c,y)fvu {max {1P1/sz[1A(’£/)#y]>p’ 11A(ac);ﬁy}] . (12)
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The interpretation of the statement of this theorem in the light of [Figure T]is clear: Only if a point
x is correctly classified—meaning 11 , (), = O—the probabilistically robust regularization kicks
in through the first term in the maximum. Points which are incorrectly classified will always be
penalized even if most attacks correct the label, i.e., if 1p_, (1, (2)y)>p = 0. Thus, minimizing

ProbR instead of Ry,;o1 corrects the pathology identified in

2.2 Extensions in the binary classification setting

Given the formula of ProbPer in|(10)| several natural extensions suggest themselves. E.g., one may
replace the indicator function 1,-,, with a different function ¥ (¢) to define other notions of perimeter

ProbPery (A) := / l1ocae W (Pyoyp, (@' € A]) dpo(x)
X

(13)
+/ 1,647 (Pyry, [/ € A°]) dpi(z)
x
as well as their corresponding probabilistically robust losses
ProbRy (A) := Rga(A) + ProbPery (A4). (14)

For ¥(t) := 14>, the perimeter ProbPery reduces to ProbPer and so do the associated risks. Of
particular interest is ¥,,(¢) := min {¢/p, 1}—the smallest concave function that lies above ¥ (t) =
1;-,—which will allow us to develop deep connections between the theoretical and computational
aspects of probabilistically robust learning. Our relaxation using the function ¥ is very similar to
the one by Raman et al|[2023]] who proved PAC learnability if ¥ is Lipschitz, see for
more details. In order to rigorously study ProbR.y we first make our setting precise.

Assumption 1. We let X' be a set and A C 2% be a o-algebra. We assume that:

o (X x Y, A® 201} 1) is a probability space;
* (X, A, p) is a probability space, where we define p(e) := p(e x {0,1});
* {pz}zecx is a family such that (X, A, p,) is a probability space for p-almost every = € X.

The following theorem establishes existence of minimizers of the risk ProbRy for concave and
non-decreasing functions W. This existence result is astonishing since the standard method of
calculus of variations is not directly applicable, with the reason being that problem [(I5)| does not
provide enough compactness for lower semicontinuity of the perimeter functional ProbPery. Instead,
the proof is based on convex relaxations to soft classifiers where we use a lower semicontinuous
surrogate functional and a total variation defined through a coarea formula which—if W is concave
and non-decreasing—lower-bounds the surrogate.

Theorem 2. Suppose VU : [0,1] — [0, 1] is concave and non-decreasing, and that
holds. Then, there exists a solution to the problem

f{lelil ProbRy(A). (15)

Furthermore, ProbR.y can also be interpreted as a sample-wise maximum, analogous to[Theorem 1
Theorem 3. Forall A € A and measurable ¥ : [0,1] — [0, 1] it holds

ProbRg(A) = Reta(A) + ProbPery (A)
= E(y)~p [max {‘I/ (Parop, [Lal(z’) #yl), 11A(x)¢y}} :

Note that for the non-concave function ¥(¢) = 1;-,, an existence proof along the lines of
is not available since certain relaxation techniques therein rely on concavity of ¥. However, in the
next section we shall provide an existence theorem for soft classifiers which is valid for very general
functions ¥, including U (¢) = 14>.
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2.3 Extension to soft classifiers

Another natural extension features “soft classifiers” instead of indicator functions of admissible
sets. Such classifiers are particularly relevant since they include the neural network based models
with Softmax activation in the last layer which are used in practice. We start by defining a suitable
regularization functional for soft classifiers. Given a .A-measurable function u : X — [0, 1] we define

Jy(u) = / (1 —u(x)) ¥ (Egrnp, [u(z")]) dpo(z)
* (16)

+ [ @)¥ By, 1= 0D dir @)

which satisfies Jg(14) = ProbPery (A) for every choice of ¥. Hence, it is a natural generalization
of the perimeter to soft classifiers and one could call Jy a total variation. However, it is neither
positively homogeneous nor convex so this name would be misleading. Instead, for the proof of
[Theorem 2| we shall construct a suitable total variation functional ProbTVy which upper-bounds Jy.

The next theorem asserts existence of soft classifiers for the regularized risk minimization using Jy for
very general functions ¥ and hypothesis classes #, requiring only that ¥ be lower semicontinuous.
For example, every continuous function and also U(¢) = 1;-,, for p € [0,1] satisfies this. The
existence theorem is valid for all hypotheses classes which are closed in a suitable sense.

Theorem 4. Under|Assumption 1| for every lower semicontinuous function W : [0,1] — [0, 1], and

whenever H is a weak-* closed hypothesis class of A-measurable functions u : X — [0,1] in the

sense of [Definition 1|in the appendix, there exists a solution to the problem
nf B y)mp [[u(@) = yl] + Ju ().

Example 1. Let us consider three interesting hypothesis classes of weak-* closed classifiers for

which applies. More detailed explanations are given in[Appendix A.§]

1. The simplest such class # is the class of all A-measurable soft classifiers u : X — [0, 1]
which could be referred to as agnostic classifiers since they are not parametrized.

2. An example with more practical relevance is the class of (feedforward or residual) neural
networks defined on the unit cube X' := [—1, 1]¢ with uniformly bounded parameters

H:= {CI>L o 0®y:[~1,1] = [0,1] : Dy(e) = A; @ +0y (W, & +b)),

(A, Wi, b)|| < C Vi e {1,...,L}},

where we assume that the activations o; : R — R are continuous. Note that the boundedness
of the weights cannot be relaxed. To see this, consider the (very simplistic) neural network
un(x) = tanh(w,x) for x € [-1,1] and w,, € R. For w, — oo it is easy to see that u,,
converges to u(x) := sign(z) which does not lie in the same hypothesis class.

3. Finally, one can also consider the class of hard linear classifiers on RY. Letting 6(¢) := 1;~¢
denote the Heaviside function, this class is given by

He={0(w-z+b) : we R, w| =1, b € [—00, 0]},

where one interprets u(z) ;== f(w -z +b)asu =1ifb=ocoandu = 0if b = —ooc. If the
distributions pg, p1, and p,, are sufficiently nice, then H has the desired closedness property.

2.4 Properties and asymptotics of ProbPery

In this section we shall discuss the interpretation of the functional ProbPery defined in|(13)|as a
perimeter. We do this in two ways.

