Supplementary Material

1 Definition of Noise Models

On CIFAR-10 and CIFAR-100, following the traditional methods [3], we manually corrupt the training set according to the ground-truth transition matrices T, where $T_{ij} = P(\tilde{y} = j | y = i)$ given that noisy label \tilde{y} is flipped from clean label y.

As described in [1], the Noise transition matrix supposes that the observed noisy label \tilde{y} is drawn independently from a corrupted distribution $P(X, \tilde{Y})$, where features are intact. Meanwhile, there exists a corruption process, transition from the latent clean label y to the observed noisy label \tilde{y} . Such a corruption process can be approximately modeled via noise transition matrix T, where $T_{ij} = P(\tilde{y} = j | y = i)$.

Specifically, we conduct experiments using three commonly used noisy types: 1)Symmetry flipping [4]; 2) Asymmetry flipping [4]; 3) Pair flipping [2].

1.1 The transition matrix T of the Symmetry Flipping noise type

In the following, ε is the noise rate, C is number of classes, and the transition matrix $T \in \mathbb{R}^{C \times C}$.

$$T = \begin{bmatrix} 1 - \varepsilon & \frac{\varepsilon}{C-1} & \cdots & \frac{\varepsilon}{C-1} & \frac{\varepsilon}{C-1} \\ \frac{\varepsilon}{C-1} & 1 - \varepsilon & \cdots & \frac{\varepsilon}{C-1} & \frac{\varepsilon}{C-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\varepsilon}{C-1} & \frac{\varepsilon}{C-1} & \cdots & 1 - \varepsilon & \frac{\varepsilon}{C-1} \\ \frac{\varepsilon}{C-1} & \frac{\varepsilon}{C-1} & \cdots & \frac{\varepsilon}{C-1} & 1 - \varepsilon \end{bmatrix}$$
(1)

1.2 The transition matrix *T* of the Pair Flipping noise type

In the following, ε is the noise rate, C is number of classes, and the transition matrix $T \in \mathbb{R}^{C \times C}$.

$$T = \begin{bmatrix} 1 - \varepsilon & \varepsilon & 0 & \cdots & 0 \\ 0 & 1 - \varepsilon & \varepsilon & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 - \varepsilon & \varepsilon \\ \varepsilon & 0 & \cdots & 0 & 1 - \varepsilon \end{bmatrix}$$
(2)

1.3 The transition matrix *T* of the Asymmetry Flipping noise type

The asymmetric label noise is designed to mimic some structure of the real mistakes for similar classes: $TRUCK \longrightarrow AUTOMOBILE$, $BIRD \longrightarrow AIRPLANE$, $DEER \longrightarrow HORSE$, $CAT \longleftrightarrow DOG$ [4]. Label transition matrix are parameterized by $\epsilon \in [0, 1]$ such that the true class and wrong class have probability of $1 - \epsilon$ and ϵ , respectively. An example of T used for CIFAR-10

dataset with $\epsilon = 0.7$ is shown as follows.

	Γ1	0	0	0	0	0	0	0	0	[0
T =	0	1	0	0	0	0	0	0	0	0
	0	0	0.3	0	0	0	0	0.7	0	0
	0	0	0	0.3	0	0	0	0	0.7	0
	0	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0.3	0.7	0	0	0
	0	0	0	0	0	0.7	0.3	0	0	0
	0	0.7	0	0	0	0	0	0.3	0	0
	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	1

(3)

References

- Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W Tsang, James T Kwok, and Masashi Sugiyama. A survey of label-noise representation learning: Past, present and future. *arXiv preprint arXiv:2011.04406*, 2020.
- [2] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *International Conference on Machine Learning*, pages 2304–2313. PMLR, 2018.
- [3] Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end label-noise learning without anchor points. *arXiv preprint arXiv:2102.02400*, 2021.
- [4] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the IEEE conference* on computer vision and pattern recognition, pages 1944–1952, 2017.