
Appendix for
Status-Quo Policy Gradient in Multi-agent Reinforcement Learning

A Description of Environments Used for Dynamic Social Dilemmas

The three matrix games tested in the paper are canonical games that appear in the sequential social
dilemma literature. Hence, we selected these to demonstrate the effectiveness of SQ policy gradient
approach. We have not tested our approach beyond the social dilemma setting and hence limit our
claims to the same.

A.1 Coin Game

Figure 7 illustrates the agents playing the Coin Game. The agents, along with a Blue or Red coin,
appear at random positions in a 3× 3 grid. An agent observes the complete 3× 3 grid as input and
can move either left, right, up, or down. When an agent moves into a cell with a coin, it picks the
coin, and a new instance of the game begins where the agent remains at their current positions, but
a Red/Blue coin randomly appears in one of the empty cells. If the Red agent picks the Red coin,
it gets a reward of +1, and the Blue agent gets no reward. If the Red agent picks the Blue coin, it
gets a reward of +1, and the Blue agent gets a reward of −2. The Blue agent’s reward structure is
symmetric to that of the Red agent.

LEFT / RIGHT /
UP / DOWN

LEFT / RIGHT /
UP / DOWN

Figure 7: Illustration of two agents (Red and Blue)
playing the dynamic game Coin Game

HARE HARE

STAG

Figure 8: Illustration of two agents (Red and
Blue) playing the dynamic game Stag-Hunt
Game

A.2 Stag-Hunt

Figure 8 shows the illustration of two agents (Red and Blue) playing the visual Stag Hunt game. The
STAG represents the maximum reward the agents can achieve with HARE in the center of the figure.
An agent observes the full 7× 7 grid as input and can freely move across the grid in only the empty
cells, denoted by white (yellow cells denote walls that restrict the movement). Each agent can either
pick the STAG individually to obtain a reward of +4, or coordinate with the other agent to capture
the HARE and obtain a better reward of +25.

B GameDistill: Oracles, Network Architecture and pseudo-code

B.1 Oracles from GameDistill

The oracles are important in games with visual input. The agent uses these oracles to reduce the
games to their matrix equivalents. While we call the two oracles learned from GameDistill as
Cooperation and Defection oracles, we do not need the notion of cooperation or defection, nor do we
need to explicitly label these clusters as ‘cooperation’ or ‘defection’ to learn these oracles. These
oracles are learned by clustering the outcomes of random play into two distinct clusters. In social
dilemmas, these two distinct clusters represent cooperation and defection outcomes. Hence, we use
the names ‘Cooperation’ and ‘Defection’ oracles for the oracles learned from these clusters. It is

14

important to mention that SQLoss (without oracles) achieves high-degree of cooperation in matrix
games.

Algorithm 1 Pseduo-code for GameDistill

1: Input: Game Environment env, Agents agents, Clustering Technique AggClustering
2: for agent in agents do
3: t_data = collect_data(env, agent) // Collect trajectory data
4: rewardPredNet = createNetwork()
5: train_network(rewardPredNet, t_data)
6: feats = get_features(rewardPredNet, t_data) // Extract shared features & cluster
7: clus_ids = AggClustering(n = 2).fit(feats)
8: oracle_nets = [] // Train oracles corresponding to each cluster
9: for k in range(2) do

10: index = np.where(clus_ids == k)
11: cluster_data = t_data[index]
12: oracle_nets[k] = create_oracle_net(env)
13: train_oracle(oracle_nets[k], cluster_data)
14: end for
15: end for
16: Output: Trained oracle networks oracle_nets

In visual-input games with complex actions (such as up, down, left, right, eat-coin, etc.), it is not clear
which action or sequence of actions constitute cooperation or defection. In such games, the role of the
cooperation oracle is to recommend, at each step, which action (out of up down, left, right, eat-coin,
etc.) constitutes cooperative behavior. Similarly, the role of the defection oracle is to recommend, at
each step, which action constitutes defection behavior. Algorithm 1 describes (at a high level) how
agents train and use these oracles in the game-play life cycle. Algorithm 6 (in Appendix B) describes
how the oracles are trained.

We also provide details about the oracle network architecture from in Appendix B.1 in the supple-
mentary material.

B.2 GameDistill: Architecture Details

GameDistill consists of two components.