First, we focus on the case where ¥ is concave and non-decreasing and prove that ProbPery is a
submodular functional. If, in addition, U is assumed to satisfy ¥(0) = 0, then ProbPerg (X) =
ProbPery (0) = 0. Following [Chambolle et al.| [2015]], for ¥ satisfying these properties one can
interpret ProbPery as a generalized perimeter, i.e., a functional that can be used to measure the
“size” of the boundary of a set. In we introduce ProbPery’s induced (generalized)
total variation and use it in the proof of note that, as discussed by Bungert et al.| [2023]],
the adversarial problem [(3) also induces a generalized perimeter with associated total variation.
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Theorem 5. If ¥(0) = 0, then ProbPery(X) = ProbPery(#) = 0. If ¥ is concave and non-

decreasing, then the functional ProbPery is submodular, meaning that
ProbPery (A U B) 4+ ProbPery (A N B) < ProbPery(A) + ProbPery(B) VA, B € A.

Example 2. For ¥(¢) = ¢ our perimeter reduces to the perimeter on the rcmdom walk space (X, p),
introduced by [Mazén et al.| [2020]: ProbPery (A fX\A J4 dpa dpo(x) + [, fX\A dp, dpy ().

Second, we consider more general ¥ and show that ProbPery is related to a standard local perimeter
when the adversarial budget approaches zero; for the case of adversarial training such a connection was
proved by Bungert and Stinson| [2022]] where the authors utilized the notion of Gamma-convergence
of functionals. We take a first step in this direction by proving that for sufficiently smooth sets the
probabilistic perimeter converges to a local one if the family of probability distributions p,. localizes
suitably. For example, one could think of p, := Unif(B.(z)), which converges to a point mass at
if € — 0. To make our setting precise, we pose the following general assumption:

Assumption 2. We assume that X = R4, ¥(0) = 0, ¥ is measurable and bounded, and p1, pp have
continuous densities with respect to the Lebesgue measure which we shall also denote as p1, pg.
Furthermore, we assume that there is ¢ > 0 and a measurable function K : X x R? — [0, c0) such
that for every z € R? we have the representation

/ J—
dp,(2') = e 7K (a:, z m) dz’.

3

We also assume that for every z € X we have K(z,e) € L'(R?) f]Rd (x,z)dz = 1, and
K(z,2) = 0if |z| > 1, and that for every z € R? the mapping = K(a: z) is C’1

Proposition 1. Under if A has a compact CY' boundary and either W is continuous
or there exists a constant ¢ > 0 such that K(x,z) > cforall x € X and |z| < 1, then

lim 1ProbPerq,(A) = /8A oo [, n(x)] po(z) + 01w [z, n(z)] pr(x) AR Hz)  (17)

e—=0 ¢

where we let n(z) denote the normal to OA at a point x € 0A, and for any vector v € R? we define

0% [z, v] = /01 v </{z-v§—t} K(z,2) dz) dt, o [z,v]:= /01 v </{z-v2t} K(x,2) dz> dt.

Remark 1. If K is radially symmetric and independent of = € X, then 09, = o, =: oy is justa
constant. E.g., for K (z, z) := |B1(0)| " 1).j<1 and W(t) = 1,5, it is trivial that for p = 0 we have
oy = 1. However, for p > % one easily sees oy = 0, hence the limiting perimeter equals zero and
there is no regularization effect. Using the function ¥(¢) = min {¢/p, 1} corrects this degeneracy.

Notably, for radially symmetric & the limiting perimeter in [(T7)| coincides, provided oy > 0, with
the one derived for adversarial training (problem[(3)) by Bungert and Stinson| [2022], although they
considered more general (potentially discontinuous) densities p;. In particular, our result indicates
that for very small adversarial budgets the regularization effect of both probabilistically robust
learning and adversarial training is dominated by the perimeter in[(T7)] While already
completes half of the proof (namely the limsup inequality) of Gamma-convergence of < ProbPery
to the limiting perimeter, the remaining liminf inequality is beyond the scope of this paper. Proving
that the convergence [(17)]does not only hold for sufficiently smooth sets as assumed in
but even in the sense of Gamma-convergence is an extremely important topic for future work since
only Gamma-convergence allows to deduce from the convergence of the perimeters that also the
solutions of probabilistically robust learning converge to certain regular Bayes classifiers as € — 0,
see Bungert and Stinson|[2022, Section 4.2].

3 General models

We now shift our attention to training general hypotheses h € H using general loss functions
¢:Y x Y — R. Motivated by and 3] we propose the following probabilistically robust
optimization problem:

inf B y)np {max {p esssup £(h(x ),y),f(h(x%y)H : (18)

heH T/ ~pg



250
251
252
253
254

255
256

257
258
259
260

261
262
263
264

265

267

268

269
270
271
272
273

274

275
276
277
278
279
280
281
282

284
285
286
287
288
289

291
292

In the mathematical finance or economics literature the p-ess sup operator is better known as the value
at risk (VaR) of a random variable at level p and it is notoriously hard to optimize. VaR is closely
related to other risk measures like, for instance, the conditional value at risk (CVaR) which is convex
and easier to optimize [Robey et al., 2022, |[Rockafellar et al., 2000]]. For a function f : ¥ — R and a
probability distribution p the CVaR at level p is defined as

Eormp, [(f(x/) - O‘)-f-]
’ )

It is easy to see that p-esssup,,., f(z’) < CVaR,(f;p). Using CVaR in place of the p- esssup
operator, a tractable version of [@]is

inf By max { CVaR,(E(h(s),y)ipo). (h(@),0) || 20)

19)

CVaR,(f;p) := ég%@l+

We emphasize that, if the loss function /(e, ) is convex in its first argument, then is a convex
function of the hypothesis . Furthermore, CVaR is positively homogeneous and hence also [20)]is
positively homogeneous in the loss function. So, taking the maximum of the samplewise CVaR and
standard risk is meaningful as both terms scale in the same way.

In the binary classification case we can prove the following interesting result that the CVaR relax-
ation corresponds precisely to using the risk ProbRy with a special piecewise linear and concave

function ¥ for which our theory from [Section 2.2]applies. In we prove a more general

version of the following statement, replacing the [e ], operation in|(19){with a Leaky ReLU.
Theorem 6. Let the function ¥, : [0,1] — [0, 1] be defined as W, (t) := min {t/p, 1}. Then it holds

CVaR,, (11A(-);ﬁy5p> = Uy, (Parp [1a(z") #y])

and as a consequence for all A € A:
E(x,y)N# [max { CVaRp(llA(.)?gy; pI)7 11A(I)?£’y}i| = PrObR\pP (A)

An immediate consequence of is that for binary classification [(20)|has a solution.
Corollary 1. Under[Assumption I|and in the setting of [Theorem 6| problem|(20)| has a solution.

