Published as a conference paper at ICLR 2021

A APPENDIX

A.1 NOVAS: DERIVATION AND IMPLEMENTATION DETAILS

Given the optimization problem defined in (3) we calculate the gradient with respect to the sampling
distribution parameter p

V,In / S(F(2))f(x; p)da = JS(fS < 19(2 f'ffp)”(;;ix, 5)
_ [SF@)V, lnf(x p)f (x; p)dz

J S(F(x))f(z; p)dz ’ ©
E[S(F <x>>v 1nf(:c o)
ES(F@)] @

where the second equality is obtained using the log trick. The exponential family distribution is
characterized by the probability distribution function

f(@;p) = h(z) exp(p™ T(z) — Alp)), ®)

where h(z) is the base measure whose formula depends on the partlcular choice of distribution, T'(z)

is the vector of sufficient statistics and A(p) = In{ [h(z) exp(p™ T'(x))dz} is the log partition. The
gradient with respect to log distribution can then be calculated as

Voln f(z;p) =T (x) — V,A(p).)

A Gaussian N (1, X) is fully defined by its mean and covariance, but one can choose to optimize (3)
only over the mean p, and sample using a fixed covariance. This results in the following parameters
of the distribution:

T(x)=%"%2, V,A(p) =27y, (10)

and for p = p the gradient can be calculated as

E[S(F(x))(x —)]
E[S(F(x))]

One reason for choosing to optimize over the mean only is the simplicity of the resulting update
expression, as well as numerical reasons, since applying gradient descent on the covariance matrix
can lead to non-positive definiteness if the initial values or the learning rate are not chosen carefully.
An intermediate solution between using a fixed covariance matrix and its gradient descent-based
update law is assuming a diagonal covariance matrix and calculating each element of the diagonal
via a simple weighted empirical estimator. The resulting update scheme is given in Alg. [T} Note
that we also investigated using the full gradient descent-based update rule for the covariance, as well
as the use of the Hessian of the objective function (3) and other techniques like momentum, line
search, trainable optimization hyper-parameter values etc. to speed up convergence, but the results
were inconclusive as to their additional benefit. We tested two different shape functions: S(y; k) =
exp(ry), as well as a shape function suggested by Zhou & Hul (2014), namely S(y; k,7v) = (y —
Ymin)/ (1 + exp(—£(y — 7))), where Yy is the minimum of the sampled values and 7 is the n-th
biggest value of the assorted y values. For the first choice it is numerically advantageous to include
the normalization step in the function definition and replace the exponential with the softmax
function. The latter choice is a differentiable function approximating the level/indicator function
used in CEM. Though both shape functions exhibited similar performance, we noticed that the
former was slightly faster, and the latter lead to slightly more accurate results in the SPEN example
(but not in the FBSDE example, where they were equivalent). All parameter values such as s can be
made trainable parameters of the network, though we did not notice an improvement in doing so. In
fact, the algorithm seems to be quite insensitive to its parameter values including the learning rate
«, with the sole exception of o which does indeed affect its output significantly.

Vi mE[S(F(2)) f(w)] = (11)

A.2 STOCHASTIC OPTIMAL CONTROL USING FBSDES

In this section we introduce the deep FBSDE framework for solving PDEs and show that com-
bining NOVAS with the deep FBSDE allows us to extend the capabilities of the latter framework

13

Published as a conference paper at ICLR 2021

(Pereira et al.| |2019bja; [Wang et al.| [2019) in addressing Stochastic Optimal Control (SOC) prob-
lems. The mathematical formulation of a SOC problem leads to a nonlinear PDE, the Hamilton-
Jacobi-Bellman PDE. This motivates algorithmic development for stochastic control that combine
elements of PDE theory with deep learning. Recent encouraging results (Han et al.l 2018} |Raissi,
2018)) in solving nonlinear PDEs within the deep learning community illustrate the scalability and
numerical efficiency of neural networks. The transition from a PDE formulation to a trainable neural
network is done via the concept of a system of Forward-Backward Stochastic Differential Equations
(FBSDEs). Specifically, certain PDE solutions are linked to solutions of FBSDEs, which are the
stochastic equivalent of a two-point boundary value problem and can be solved using a suitably de-
fined neural network architecture. This is known in the literature as the deep FBSDE approach. In
what follows, we will first define the SOC problem and present the corresponding HIB PDE, as well
as its associated system of FBSDEs. The FBSDEs are then discretized over time and solved on a
neural network graph.