The first component is the state sequence encoder that takes as input a sequence of states (input
size is 4× 4× 3× 3, where 4× 3× 3 is the dimension of the game state, and the first index in the
state input represents the data channel where each channel encodes data from both all the different
colored agents and coins) and outputs a fixed dimension feature representation. We encode each state
in the sequence using a common trunk of 3 convolution layers with relu activations and kernel-size
3× 3, followed by a fully-connected layer with 100 neurons to obtain a finite-dimensional feature
representation. This unified feature vector, called the trajectory embedding, is then given as input to
the different prediction branches of the network. We also experiment with different dimensions of
this embedding and provide results in Figure 9.

The two branches, which predict the self-reward and the opponent-reward (as shown in Figure 1),
independently use this trajectory embedding as input to compute appropriate output. These branches
take as input the trajectory embedding and use a dense hidden layer (with 100 neurons) with linear
activation to predict the output. We use the mean-squared error (MSE) loss for the regression tasks in
the prediction branches. Linear activation allows us to cluster the trajectory embeddings using a linear
clustering algorithm, such as Agglomerative Clustering [Friedman et al., 2001]. In general, we can
choose the number of clusters based on our desired level of granularity in differentiating outcomes.
In the games considered in this paper, agents broadly have two types of policies. Therefore, we fix
the number of clusters to two.

We use the Adam [Kingma and Ba, 2014] optimizer with learning-rate of 3e− 3. We also experiment
with K-Means clustering in addition to Agglomerative Clustering, and it also gives similar results. We
provide additional results of the clusters obtained using GameDistill in Appendix E. The second

15

(a) 3-dimensional (b) 4-dimensional

(c) 10-dimensional (d) 100-dimensional

Figure 9: Representation of the clusters learned by GameDistill for Coin Game. Each point is a
t-SNE projection of the feature vector (in different dimensions) output by the GameDistill network
for an input sequence of states. For each of the sub-figures, the figure on the left is colored based on
actual rewards obtained by each agent (r1|r2). The figure on the right is colored based on clusters
as learned by GameDistill. GameDistill correctly identifies two types of trajectories, one for
cooperation and the other for defection.

component is the oracle network that outputs an action given a state. For each oracle network,
we encode the input state using 3 convolution layers with kernel-size 2× 2 and relu activation. To
predict the action, we use 3 fully-connected layers with relu activation and the cross-entropy loss.
We use L2 regularization, and Gradient Descent with the Adam optimizer (learning rate 1e− 3) for
all our experiments.

B.3 GameDistill: Pseudo-Code

Algorithm 3 Pseduo-code for create_network

1: net = conv(states_placeholder, kernel = 3, num_outputs = 64, activation = relu)
2: net = conv(net, kernel = 3, num_outputs = 64, activation = relu)
3: net = conv(net, kernel = 3, num_outputs = 64, activation = relu)
4: feat = flatten(net) // the trajectory embedding
5:
6: self_ft, opp_ft = FC(feat, num_outputs = 100), FC(feat, num_outputs = 100)
7:
8: // Predict the opponent and the self rewards
9: s_reward_pred = FC(self_ft, num_outputs = 1)

10: o_reward_pred = FC(opp_ft, num_outputs = 1)
11: return s_reward_pred, o_reward_pred

16

Algorithm 2 Pseduo-code for collect_data

1: Input: Game Environment Env, Minimum Samples min_samples = 2000, Batch Size
batch = 100, look_back = 5

2: env = Env.spawn(batch)
3: state_q = Queue(batch, look_back)
4: reward_seq_dict = dict()
5: keep_running = True
6: while keep_running do
7: actions = random(env.actions, size = (batch, env.n_agents))
8: rewards, moves, states = env.step(actions)
9: check = False