In[Appendix A.5|we collect a few more observations concerning the CVaR, especially focussing on
its behavior for p > 1. These geometric properties, the homogeneity with respect to the loss function,
its potentially favorable sample complexity (see the discussion in[Appendix A.6), and its versatility
for algorithmic implementation make a notable generalization of the adversarial training problem
[@)] Notice that when p — 0 one formally recovers [(2)] from [20)]

4 Numerical results

We build upon the code of [Robey et al.|[2022]. The algorithmic realization of [(20)]is a straightforward
adaptation of their algorithm, which alternatingly minimizes the inner optimization problem that
defines CVaR and the outer optimization to find a suitable classifier, see [Algorithm I|in[Appendix B]
In our experiments, we conduct a comparative analysis between their algorithm (denoted as “Original”
in [Table 1)) and [Algorithm 1]in the appendix which is based on (denoted as “Geometric™).
We report the clean, and adversarial accuracies (subject to PGD attacks), as well as accuracies on
noise-augmented data and quantile accuracies for different values of p (see [Robey et al., |2022|
(6.1)] for the definition) averaged over three runs; see [Appendix B.2]for more training details. Our
experiments are conducted on MNIST and CIFAR-10 and to ensure a fair comparison we adhere to the
hyperparameter settings described by |[Robey et al.|[2022]], such that both the original and geometric
algorithms utilize the same set of hyperparameters for each specified value of p. The corresponding
results for several baseline algorithms including empirical risk minimization and adversarial training
can be found in their paper. We perform model selection based on the best clean validation accuracy.
The results in[Table 1|show that for moderate values of p our geometric modification induces higher
adversarial robustness than the original PRL without loss of clean accuracy (see, in particular, the
results for MNIST with p = 0.1 and for CIFAR-10 with p = 0.3). In the noise augmented metrics as
well as for extreme values of p close to 0 or equal to 0.5 both algorithms behave comparably. The

latter can be expected from out theoretical results, in particular |Proposition 1
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Note that the original or the geometric version of PRL should not be expected to match the adversarial
robustness of classifiers trained with PGD attacks [Madry et al.,|2017]] or other worst-case optimization
techniques. Instead, they shine with superior clean accuracies and easier training while maintaining
probabilistic and a certain degree of adversarial robustness, as also observed by |[Robey et al.[[2022].

We also remark that our sweep over different values of p confirms that increasing this parameter
interpolates between low and high clean accuracies. However, it should be noted that it does not
necessarily result in a direct interpolation between high and low adversarial or probabilistic accuracy,
as claimed by |[Robey et al.|[2022]]. These observations hold true for both the original algorithm and
our geometric modification, and despite utilizing their code and hyperparameters, we were unable to
reproduce the exact results reported by Robey et al.|[2022] Tables 1-4].

Table 1: Accuracies [%] of the geometric and original algorithm for different values of p.
Data p Algorithm Clean Adv  Aug Aug-0.1 Aug-0.05 Aug-0.01

0.01 Geometric  99.20 12.19 99.04 98.18 97.69 96.38
: Original 99.19 10.76 98.90 97.94 97.38 95.67
5‘) 0.1 Geometric  99.28 14.20 99.22 98.70 98.45 97.86
= : Original 9932 894 99.22 98.70 98.46 97.80
= 0.3 Geometric  99.29 3.02 99.21 98.76 98.53 97.95
: Original 99.27 3.02 99.22 98.77 98.55 98.01
05 Geometric  99.27 1.80 99.21 98.72 98.44 97.93
’ Original 99.26 1.68 99.19 98.72 98.47 97.80
001 Geometric  80.65 0.15 78.13 73.44 72.13 68.80
: Original 81.73 0.24 79.16 74.61 73.19 69.96
=)
- 0.1 Geometric  88.15 0.14 8596 82.55 81.46 78.81
% : Original 88.28 0.19 85.61 82.21 81.06 78.28
=
) 03 Geometric 90.43 11.80 88.70 85.17 83.93 80.93
’ Original 8997 7.20 88.62 85.07 83.75 80.87
05 Geometric  91.51 1.93 88.94 85.53 84.18 81.21
’ Original 90.74 1.99 88.94 85.54 84.35 81.57

5 Discussion and Conclusion

In this paper we considered probabilistically robust learning (PRL), originally proposed by |Robey:
et al.| [2022]. We corrected a subtle but crucial theoretical flaw in the original formulation by
introducing a regularization of the standard risk with nonlocal perimeters measuring the susceptibility
of the decision boundary towards high-probability adversarial attacks. For binary classification we
proved existence of optimal hard classifiers and of very general classes of soft classifiers including
neural networks. We also provided an asymptotic expansion for smooth decision boundaries to
show that for small adversarial budgets the probabilistic perimeters discussed in the paper induce the
same regularization effect as adversarial training. For general (not necessarily binary) problems we
showed that the natural loss function to choose is the sample-wise maximum of the standard loss and
conditional value at risk (CVaR).

One limitation of PRL is that it does not completely solve the accuracy vs. robustness trade-off,
which remains a challenging problem. Furthermore, while the formal limit of PRL as p — 0 is the
worst-case adversarial problem, the algorithms for solving PRL exhibit limitations for very small
values of p (in the computation of CVaR,). Still, the results for moderately large values of p are
encouraging and future work should focus on understanding of this trade-off better.

The rich mathematical theory developed in this paper opens up new avenues for research, such as the
explicit design of probabilistic regularizers for algorithms and exploring the variational convergence
of the probabilistic perimeter and its implications for adversarial robustness.
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w6 A Proofs and theoretical aspects

407 A.1 Reformulation of the loss functions

a0s In this section we will prove and[3] which state that the proposed loss functionals equal
409 the expected maximum of the sample-wise standard risk and the probabilistically robust risk from
410 [Robey et al.|[2022]]. Furthermore, we will prove which states that the CVaR relaxation of
411 the proposed regularization problem is equivalent to choosing a special piecewise linear function V.

s12 Proof of[Theorem 1) We use the integral representations of the standard risk [(4)] and the proposed
413 probabilistic perimeterto express the risk functional ProbR(A) as follows

ProbR(A) — /

1zeadpo() +/ Lreae dpi ()
X X

+ 1a:€A\/]P’ ’ [z'€Al>p — ]-J;EA dpo(.i?)

