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Introduction

Input data to a neural network often lives
on low-dimensional continuous manifolds,
whose features are represented In the net-
work activation. Yet, deep learning models
are often trained to output discrete class la-
oels or to perform symbolic computations.
ow neural networks transform continuous
iINnput manifold geometry into discrete task
outputs remains elusive. Here we show
that, over learning, structure emerges
iIn the Riemannian geometry of network
activations, which reflects the discrete
computations they are trained to perform
on continuous input manifolds.

Representational geometry reflects
task computations

We first gain intuition into representational
geometry by considering a simple DNN.
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Jsing the pullback metric we can detine dis-
tances on the original manifold using dis-
tances on the hidden layer activation.
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Hidden layer geometry encodes features of discrete computations on the manifold
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We varied the initial weight variance W;; ~
N (0, 0%) to induce rich or lazy learning [1].

Gram matrix W1 W e R"n*"n shows that rich
networks learn low-d representations.
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'his leads to better generalization to unseen
nputs and increased noise robustness.

Training set Outputs
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This was afforded by symmetries in the In-
trinsic geometry of the hidden layer manifold.
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Bayesian computations smooths
manifold geometry

Next, we trained the model to output the
posterior distribution of an input with noise:

= p(01,0) + 0, €~ N(0,1)

We found that at higher noise, models
learned flatter hidden-layer representations.
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Hence, hidden layer activation carries noise-

evel specific Riemannian geometry corre-

sponding to learning Bayesian computa-

tions.

Extension to dynamical systems receiving time-varying inputs
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RNNs perform task computations by dynamically warping neural representations
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