10: for b in range(batch) do
11: if state_q[b].full() then
12: state_q[b].pop()
13: end if
14: state_q[b].put(states[b])
15:
16: // for any non zero reward tuple
17: if abs(rewards).sum() > 0 then
18: reward_tpl = tuple(rewards)
19: if reward_tpl not in reward_seq_dict then
20: reward_seq_dict[reward_tpl] = []
21: end if
22: obs = state_q[b].pop_all()
23: reward_seq_dict[reward_tpl].append(obs)
24: check = True
25: end if
26: end for
27: if check then
28: keys = env.get_all_possible_reward_tuples()
29: count_stop = 0
30: for k in keys do
31: if len(reward_seq_dict[k]) > min_samples then
32: count_stop+ = 1
33: end if
34: end for
35: if count_stop >= len(keys) then
36: keep_running = False
37: end if
38: end if
39: end while
40:
41: train_data = [] // Collect the final training data
42: for rewards_tup in reward_seq_dict.keys() do
43: for traj in t_data[rewards_tup][: min_samples] do
44: // trajectory has shape [look_back,h,w,c] and “rewards_tup” is tuple of rewards of agents
45: traj = traj.permute(1, 2, 3, 0).reshape(h,w,−1)
46: train_data.append((traj, rewards_tup))
47: end for
48: end for
49: return shuffle(train_data)

17

Algorithm 4 Pseduo-code for train_network

1: Input: Reward Prediction Network as net, data train_data, loss term weights A and B
2: optimizer = Adam(lr = 0.003)
3: while convergence do
4: state, reward = sample(train_data)
5: my_reward, opp_reward = net.forward(state)
6: loss = A ∗ l2_loss(my_reward, reward(0)) + B ∗ l2_loss(opp_reward, reward(1))
7: loss.backward(), optimizer.step()
8: end while

Algorithm 5 Pseduo-code for create_oracle_net

1: Input: Game Environment env
2: net = conv(state_placeholder, kernel = 2, num_outputs = 128, activation = relu)
3: net = conv(net, kernel = 2, num_outputs = 128, activation = relu)
4: net = conv(net, kernel = 2, num_outputs = 64, activation = relu)
5: net = flatten(net)
6: net = fc(net, num_outputs = 128, activation = relu) // Encode the environment state
7:
8: // Predict the probability of taking an action
9: logits = fc(net, num_outputs = env.num_actions)

10: action_predict = softmax(logits)
11: return Action predictions action_predict

Algorithm 6 Pseduo-code for train_oracle

1: Input: Oracle Network net, Clustered trajectory data train_data
2: actions_data = []
3: for data in train_data do
4: states = data[0]
5: for i in range(1, len(states)) do
6: action = deduce_move(states[i− 1], states[i])
7: actions_data.append((states[i− 1], action))
8: end for
9: end for

10: optimizer = SGD(lr = 0.01)
11: while not convergence do
12: state, action = sample(actions_data)
13: my_action = net.forward(state)
14: loss = cross_entropy(my_action, action)
15: loss.backward(), optimizer.step()
16: end while

C SQLoss: Emergence of Cooperation

Equation 6 (Section 2.3.2) describes the gradient for standard policy gradient. It has two
terms. The logπ1(u1

t |st) term maximises the likelihood of reproducing the training trajectories
[(st−1, ut−1, rt−1), (st, ut, rt), (st+1, ut+1, rt+1), . . .]. The return term pulls down trajectories that
have poor return. The overall effect is to reproduce trajectories that have high returns. We refer to
this standard loss as Loss for the following discussion.

Lemma 1. For agents trained with random exploration in the IPD, Qπ(D|st) > Qπ(C|st) for all
st.

18

Let Qπ(at|st) denote the expected return of taking at in st. Let Vπ(st) denote the expected return
from state st.

Qπ(C|CC) = 0.5 ∗
(
(−1) + Vπ(CC)

)
+ 0.5 ∗

(
(−3) + Vπ(CD)

)
Qπ(C|CC) = −2 + 0.5 ∗

(
Vπ(CC) + Vπ(CD)

)
Qπ(D|CC) = −1 + 0.5 ∗

(
Vπ(DC) + Vπ(DD)

)
Qπ(C|CD) = −2 + 0.5 ∗

(
Vπ(CC) + Vπ(CD)

)
Qπ(D|CD) = −1 + 0.5 ∗

(
Vπ(DC) + Vπ(DD)

)
Qπ(C|DC) = −2 + 0.5 ∗

(
Vπ(CC) + Vπ(CD)

)
Qπ(D|DC) = −1 + 0.5 ∗

(
Vπ(DC) + Vπ(DD)

)
Qπ(C|DD) = −2 + 0.5 ∗

(
Vπ(CC) + Vπ(CD)

)
Qπ(D|DD) = −1 + 0.5 ∗

(
Vπ(DC) + Vπ(DD)

)

(9)

Since Vπ(CC) = Vπ(CD) = Vπ(DC) = Vπ(DD) for randomly playing agents, Qπ(D|st) >
Qπ(C|st) for all st.