Eaag

+/ licacve,,
x

Ti~pr

[v'eAc)>p — Leeac dp1 ().

:/ ]-wEA\/IP’m/NpT[w’EA]>p dpo(z) + licacvp,, . [z'cAc]>p dp1(x)
x '

~bhax

:/ ma‘x{lpz/NpT[w'EA]>p’ll'EA} dpo(x)Jr/ max{le/NpT[z’eACbpvlreAc} dps (z),
X e X e

414 where we used the fact that the indicator function of the union of two sets equals the maximum of the
415 two indicator functions. Reverting the disintegration yields the claim:

PI‘ObR(A) = ]E(w,y)fvu [max {1Pm’~pw[1A($,)¢y}>p’ 11A(w)¢y}:| .

416 O

417 eorem l|is a special case of the more general [Theorem 3| which we prove in the following.

s18 Proof of[Theorem 3] The proof is similar to that of after noting that for ¥ : [0, 1] — [0, 1]
loea+ Locac¥ (Pymy, [@' € A]) = max{1lyca, ¥ (Pynp, [2' € A])}

419 which can easily be shown by checking cases. Then:

ProbR(A4) = /

X

l.eadpo(z) + /

1ocae dpr(a) —|—/ 1oeacU (P, [2' € A]) dpo(x)
X

x
+ [ Leea¥ Bay. [0 € A% di@)
= [ oca+ Loeac® By, [0 € A)] diu(o)
+ [ oese + Loca¥ (Pmy. o' € 4] dpr(@)
= [ mac {Lea ¥ (Bomy. (&' € 4D} dpofa)
+ /X max {1zcae, U (Pyp, 2 € A} dp1(z)
420 and the claim follows via reverting the disintegration as in the proof of O

421 Before proving we will prove the following stronger theorem.

12
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Theorem 7. For § > 0 define

oo [t t>0,
9a(t) := {Bt t <0,

and

Eyrop [8(/(5') = )]

CVaRy5(f;p) := inf a + )

The for any set A € A and for 5 < p < 1 it holds
CVaRy, 5 (1asp) = ¥y 5 (p(A))

where the concave and non-decreasing function ¥, 3 : [0,1] — [0, 00) is defined as ¥, g(t) =

min {t/p,1 - B/p(1 —1)}.

Proof. Suppose that f = 1 4 for some set A € A. In that case we can write

. A 1-p(A
CValty 5(/59) = inf @+ 91— ) 2 4 - 12,
Notice that the function
cla) = a+ o5t - )2 1) A aem

is continuous and piecewise linear with kinks at « = 0 and @ = 1. Moreover, since § < p < 1 it
holds ¢(a) > ((1) for & > 1 and {(c) > ¢(0) for & < 0 such that the minimum of ¢ is attained at
either « = 0 or a = 1. Thus

p4) . B

CValy 5(f:p) = min{c(0).¢(1)) = min { F2, 1 2 0y}

O

Proof of [Theorem 6] The first claim of [Theorem 6|is a special case of [Theorem 7]by choosing 3 = 0.
The second claim follows by combining the first one with [Theorem 3| O

A.2 Lower semicontinuity of the functional Jy

An essential tool for the proof and []is lower semicontinuity of the functional Jy,
(16)as

which we recall was defined in

Ty (u) = /X (1= (@) ¥ (Bymp, [u(")]) dpo(z) + / ()8 (Byrnp, [1 — u(@')]) dpi ()

X

for a measurable function u : X — [0, 1]. We have to construct a suitable topology for proving lower
semicontinuity of this functional (recall[Assumption I)) and define the probability measures

p = po+ p1, (21)
1 1
V() =5 [ pa()d@) + o), A€ 22)
X

The measure p equals the first marginal of ; and models the distribution of all data, irrespective of
the label. The first summand of the measure v is the convolution of p with the family of probability
measures {P, frex-

By construction we have the following two important absolute continuity properties which we shall
use without further reference:

v(A) =0 = [p(A) =0 and p,(A) =0 for p-almostevery x € X|,

p(A) =0 = [po(4) =0 and pi(4) =0].
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A simple example for X = R%is p:= £ SN | 4, and p, := Unif (B.(x)) in which case
1y
V=g ; (Umf(BE(mi)) + 5961.)
is a sum of absolutely continuous measures on ball centered at x; and the empirical measure of the
points z;.

The suitable topology in which we shall prove lower semicontinuity is the weak-* topology of
L>°(X;v) which is the dual space of L' (X;v) since v is a fortiori a o-finite measure [Dunford and
Schwartz, 1958, IV.8.3, Theorem 5].

Definition 1. Under |[Assumption 1| we say that a sequence of functions (uy,)nen C L (X;v)
. . * .
converges to u € L (X;v) in the weak-* sense (written u,, — ) as n — o0 if

lim uppdyv = / up dv Yo € LY(X;v). (23)
X X

n— oo

The absolute continuity properties of v allow us to deduce the following lemma

Lemma 1. Under|Assumption I|let (1, )nen C L2 (X; ) satisfy u,, —  in the sense of|Definition 1

Then it holds

lim Epop, [Un(2')] = By, [w(z)]  for p-almost every z € X.

n—oo

Proof. The Radon—-Nikodym theorem and weak-* convergence imply that for p-almost every x € X
it holds

. . . dp,
M Berpe bin @] = iy, [ una) el = Jig, [ g,

_ '%x’ vz = | ulz ) =E, u(z’
_/Xu(x)dV( ) dv(a!) /X (2') dpo(a’) = Eyrmp, [u(a’)]

(') dv(a)

since = € L1(X;v). O

Proposition 2 (Lower semicontinuity of Jy). Under let (un)nen C L°(X;v) be
a sequence of functions with values in [0, 1] satisfying u,, — u in the sense of ‘ and
let U : [0,1] — [0, 1] be lower semicontinuous. Then 0 < u < 1 holds v-almost everywhere and
furthermore

Jy(u) < liminf Jy (uy).

n—oo

Proof. First we show that 0 < u < 1. By the weak-* lower semicontinuity of the L>°-norm we get
u < 1 from the fact that 0 < u,, < 1. To show that v > 0 we assume that on a measurable set N with
v(N) > 0it holds u < 0. Then from the weak-* convergence and the fact that u,, > 0 we obtain

0>/ ulydv = lim uplydr >0
X

n— oo X
which is a contradiction. Therefore, v > 0 holds v-almost everywhere.

