
Supplementary Material

1 Definition of Noise Models

On CIFAR-10 and CIFAR-100, following the traditional methods [3], we manually corrupt the
training set according to the ground-truth transition matrices T , where Tij = P (ỹ = j|y = i) given
that noisy label ỹ is flipped from clean label y.

As described in [1], the Noise transition matrix supposes that the observed noisy label ỹ is drawn
independently from a corrupted distribution P (X, Ỹ ), where features are intact. Meanwhile, there
exists a corruption process, transition from the latent clean label y to the observed noisy label ỹ.
Such a corruption process can be approximately modeled via noise transition matrix T , where
Tij = P (ỹ = j|y = i).

Specifically, we conduct experiments using three commonly used noisy types: 1)Symmetry flip-
ping [4]; 2) Asymmetry flipping [4]; 3) Pair flipping [2].

1.1 The transition matrix T of the Symmetry Flipping noise type

In the following, ε is the noise rate, C is number of classes, and the transition matrix T ∈ RC×C .

T =
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1.2 The transition matrix T of the Pair Flipping noise type

In the following, ε is the noise rate, C is number of classes, and the transition matrix T ∈ RC×C .

T =
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1.3 The transition matrix T of the Asymmetry Flipping noise type

The asymmetric label noise is designed to mimic some structure of the real mistakes for similar
classes: TRUCK −→ AUTOMOBILE, BIRD −→ AIRPLANE, DEER −→ HORSE,
CAT ←→ DOG [4]. Label transition matrix are parameterized by ε ∈ [0, 1] such that the true class
and wrong class have probability of 1− ε and ε, respectively. An example of T used for CIFAR-10
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dataset with ε = 0.7 is shown as follows.

T =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.3 0 0 0 0 0.7 0 0
0 0 0 0.3 0 0 0 0 0.7 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0.3 0.7 0 0 0
0 0 0 0 0 0.7 0.3 0 0 0
0 0.7 0 0 0 0 0 0.3 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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