Lemma 2. Agents trained to only maximize the expected reward in IPD will converge to mutual
defection.

This lemma follows from Lemma 1. Agents initially collect trajectories from random exploration.
They use these trajectories to learn a policy that optimizes for a long-term return. These learned
policies always play D as described in Lemma 1.

Equation 7 describes the gradient for SQLoss. The logπ1(u1
t−1|st) term maximises the likelihood of

taking ut−1 in st. The imagined episode return term pulls down trajectories that have poor imagined
return.

Lemma 3. Agents trained on random trajectories using only SQLoss oscillate between CC and
DD.

For IPD, st = (u1
t−1, u

2
t−1). The SQLoss maximises the likelihood of taking ut−1 in st when the

return of the imagined trajectory R̂t(τ̂1) is high.

Consider state CC, with u1
t−1 = C. π1(D|CC) is randomly initialised. The SQLoss term reduces

the likelihood of π1(C|CC) because R̂t(τ̂1) < 0. Therefore, π1(D|CC) > π1(C|CC).

Similarly, for CD, the SQLoss term reduces the likelihood of π1(C|CD). Therefore, π1(D|CD) >

π1(C|CD). For DC, R̂t(τ̂1) = 0, therefore π1(D|DC) > π1(C|DC). Interestingly, for DD, the
SQLoss term reduces the likelihood of π1(D|DD) and therefore π1(C|DD) > π1(D|DD).

Now, if st is CC or DD, then st+1 is DD or CC and these states oscillate. If st is CD or DC, then
st+1 is DD, st+2 is CC and again CC and DD oscillate. This oscillation is key to the emergence of
cooperation as explained in section 2.3.1.

Lemma 4. For agents trained using both standard loss and SQLoss, π(C|CC) > π1(D|CC).

For CD, DC, both the standard loss and SQLoss push the policy towards D. For DD, with
sufficiently high κ, the SQLoss term overcomes the standard loss and pushes the agent towards
C. For CC, initially, both the standard loss and SQLoss push the policy towards D. However,
as training progresses, the incidence of CD and DC diminish because of SQLoss as described
in Lemma 3. Therefore, Vπ(CD) ≈ Vπ(DC) since agents immediately move from both states
to DD. Intuitively, agents lose the opportunity to exploit the other agent. In equation 9, with
Vπ(CD) ≈ Vπ(DC), Qπ(C|CC) > Qπ(D|CC) and the standard loss pushes the policy so that
π(C|CC) > π(D|CC). This depends on the value of κ. For very low values, the standard loss
overcomes SQLoss and agents defect. For very high values, SQLoss overcomes standard loss,
and agents oscillate between cooperation and defection. For moderate values of κ (as shown in our
experiments), the two loss terms work together so that π(C|CC) > π(D|CC).

19

D Games with more than 2 players

Our formulation of SQLoss has the distinct advantage of being fully ego-centric, that is, the agent
that is learning does not require any information regarding its opponents. This feature enables a
straightforward extension of SQLoss beyond the two agent setting, without any change in each
agent’s learning algorithm. In order to test this extension of SQLoss beyond 2-players, we consider
as an example, the problem described in the popular Braess’ paradox, which is a well-known extension
of the Prisoner’s Dilemma problem to more than 2 agents. We construct a simplified environment to

Start End

A

B

𝑛 !"#$"%&
𝑅 = −𝑛 !"#$"%&

𝑛 &%'()
𝑅 = −𝑅*

𝑛 +%'()
𝑅 = −𝑛 +%'()

𝑛 !"#$"%+
𝑅 = −𝑅*

𝑅 = 0

Figure 10: Braess’ Paradox

(a) Results for 4 NL agents in Braess’ Environment

(b) Results for 4 SQLearner agents in Braess’ Envi-
ronment

Figure 11

interpret the policies in the problem given in Braess’ paradox as a sequential social dilemma problem.
This problem, which we henceforth refer to as the Braess’ problem, is concerned with traffic flow
from a source to a destination with two alternative paths, through two intermediate locations. This is
illustrated in Fig. 10.