Since both terms in the definition of Jy are dealt with symmetrically, we assume without loss of
generality and for an easier notation that p; = 0 and rewrite Jy as

Jo(u) = /X (1= (@) ¥ (B, [u(")]) dpo(a).

Since ¥ is lower semicontinuous there exists a sequence of continuous functions ¥ : [0, 1] — [0, 1]
which converge to U in the pointwise sense as § — 0 and satisfy W5 < W. For instance, the functions

1
WUs(t) := inf U —|s—1 te 0,1
6() SEH[%))I] (S)+6|S |7 6[7]3
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do the job. [Lemma I]implies that By vy, [un(2)] = Eqrnp, [u(2)] for p-almost every x as n — oc.
Since U is continuous, we get Us (Eyrmyp,, [Un(2’)]) = U5 (Egrmp, [u(z')]) for p-almost every x as
n — oo. Since 0 < u,, < 1 and hence s (Ey/~yp, [u,(2")]) is uniformly bounded, the convergence
even holds true in L (X’; p) and therefore

lim [ (1= un(2)) Us (Barmp, [un(2)]) dpo(z)

n—oo X

(24)
- /X (1= u(2)) W5 (Eqrnp, [u(z")]) dpo(z).

Next we would like to use the Fatou lemma to take the limit as 6 — 0 on both sides. For this we
notice that the sequence of functions

fo(@) = (1 = un(2)) Vs (Byrnp, [un(2’)])

converges to (1 — up(x)) ¥ (Egrop, [un(x')]) pointwise as § — 0 and satisfies the bounds f5 > 0.
Thanks to the non-negativity we can apply the standard Fatou lemma. Using U5 < W and [24)| we get

Jo(u) = /X (1 = () ¥ (Barp, [u(z")]) dpo()

< lim inf/X (1 —u(z)) ¥s (Eyrmyp, [u(z)]) dpo(x)

6—0

= liminf lim (1 = up(2) Us (Eyrop,, [un(z")]) dpo(x)

d—0 n—oo Jy

<liminf [ (1= up(@)) ¥ (Epp, [un(z")]) dpo(z)

n—oo X

= hnrglogf J (up).

A.3 The geometric problem for concave ¥

We remind the reader of the definition of the following perimeter functional:

ProbPery (A) := /

1pcae ¥ (Pyrp, (2 € A]) dpo(x) +/ 1,47 (Pyry, [/ € A%]) dpi ().
x

x
We first show that ProbPery is a submodular function when W is a concave non-decreasing function.
For this, we first need a lemma.

Lemma 2. Let U : [0,00) — R be a concave and non-decreasing function, and let 0 < a < b <
b < a' be real numbers witha +a’ < b+ V. Then

U(a)+¥(a') < U(b) + ¥(V).

Proof. Leta,a’,b,b be as stated. Since W is concave and finite, it satisfies the fundamental theorem
of calculus and thus it is possible to write

for a function ¥’ that is non-increasing and non-negative. It follows that

’
a

b
U(b) — ¥(a) = / U'(r)ydr > (b—a)¥'(b) > (a' —b')V'(b) > /b V' (r)ydr = ¥(a') — ¥(V),

/

which is precisely what we wanted to show. O

We are ready to prove[l'heorem
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Proof of[Theorem 3] First, the fact that ProbPery (X') = ProbPery () = 0 if ¥(0) = 0 is easy to
see from the definition of ProbPery. Second, we trivially have

]P)x’wpm [.’E’ cAU B] + ]P)x’wpm [.’E’ c AN B] < ]P)z/pr [ZL'/ S A] + ]Pm’wpm [.’E’ S B} .
Define

a'=Pyp, [ € AUB], b =Py, [ € B|
b =Py, [ € 4], a =Py, [2' € AN B];

without the loss of generality we can assume that b and b’ defined above satisfy b < b’, for otherwise
we can simply swap these labels. We can then use[CLemma 2]to conclude that:

\\ (]P)I’NPI [SL'/ c AU BD + v (Pm’wpz [LUI € AN B])

25
< U (Parnp, 7' € A + 9 (Parnp, [+ € B) @
The submodularity follows directly once we have verified the following pointwise identity:
1ZE€(AUB)C\I’ (Px/wpm [1‘/ cAU BD + 1ZE(AQB)CW (Pw/wpm [1‘/ cAN B]) 26)

< locae¥ (Pony, [2 € A]) + Loepe ¥ (Pyrp, [/ € B]).

To do this we consider two complementary cases:

Casel,z € (AUB)® This s equivalent to x € A°N B°. Furthermore, since (AUB)¢ C (ANB)°
we also have that © € (A N B)°. Hence, all indicator functions in take the value one and is
the same as[(25)] which we have already verified.

Case 2,z € AU B: In this case the first indicator function on the left hand side of [26)]is zero.

Case 2.1,z € AN B: In this subcase all indicator functions are equal to zero and the inequality is
trivially satisfied.

Case2.2,z € AUB\(ANDB): Without loss of generality we can assume that x € A\ B = AN B°.
In this case only the second indicator function on the left hand side and the second one on the right
hand side of [(26)] take the value one and the inequality reduces to the trivial inequality

U (Pyiy, [¢ € ANB]) < O (Pyrny, [2' € B])

which is true since ¥ is non-decreasing and AN B C B. O

Motivated by we define the associated total variation of a non-negative measurable
function u : X — [0, 00) in terms of a coarea formula as

ProbTVy(u) := /OO ProbPerg ({u > t}) dt. (27)
0

By definition ProbTVy is positively homogeneous. It also satisfies ProbTVy(14) =
ProbPery (A) = Jg(14) but the functionals ProbTVy and Jg do not coincide for general functions
u: X — [0, 1]. Instead it holds ProbT Vg (u) < Jg(u), as we prove in the following proposition.

Proposition 3. If U is concave and non-decreasing it holds
ProbTVyg(u) < Jy(u).

