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Introduction

Input data to a neural network often lives

on low-dimensional continuous manifolds,

whose features are represented in the net-

work activation. Yet, deep learning models

are often trained to output discrete class la-

bels or to perform symbolic computations.

How neural networks transform continuous

input manifold geometry into discrete task

outputs remains elusive. Here we show

that, over learning, structure emerges

in the Riemannian geometry of network

activations, which reflects the discrete

computations they are trained to perform

on continuous input manifolds.

Representational geometry reflects

task computations

We first gain intuition into representational

geometry by considering a simple DNN.

x(θ) = [cos θ, sin θ], z = φ(Wx), y = d · z

Neural activity in the

hidden layer is con-

strained to a man-

ifold of the same

topology as the in-

puts.

Using the pullback metric we can define dis-

tances on the original manifold using dis-

tances on the hidden layer activation.

Gθθ = ∂θz · ∂θz

= ∂θxT diag φ′(x)TW TW diag φ′(x)∂θxT

This highlights that,

in the neural rep-

resentation, space

has been warped

around the decision

boundary.
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Hidden layer geometry encodes features of discrete computations on the manifold
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Feature learning involves discretising the

input manifold

We varied the initial weight variance Wij ∼
N (0, σ2) to induce rich or lazy learning [1].

Grammatrix W TW ∈ Rnin×nin shows that rich

networks learn low-d representations.

This leads to better generalization to unseen

inputs and increased noise robustness.

This was afforded by symmetries in the in-

trinsic geometry of the hidden layer manifold.

Bayesian computations smooths

manifold geometry

Next, we trained the model to output the

posterior distribution of an input with noise:

x = µ(θ1, θ2) + σξ, ξ ∼ N (0, I)
We found that at higher noise, models

learned flatter hidden-layer representations.

Corresponding to learning flatter posteriors.

Hence, hidden layer activation carries noise-

level specific Riemannian geometry corre-

sponding to learning Bayesian computa-

tions.

Extension to dynamical systems receiving time-varying inputs

RNNs perform task computations by dynamically warping neural representations

Pellegrino & Chadwick, NeurIPS 2025.
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