In this, each agent has to travel from the source (Start) to the destination (End) by choosing one of
these paths. Each path has two segments separated by the respective intermediate location and the
cost of traversing each segment (proportional to the time of travel) is either fixed or is determined
based on the number of agents using that segment. This cost function is shown in Eq. 10. In the
original setup, the two intermediate locations are not connected and each agent has to only choose
between one of these paths. The equilibrium solution in this case is for half the agents to choose one
path and the remaining half the other. The modification that entails is the paradox is connecting the
two intermediate locations with a cost free directed bridge, thus leading a third possible path for all
agents. This modification shifts the equilibrium in such a way that all agents now prefer to choose the
new path that uses this directed bridge, although this results in a per-agent cost that is higher than
each agent’s original cost in the absence of this new path. This problem has been well studied and the
paradox highlights the fact that in strategic settings, increase in the number of available options for
all agents, may also lead to decrease in utility for all agents individually and collectively.

We model this problem as a sequential social dilemma, where we define the initial strategy of the
agents to choose one of the two original paths as Cooperation and the strategy that results in an
agent choosing the new path with the directed bridge as Defection. For simplicity of exposition, we
assign integer IDs to agents and define Cooperation for agents with odd-IDs as choosing the path
Start-A-End in Fig. 10 and Cooperation for agents with even-IDs as choosing the path Start-B-End in
Fig 10. In this notation, the Defection can be defined as an agent choosing the path Start-A-B-End.
In the Fig. 10 we provide reward numbers, such that the paradox is realized.

As described earlier, in this game, Cooperate and Defect have the following interpretation:

1. For an odd numbered vehicle – Cooperation implies taking the Start-A-End route.

20

2. For an even numbered vehicle – Cooperation implies taking the Start-B-End route (This
and above point follow from the assumption that before addition of the new edge A-B, the
vehicles were in this equilibrium).

3. For any vehicle – Defection implies taking the Start-A-B-End route.

Let nX−Y denote the number of agents using the edge X − Y . Then the reward structure for the
odd-numbered vehicles (denoted by Rodd) and the even-numbered vehicles (denoted by Reven) is
computed as shown below.

N0 = Total no. of agents
R0 = base reward for the agents = (2.5 ∗N0)/2

Rodd =

{
−(nStart−A + nB−End) if Defection
−(nStart−A +R0), if Cooperation

Reven =

{
−(nStart−A + nB−End) if Defection
−(R0 + nB−End), if Cooperation

(10)

We performed two separate set of experiments in this game with 4 and 6 agents. For each setup, we
simulated the result when all agents are selfish learners (the SL agent(s)) and also when all agents
use SQLoss (the SQLearner(s)). For both these setups, as expected, we observe that when using
selfish learners, all agents converge to Defection and when using SQLoss, all agents converge to
Cooperation. We present the results for the Braess’ Paradox experiment in Figure 11.

The Figure 11a shows the results for 4 SL-agents playing in the environment. From the figure
it is clear that if 4 SL agents play in the environment, then they eventually end up defecting i.e.
limE→∞ P(Cooperation) → 0, where E denotes the epoch. Figure 11b illustrates the behaviour
of the SQLearner agents. The SQLearner agents eventually learn to cooperate and thus the
limE→∞ P(Cooperation) → 1. To the best of our knowledge, this is the first demonstration of
selfish agents learning to cooperate in a sequential social dilemma with more than 2 agents.

E Experimental Details

E.1 Infrastructure for Experiments

We performed all our experiments on an AWS instance with the following specifications. We use a
64-bit machine with Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz installed with Ubuntu
16.04LTS operating system. It had a RAM of 189GB and 96 CPU cores with two threads per core.
We use the TensorFlow framework for our implementation.