Furthermore, for every sequence of measurable sets (A )neny C X such that 14, converges in the
weak-* sense to a function u € L™ (X;v) as n — oo it holds

ProbTVyg(u) < liminf ProbPery(Ay,).

n— oo
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Proof. As in the proof of we assume without loss of generality that p; = 0. We
compute

1
ProbTVyg(u) = / ProbPerg ({u > t}) dt

— [ [ turee¥ B, @) 2 1) dtdpo(a)
X JO

:/ / Lu(o)<t® (Borp, [L{uzep(2")]) dtdpo()
X Jo

- / / U By, [1puzry (1)) dt dpo(). (28)
X Ju(z)

Since W is concave and non-decreasing, we get from[(28)]and Jensen’s inequality that

ProbTVyg(u) < /X (1—wu(x)) ¥ (1—1u(:lc) /( )]Ex/pr [1{usey ()] dt) dpo(x)

1 ! ,
= /X (1 —u(z)) ¥ (1_u(x)Ew/~pz [/u(z) Lzt (@ )dt]> dpo(x)

= [0l ¥ (B )~ u(o)]) dpol)

1 !
< [ =) ¥ (s, )0 = u(@)]) dio(e)

- /X (1= (@) O Bgrmp, [u(a)]) dpoa) = Ju (u).

The proof of the second statement of the proposition follows by combining the first one with
applied to the sequence u,, := 14, , which satisfies Jy (u,) = ProbPery(4,). O

n?

A remarkable consequence of this lower bound and the lower semicontinuity of Jy from [Proposition 2]
is the following lower semicontinuity of ProbTVy for sequences of characteristic functions. For

this sake, let (4,) C A be a sequence of sets such that 14, — u in L>(X’; v). Then it holds
ProbTVy(u) < Jg(u) < liminf Jg (14, ) = liminf ProbPery (A4,,)
n— oo n—oo
= liminf ProbTVy(14,).
n—oo

Remarkably, this observation suffices to prove although there is no proof for lower
semicontinuity of ProbTVy along general sequences of functions.
Proof of[Theorem 2} Let (A, )nen C A be a minimizing sequence such that
lim Rgta(An) + ProbPery (A,) = fi‘n& Rsta(A) + ProbPery (A). (29)
n— o0 c

The Banach-Alaoglu theorem implies that there exists u € L*°(X;v) such that 14, 5w oas
n — o0o. The standard risk is trivially lower semicontinuous because p < v. Combining this with

and 3| and using[(29)] we obtain
E(ay)op [[u(@) = y[] + ProbTVe (u) < E(gy)mp [[u(@) — yl] + Ju(u)
< 11m101<1>fRstd( n)+ Ju(la,)
(A
)

n) + ProbPery (4;,)
+ ProbPery (A).

= liminf Rgiq
n—oo

— inf Rea(A
Jnf, Rotal
For t € [0, 1] we define A; := {u > ¢}. Trivially we have
}elit Rsta(A) + ProbPery (A) < Rgta(A:) + ProbPery (4;) Vt € [0,1].
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If this inequality were strict for a set of ¢ € [0, 1] with positive Lebesgue measure, integration and the
coarea formula would give

1
jrelil Rsta(A) + ProbPerg (A4) < / Rgta(At) + ProbPery (A;) dt
0
= Ez,y)~p [[u(z) = y[] + ProbTVy (u)
<
< Arel& Rsta(A) + ProbPerg (A),

which is a contradiction. Hence, we have proved that
fi‘n& Rsta(A) + ProbPery (A) = Rgta(At) + ProbPery (A;)
€

for Lebesgue almost every ¢ € [0, 1] and any such set A; is a minimizer. O

A.4 The soft classifier problems

The main issue with proving existence of solution for the original problem (i.e., ¥(t) = 1, is not
concave) is that

ProbTVy(u) £ Jg(u)

due to a failure of Jensen’s inequality in this case. The validity of this inequality was central for the
relaxation arguments in the proofs of [Proposition 3|and|{Theorem 2|

However, if we already consider the relaxed problem, optimizing over soft classifiers instead of
characteristic functions and regularizing with Jg, we obtain an existence proof straightforwardly for
very general functions W.

Proof of[Theorem 4] The proof works precisely as the proof of replacing the minimizing
sequence 14 by functions u,, € L*(X’;v) which satisfy 0 < u,, < 1, and utilizing the weak-*

closedness of H as well as the lower semicontinuity of Jy from [Proposition 2] O

A.5 CVaR relaxation: Existence for hard classifiers and some considerations

Proof of[Corollary 1} Given the reformulation from the existence result follows from
[ITheorem 2 O

We remark that if p was allowed to be larger than 1, then CVaR,(f;p) = —occ. Indeed, if p > 1,
the function ¢ defined in the proof of would satisfy lim,_, o ((a) = —oc. This insight
allows us to show that the method of |[Robey et al.|[2022] becomes meaningless for values p > 1,
despite the authors using values bigger than one according to [Robey et al., 2022, Appendix C.4]. In
contrast, our method just reduces to empirical risk minimization in this case.

Proposition 4. For a non-negative function f : X — [0, 0o] and for p > 1 it holds

p-esssup f(z') =inf {t >0 : Py [f(2') > 1] <p} = -0

x/~p
Epn N —

Proof. For p > 1 (in fact, even for p = 1) it holds for any ¢ € R that Py, [f(2') > ] <1 < p.
Hence, the infimum over such ¢ equals —oo.

Similarly, for p > 1 and « < 0, we have, thanks to the non-negativity of f, that

Euimp, |(f(2) — 1 1
p B U0 _ (Dol 0,
p D p
If p > 1, the factor which multiplies « is positive and sending o — —oo shows the infimum equals

—00. O

Corollary 2. Consequently, for p > 1 and non-negative loss functions ((e,e) the objective in
(respectively, its CVaR relaxation [[Robey et al.| 2022, (P-CVaR)]) equals —cc. In contrast, the
proposed objective and its CVaR relaxation equal the standard risk B, ,y~,, [((h(x),y)] in

this case.
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A.6 PAC learnability for Lipschitz continuous ¥

Raman et al.|[2023]] considered PAC learnability of probabilistically robust learning models which
depend on the probabilistic margin |Eysp [u(z')] — y| of won (z,y) ~ p. More precisely (and in
our notation) they consider the problem

i%g?f-l E(zy)~p [P (B mp, [u(fl)] -yl (30)

Notably, for ¥(t) = 1, this reduces precisely to the probabilistically robust learning model
by [Robey et al.|[2022] in case of using the loss function £(y, §) = |y — §|. However, they prove
hardness results for such functions ¥ and also prove superior learnability properties if function ¥ is
Lipschitz continuous. We expect that analogous statements carry over to the problems considered in
and []if one restricts U to be Lipschitz. An interesting question for future investigation
is whether concavity of ¥ (which is needed for the first theorem) would suffice to guarantee PAC
learnability.

