Supplementary Material for
Random Graph Asymptotics for Treatment Effect Estimation in
Two-Sided Markets

A Proof of Proposition 1

For the direct effect, from Assumption 4, we can Taylor expand f; (wi, %) as follows:
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For the indirect effect, recall that the total effect is
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Thus by taking the derivative of V(7'), we can define
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We can verify that this estimator is unbiased for Fror(w) by following the line of argumentation in
Section 4.1. It can be naturally decomposed into two parts:
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Recalling that Agﬁ; is unbiased for Tpig, we see that 7 TIND is also unbiased for TiNp, thus
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By Taylor expanding f;, we can rewrite iNp as
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where Dy = £ 3 (nf/(1,7) 4+ (1 — m) f/(0,7)). For D, note that
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Since each neighbor independently receives treatment with probability w, M; follows a binomial distri-
bution: M; ~ Binomial(N;, 7). For a binomial random variable M;, the central moments E[(M; — E[M;])¥]
generally scale as:
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So we get E[(M; — wN;)®] = O(N?). Hence Dy = O (\/ﬁ), and
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Furthermore, by plugging in fi(w,x) we obtained in (2), we get the results in Proposition 1.
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B Proof of Theorem 2

By Lemma 15 (Li & Wager, 2022) and the assumption that liminflog pn/log N > —1, we have min; N; =
Q(Npn), and
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Define R; = %’”) + w. By Assumption 4, |f}(1,7) — f}(0,m)| < 2B. For a fixed j, given Uj,

Ejp R Bernoulli(gny (Uj)). Thus we can rewrite as follow:
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For the first term, define
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Then we have
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Therefore, the first term can be well approximated by Qn,; as N — oo.
For the second term, (N; — E;;) ~ Binomial(N — 2, g5 (U;)) conditional on U and f(-). Thus
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for some constant C. By following the lines of argumentation in Lemma 15-17 (Li & Wager, 2022), we
have
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Thus the Horvitz-Thompson estimator can be written as
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Using the dominated convergence theorem, the asymptotic behavior of @y ; will essentially mirror that
of Q;. Now we compute the variance of i’gfﬂ — Tpir to get the central limit theorem:
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