E.2 SQLoss

For our experiments with the Selfish and Status-Quo Aware Learner (SQLearner), we use policy
gradient-based learning to train an agent with the Actor-Critic method [Sutton and Barto, 2011]. Each
agent is parameterized with a policy actor and critic for variance reduction in policy updates. During
training, we use α = 1.0 for the REINFORCE and β = 0.5 for the imaginative game-play. We use
gradient descent with step size, δ = 0.005 for the actor and δ = 1 for the critic. We use a batch size
of 4000 for Lola-PG [Foerster et al., 2018] and use the results from the original paper. We use a batch
size of 200 for SQLearner for roll-outs and an episode length of 200 for all iterated matrix games.
We use a discount rate (γ) of 0.96 for the Iterated Prisoners’ Dilemma, Iterated Stag Hunt, and Coin
Game. For the Iterated Matching Pennies, we use γ = 0.9 to be consistent with earlier works. The
high value of γ allows for long time horizons, thereby incentivizing long-term rewards. Each agent
randomly samples κ from U ∈ (1, z) (z = 10, discussed in Appendix K) at each step.

F Visualizing clusters obtained from GameDistill

Figures 9 and 12 show the clusters obtained for the state sequence embedding for the Coin Game
and the dynamic variant of Stag Hunt respectively.

In the figures, each point is a t-SNE projection of the feature vector (in different dimensions) output
by the GameDistill network for an input sequence of states. For each of the sub-figures, the figure

21

Figure 12: t-SNE plot for the trajectory embeddings obtained for the Stag Hunt game using
GameDistill along with the identified cooperation and defection clusters. Details on how to
read the figures is provide with Figure 9

on the left is colored based on actual rewards obtained by each agent (r1|r2). The figure on the right
is colored based on clusters, as learned by GameDistill. GameDistill correctly identifies two
types of trajectories, one for cooperation and the other for defection for both the games Coin Game
and Stag-Hunt.

Figure 9 also shows the clustering results for different dimensions of the state sequence embedding
for the Coin Game. We observe that changing the size of the embedding does not have any effect on
the results.

G Results for Visual Stag-Hunt game with GameDistill and SQLoss

Figure 14 shows the results for the SQLearner agents using the trained oracles obtained from
GameDistill along with SQLoss in the visual StagHunt environment.

H Results for the Iterated Chicken Game (ICG) using SQLoss

Figure 2 presents the payoff matrix for the Chicken Game. In Figure 13 we compare the results of a
SQLearner agent on the ICG Game with a LOLA agent. The payoff matrix for the game is shown
in the Table 2. From the payoff, it is clear that the agents may defect out of greed. In this game also,

C D

C (-1, -1) (-3, 0)
D (0, -3) (-4, -4)

Table 2: Chicken Game

SQLearner agents coordinate successfully to obtain a near-optimal NDR value (0) for this game.

I SQLoss vs GameDistill

In this section we present the results for the additional experiments we do to disentangle the effect of
GameDistill and SQLoss for the performance in Figure 5 by training a variant of LOLA that uses
the oracles learned by GameDistill.

To discuss the observation regarding how much of the performance shown in Figure 5 is attributable
to GameDistill, we further discuss Figures 3 and 5. Figure 3 shows the different methods applied

22

Figure 13: P(Cooperation) for LOLA and
SQLearner agents in ICG. Both agents even-
tually obtain a near optimal probability of 1.0

Figure 14: P(Cooperation) for SQLearner
agents in visual StagHunt with GameDistill
oracles. Both agents eventually learn to capture
Stag roughly 95% of the time which is close to
the optimal for the game.

to the matrix formulation of the Iterated Prisoner’s Dilemma (IPD) game. In this formulation, each
method (SQLearner, LOLA, etc.) uses the same reduced action space consisting of cooperation
and defection. Figure 3 shows how agents trained using SQLoss outperform those trained using
LOLA in this setting. For our experiments on the Coin Game (Figure 5), we use (GameDistill +
SQLoss) against LOLA.

From the results above, it is clear that the performance of the SQLearner agent is due to the
SQLoss which promotes cooperation (as shown in multiple matrix games), the GameDistill
algorithm further expands this gain by reducing the dimensionality of the games with visual input.
The other baselines, e.g. Lola-PG and SL do not use GameDistill. To further test this hypothesis,
we use the oracles developed using GameDistill with the SL agents, and observe that the SL
agents with GameDistill do converge faster to DD than traditional SL agents, motivating us to use
GameDistill.