A.7 Pointwise consistency of the perimeter

Proof of[Proposition I| UndefAssumption 2] a simple change of variables shows
ProbPerg (A) = / v </ 1a(z+e2)K(x,2) dz) po(z) dz
c Rd

+/A\I/ (/Rd Lae(z + e2)K (z, 2) dz) () e

Let 7 : RY — R be the signed distance function to A such that 7(z) < 0 for z € A. Using 7, we
can rewrite the previous line as

ProbPery (A) = / U (/ K(x,z) dz) po(x)dx
{r(=)=>0} {r(z+e2)<0}

+/ U </ K(x,z2) dz) p1(z) da.
{r(z)<0} {r(z+e2)>0}

Recalling that K (x, z) = 0 whenever |z| > 1, the previous line is equal to

ProbPerg (A4) = / v / K(z,2z)dz | po(z)dx
{0<r(z)<e} {r(z+ez)<0}

Jr/ U (/ K(x,z)dz) p1(x) de.
{—e<r(2)<0} {r(z+e2)>0}

Since A has C'>! boundary, there exists some g > 0 such that 7 is C''>! in an ( neighborhood of O A.
Furthermore, for any € < &y the mapping 7% : 0A x [—~1,1] — {x € R? : 7(x) € [—¢,¢]} given by
T.(y,t) = y + etn(y) is a bijection and lim._,o £ det(DT.) = 1 uniformly on A x [—1,1]. Using
this change of variables, we may write

/ v </ K(z,z2) dz) po(x) dx
{o<r(z)<e} {r(z+e2)<0}

= / / det(DTe(y, )W (ac(y, 1)) po(y + etn(y)) dt dH " (y)
0A JO

and

/ v / K(z,2z)dz | p1(z)dz
{—e<r(x)<0} {r(z+e2)>0}

- / / Aet(DT(y, —t)¥ (be(y,1)) pi1 (y — ctn(y)) dt dH (y),
0A JO
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where we abbreviate

ac(y ) = / K(y + etn(y), 2) dz
{1 (y+e(tn(y)+2z))<0}

ba(yat) = K(y*Etn(y)vz) dz

/{T(y+€(ztn(y)))>0}

In the rest of what follows, we will focus on proving that

lim / /1 W\y (ac(y,t)) po(y + etn(y)) dt de—1<y)
8A JO €

e—0

— [ analynlon) a1 o),
A
An identical argument will show that

s /1 ATl 21 (be(y, 1)) pr(y — etn(y)) At dH ' (y)
0

e—0 £
:/ o1wly, n(y)lp1(y) AH " (y).
0A

Since we know that lim._,¢ det(DTe(y:t) _ 1 apd lim._,0 po(y + etn(y)) = po(y) pointwise almost

everywhere, the main difficulty lies in passing to the limit in the term involving W. For this we shall
first prove convergence of a.(y, t) to

a(y,t) = / K(y,z)dz
Zn(y)<—t}

Since V7(y) = n(y) for any y € 9A, we have the expansion
T(y +e(tnly) + 2)) = (t + z - n(y)) + O(e?).
It now follows from our assumptions on K that for all y € A and all ¢ € [0, 1]
lim ac(y, t) = aly, ).

If W is continuous, the result now follows from dominated convergence. If ¥ is not continuous, then
we must work harder.

Let us first assume that K is C'* in both variables. Changing variables 2’ = z + etn(y) we can write

o) = [ K(y+etn(y), ' — tn(y)) 42/,
{r(y+ez’)<0}
and hence

Drac(y,1) = / eV, K(y + tn(y), 2 — tn(y)) - nly) d’
{7(y+e2")<0}

-/ VoK (y + tnly), 2 — tn(y)) - nly) d='.
{7 (y+e2’)<0}
Since the second term is the complete derivative with respect to 2/, we can integrate by parts to obtain

Drac(y,t) = / eV, K (y + ctn(y), 2 — tn(y)) - n(y) d=’
{r(y+ez’)<0}

- / K(y+etn(y), 2’ —tn(y))n(y) - Vr(y +e2’) dH 1 (2))
{r(y+ez’)=0}
Expanding V7(y + €z) = n(y) + O(e), we see that

atas(yat) = 7/ K(y+5tn(y),z) d%dil(’z) +O(€)a
{7 (y+e(z+in(y)))=0}
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where we note that the constant in the big O bound does not depend on the differentiability of K with
respect to the z variable. If we define f : [0, 1] — R by setting

FO) =H"TH ({2l < 130 {z = 7(y +e(z +tn(y)) = 0})

then f is uniformly bounded away from zero on any compact subset of [0, 1) and our assumptions on
K give us

_ / Ky + etn(y), 2) dH1(2) < —cf (1),

{7 (y+e(z+tn(y)))=0}
Thus, there exists some B > 0 such that for all y € A,

drac(y,t) < Be — cf ().

Hence, if we let £, denote the Lebesgue measure on the interval [a, b], then for any § > 0
sufficiently .large, we have the following pushforward bound a.(y, ~)#£[0,1_5] < cfg%BsL[Ovl]
where fs5 = infic(o,1-5) f(f)-
When K is not differentiable with respect to z, we can first approximate K with a sequence of smooth
kernels to obtain the same pushforward bound as above. Since the constant B does not depend on the
differentiability of K with respect to z, we can pass to the limit to conclude that the pushforward
bound

ac(y, " )#Lo,1-5 < L1

Cf5 — Be
holds whenever cfs > Be.

Now let ¥,, be a sequence of smooth functions converging to ¥ in L'(]0, 1]) whose L*> norms do
not exceed ||| ; «j,1)- Given any bounded function ¢, and any § > 0 such that cf5 > Be we have,

using a change of variables and the pushforward bound, that

[ [ ot (aete. ) wntacten)) dth“(y)]
OA JO

1 _
SNl oo (9ax0,11) (m W =Wl Ly go,17) + 26 1] oo (0,17 )Hd '(04).

Hence,
1
i iy s | [ [ 6(0,5) (9(0c(6.) = 00 ac(t) ar a0 .
d—0n—o0 e—0 0A Jo
This estimate shows us that we can replace ¥ by a continuous approximation. As a result, we can

simply argue as we did above in the case where ¥ was continuous.

O

A.8 Examples for weak-* closed hypothesis classes

In this section we continue the discussion in and argue why the hypothesis classes
considered there are indeed closed in the weak-* topology of L (X'; v). In fact, all these classes are
even weak-* compact.

1. The class of all .A-measurable functions u : X — [0, 1] is a bounded subset of L>°(X; v/)
and therefore, by the Banach—Alaoglu theorem, it is weak-* compact.

2. To argue why neural networks with bounded parameters and continuous activation functions
are weak-* compact, let (u,, ),en C H be a sequence. Thanks to finite-dimensional compact-
ness a subsequence of the associated parameters converge to some limiting parameters. The
continuity of the activations implies that the associated neural networks converge (uniformly
in the space of continuous functions on the unit cube [—1, 1]%) to a limiting neural network
u € H. In particular, the convergence is true in the weak-* sense, which shows that H is
weak-* compact.
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3. Finally, we consider the class of hard linear classifiers of the form u(z) = 6(w - = 4+ b)
where we assume that the distributions pg, p1, and p, are such that v defined in[(22)|has a
density with respect to the Lebesgue measure. A sufficient condition for this to hold is that
Po, P1, and p,. have densities with respect to the Lebesgue measure.

If (un)neny C H is a sequence of linear classifiers, thanks to finite-dimensional compactness
a subsequence (which we do not relabel) of the associated parameters (w,,, b,,) will converge
tow € R? with |w| = 1 and b € [—o0, oc]. For simplicity we only consider the case where
b # too. In this case one can define the half-spaces

A, ={zeR: w, -2 +b>0},
A::{xERd:w-x+b>O},

where u,, and u are supported. Then for any ¢ € L'(R%; v) it holds

/ qbduf/gbdy _/AHAAMS dv

where we used the symmetric difference A, AA := (4, \ A) U (A4 \ 4,,). Note that this
set is either a double cone (if w,, # w) or a strip of Wldth |by, — 0| (if w,, = w).

( w)pdv| =

Since ¢ € L'(R%; v) and v is a probability measure, for every £ > 0 there exists a compact
set K C R? such that fRd\K |¢| dv < e. Using this, we can compute

’/ (upn, — u)pdv S/ |o| dv S/ |p| dv + €.
Rd AnAA (A AANK

Using that v has a density with respect to the Lebesgue measure £? and using also that
LYA,ANANK) — 0asn — oo, we obtain

/ (up —u)pdr| <e
Rd

lim (up, —u)pdv =0,

n—oo Rd

lim
n— o0

and since € > 0 was arbitrary we get

which implies the weak-* convergence of u,, to u € H and hence the weak-* compactness
of H.

Note that for general measures v the above argument fails. For instance,the sequence of
linear classifiers u,(x) = 1,,~_1/, has the natural limit u(z) = 1, 0. However, if
v = & then [, u,dv = 1foralln € Nbut [, udv = 0, meaning that u is not the
weak-* limit of u,,.

B Computational aspects

B.1 Pseudocode for geometric probabilistically robust learning

In we provide a pseudocode for parametrized classifiers f = fy : X — ) based on
stochastic gradient descent with batch size B. Furthermore, it involves a sample size of M samples
from a distribution p, around an input x € X, a learning rate 7, for the inner optimization in CVaR,
and a learning rate 7 for the parameter updates. The pseudocode is a straightforward generalization of
Robey et al.|[2022] Algorithm 1] and we implemented it in their code frameworkﬂ The code which
can be used to reproduce our results is part of the supplementary material of this paper.

B.2 Training details

Hyperparameter values specific to used in training are presented in Follow-
ing Robey et al|[2022], we use AdaDelta [Zeiler, [2012]] for MNIST experiments and SGD with

"https://github.com/arobeyl/advbench
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Algorithm 1 Proposed algorithm for solving forp € (0,1).

1: for minibatch (z;,y;)%, do

2: for T steps do > Approximate solution of inner problem
3: Draw zj, ~ po,, k=1,...,M
1

4: w, —1—— 1

Jo pM kZ:I U(folx)), y5) >
5: Qj — O — Nafo,
6: end for

;M
7: Sj o+ oM Z (C(fo(xh) y5) — ), > Approximate value of CVaR,,
8: if S; > E(fg(xj) yj)) then > If CVaR,, kicks in
9: ZV@ (folx}),y5) — aj),
10: else > If it doesn’t
11 g9; < Vol(fo(x;), y;)
12: end if
1B

13: g B Zl gj > Compute full 6-gradient
14: v < optimizer(g) > AdaDelta or SGD(+M)
15: 0<—6—nv > Update parameters
16: end for

momentum for CIFAR-10 experiments. The MNIST experiments use a CNN architecture with two
convolutional layers (32 and 64 filters, size 3x3), two dropout layers (dropout probabilities 0.25, 0.5),
and two fully connected layers (dimensions 9216 to 128 and 128 to 10). A ResNet-18 [He et al.,
2016] is used in the CIFAR-10 experiments. The hyperparameter values used for these algorithms
are contained in hparams_registry.py in the accompanying code.

Table 2: Hyperparameters used for training. The probability distribution p, is always taken to be the
uniform distribution over the ball B.(x). Note that p is called beta in the code. For consistency we
always used the same hyperparameter values for the “Geometric” and “Original” versions.

Data »p 5 Nae M T

0.01 0.3 0.1 20
0.1 03 1.0 20
03 03 1.0 20
0.5 03 1.0 20

0.0l 8/255 0.1 20
0.1 8/255 1.0 20
03 8/255 1.0 20
0.5 8/255 1.0 20

CL Ot Ot Ot Ot Ot Ot Ot

CIFAR-10| MNIST

B.3 Computational resources used

We performed the majority of the prototyping and some experimentation on a LambdalL.abs Vector
workstation equipped with 3 NVIDIA A6000 GPUs. We estimate that we used approximately 500
GPU-hours on this machine. We supplemented this with 550 GPU-hours of cloud compute—using
the Lambda GPU cloud—predominately on instances equipped with a single A10 GPU.
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