J Illustrations of Trained Oracle Networks

J.1 Coin Game

Figure 15 shows the predictions of the oracle networks learned by the Red agent using GameDistill
in the Coin Game. We see that the cooperation oracle suggests an action that avoids picking the
coin of the other agent (the Blue coin). Analogously, the defection oracle suggests a selfish action
that picks the coin of the other agent. Empirically, we train the Cooperation and Defection oracles
and obtain a probability of picking self-colored coin (or P (Cooperation)) close to 0.916 and 0.006
respectively.

J.2 StagHunt

GameDistill produces two oracles when trained on the StagHunt environment. One of
the trained oracles results in both the agents capturing the Stag 99% of the times i.e.
Probability (Capturing a Stag|Stag, Hare) = 0.99, while the other oracle forces the agents to
eat the Hare with similar probability of 0.99. Both the oracles learn to accurately capture the desired
item in the environment.

K SQLoss: Effect of z on convergence to cooperation

We explore the effect of the hyper-parameter z (Section 2) on convergence to cooperation, we also
experiment with varying values of z. In the experiment, to imagine the consequences of maintaining
the status quo, each agent samples κt from the Discrete Uniform distribution U{1, z}. A larger value
of z thus implies a larger value of κt and longer imaginary episodes. We find that larger z (and hence
κ) leads to faster cooperation between agents in the IPD and Coin Game. This effect plateaus for

23

+1/-2

0/0

Action predicted by
the Cooperation

Oracle

Action predicted by
the Defection

Oracle

Figure 15: Illustrative predictions of the oracle networks learned by the Red agent using GameDistill
in the Coin Game. The numbers in red/blue show the rewards obtained by the Red and the Blue agent
respectively. The cooperation oracle suggests an action that avoids picking the coin of the other agent
while the defection oracle suggests an action that picks the coin of the other agent

z > 10. However varying and changing κt across time also increases the variance in the gradients
and thus affects the learning. We thus use κ = 10 for all our experiments.

L SQLearner: Exploitability and Adaptability

Given that an agent does not have any prior information about the other agent, it must learn its strategy
based on its opponent’s strategy. To evaluate an SQLearner agent’s ability to avoid exploitation
by a selfish agent, we train one SQLearner agent against an agent that always defects in the Coin
Game. We find that the SQLearner agent also learns to always defect. This persistent defection is
important since given that the other agent is selfish, the SQLearner agent can do no better than also
be selfish. To evaluate an SQLearner agent’s ability to exploit a cooperative agent, we train one
SQLearner agent with an agent that always cooperates in the Coin Game. In this case, we find that
the SQLearner agent learns to always defect. This persistent defection is important since given that
the other agent is cooperative, the SQLearner agent obtains maximum reward by behaving selfishly.
Hence, the SQLearner agent is both resistant to exploitation and able to exploit, depending on the
other agent’s strategy.

24

	Introduction
	Approach
	Social Dilemmas modeled as Iterated Matrix Games
	Learning Policies in Iterated Matrix Games: The Selfish Learner
	Learning Policies in Iterated Matrix Games: The Status-Quo Aware Learner (SQLoss)
	SQLoss: Motivation and Theory
	SQLoss: Formulation

	Learning policies in Dynamic Non-Matrix Games using SQLoss and GameDistill

	Experimental Setup
	Iterated Matrix Game Social Dilemmas
	Iterated Dynamic Game Social Dilemmas

	Results
	Learning optimal policies in Iterated Matrix Dilemmas
	Learning Optimal Policies in Iterated Dynamic Dilemmas

	SQLoss for social dilemma matrix games
	Games with more than 2 players
	Conclusion
	Description of Environments Used for Dynamic Social Dilemmas
	Coin Game
	Stag-Hunt

	GameDistill: Oracles, Network Architecture and pseudo-code
	Oracles from GameDistill
	GameDistill: Architecture Details
	GameDistill: Pseudo-Code

	SQLoss: Emergence of Cooperation
	Games with more than 2 players
	Experimental Details
	Infrastructure for Experiments
	SQLoss

	Visualizing clusters obtained from GameDistill
	Results for Visual Stag-Hunt game with GameDistill and SQLoss
	Results for the Iterated Chicken Game (ICG) using SQLoss
	SQLoss vs GameDistill
	Illustrations of Trained Oracle Networks
	Coin Game
	StagHunt

	SQLoss: Effect of z on convergence to cooperation
	SQLearner: Exploitability and Adaptability