Consider a SOC problem with the goal of minimizing an expected cost functional subject to dynam-
ics:

. _ T
w7y (W) = ueiﬂgﬂE[ﬁb(m(T)) + /0 [(a(t),u(t) dt}, (12)
st dz(t) = f(z(t),u(t)) dt + S(z(t), u(t)) dw(t), x(0) =§&, (13)

where € R™ and uv € R are the state and control vectors respectively, f : R" x R"™ — R™ is
a non-linear vector-valued drift function, ¥ : R™ x R™ — R"™*" is the diffusion matrix, w € R?
is vector of mutually independent Brownian motions, I/ is the set of all admissible controls and
l:R"xR™ — Rand ¢ : R®™ — R are the running and terminal cost functions respectively.
Equation is a controlled Itd drift-diffusion stochastic process.

Through the value function definition V(x, t) = infyeyjo,)/ (u)|m0:m,t0:t and using Bellman’s
principle of optimality, one can derive the Hamilton Jacobi Bellman PDE, given by

. 1
Vi+ uezl,ﬂg,T] itr(VmEZT) + VI f(z,u) +U(z,u)| =0, V(2,T)=¢(z), (14

where we drop explicit time dependencies for brevity, and use subscripts to indicate partial deriva-
tives with respect to time and the state vector. The term inside the infimum operation is called the
Hamiltonian:

H(z,u, Vy, Vi, B8T) £ %tr(VmEET) + V.U f(z,u) + Uz, u). (15)

Given that a solution u* to the minimization of H exists, the unique solution of corresponds
by virtue of the non-linear Feynman-Kac lemma (see for example Pardoux & Peng| (1990)) to the
following system of FBSDEs:

x(t)=§+/ f(x(t),u*(t))dt+/ S(z(t),u*(t)) dwy, (FSDE) (16)
0 0

V(x(t),t):qb(x(T))—&—/t l(x(t),u*(t))dt—/t V. (z(t),)2 (2(t),u*(t),t) dw, (BSDE)

a7

u*(t) = argmin H (z(2), u, Va (2(t), 1), Vau (2(2),) E(2(t), u) S(2(t),u)). (18)

u

Here, V' (z(t),t) denotes an evaluation of V' (z,t) along a path of x(t), thus V(z(t), t) is a stochas-
tic process (and similarly for V. (z(t),t) and V. (x(t),t)). Note that x(t) evolves forward in time
(due to its initial condition z(0) = &), whereas V(z(t),t) evolves backwards in time, due to its
terminal condition ¢(z(T")), thus leading to a system that is similar to a two-point boundary value
problem. While we can easily simulate a forward process by sampling noise and then performing
Euler integration, a simple backward integration of V' (z(t), t) would result in it depending explicitly
on future values of noise, which is not desirable for a non-anticipating process, i.e., a process that
does not exploit knowledge on future noise values. Two remedies exist to mitigate this problem:
either back-propagate the conditional expectation of V' (z(t),t) (e.g., as in [Exarchos & Theodorou
(2018)), or forward-propagate V' (x(t), t) starting from an initial condition guess, compare its termi-
nal value V' (2(T),T) to the terminal condition, and adjust the initial condition accordingly so that

14

Published as a conference paper at ICLR 2021

the terminal condition is satisfied approximately. For this forward evolution of the BSDE, the above
system is discretized in time as follows:

Tpr1 = 2k + f(2r, up) At + B(ag, up) Awg, x9 =&, (FSDE) (19)
Vk+1 = Vk - l(l‘k,UZ)At + qujkz(l’ka UZ) Awka Vb = 1,[), (BSDE) (20)
uj, = arg min’H(J;k,u, Vi ks Voo b 2(2g, w) E(2, u)T) (21

Here, Awy, is drawn from A(0, At) and H is given by eq. . Note that for every sampled tra-
jectory {z}5_, there is a corresponding trajectory {V}< . Under the deep FBSDE controller
framework, V, = 9 and V,, ¢ are set to be trainable parameters of a deep neural network that ap-
proximates V;, (Jc(t), t) at every time step under forward-propagation, using an LST The terminal
value of the propagated V (z(t), t), namely V (z(T'), T, is then compared to ¢ (z (7)) to compute a
loss function to train the network. Note that since the Hamiltonian can have any arbitrary non-linear
dependence on the control, the resulting minimization problem is generally non-covex and does
not have a closed-form solution. Furthermore, it must be solved for each time step, and for utiliza-
tion within the deep FBSDE controller framework, the non-convex optimizer must be differentiable
to facilitate end-to-end learning. This makes NOVAS a good fit. The neural network architecture is
shown in Fig.[3] Since the non-convex Hamiltonian minimization procedure is performed at every
time step leading to a repeated use of NOVAS in the architecture, the ability to avoid unrolling the
inner-loop computation graph is crucial.

A.3 FBSDE STOCHASTIC OPTIMAL CONTROL FOR AFFINE-QUADRATIC SYSTEMS

We now show how the previous state-of-the-art (Exarchos & Theodoroul [2018; |Pereira et al.| | 2019b))
deals with the problem of the Hamiltonian min operator by assuming a special structure of the
problem. Specifically, they restrict the dynamics of eq. to be affine in control, i.e., of the
form f(z,u) = F(x) 4+ G(z)u, and the cost in eq. to be quadratic in control, i.e., {(x,u) =
q(x)+u’ Ru. In this case, and if $3(x, t) is not a function of u, one can perform explicit minimization
of the Hamiltonian with respect to u in eq. to find the optimal control:

u = —-R'GTV,. (22)

This is done by simply setting 9H /Ou = 0 and solving for u. Substituted back into the HIB PDE,
this yields a simplified expression without a min operator:

1 1
Vi + §tr(VMZZT) +VIF4+q— §VZTGR_1GTVw =0, V(z,T) = ¢(z).

Thus, for this restricted class of systems, the deep FBSDE neural neural network architecture does
not require a numerical minimization operation over v at every time step, as in eq. (21)). The cart-pole
swing-up task of the next section is an example of a system that satisfies these restrictions. A similar
closed-form solution exists for some cases of Ll—optimal control (Exarchos et al.,|2018)), as well as
some differential games (Exarchos et al.| [2019). While simplifying the problem significantly, this
approach comes with an important caveat: several dynamical systems do not have a control-affine
structure, and penalizing control energy (u” Ru) is not always meaningful in every setting.

A.3.1 CART-POLE SWING-UP PROBLEM

. T .
We define the state vector to be X = [a;, 0,1, 9} , Where x represents the cart-position, 6 repre-

sents the pendulum angular-position, & represents the cart-velocity, and 0 represents the pendulum
angular-velocity. Let u € R be the control force applied to the cart. The deterministic equations of
motion for the cart-pole system are,

~ u+m,sind(l0 + gcosd)

mMe + My sin 0

i —ucosf — mplé cosfsinf

l(me + mysinb)

3In this work, we additionally use the same LSTM to predict a column of the Hessian V., (a:(t), t).

15

Published as a conference paper at ICLR 2021

For our experiments, we consider the case where noise enters the velocity channels of the state. The
stochastic dynamics therefore take the following form,

& 0
. 6 0 0 0
0] | mpsind(l0 + gcoso) 0 0 |dwy
dX =d T| me + my sin 6 dt + me + mpsin udt+ o 0| [dws
0 —myplf cos O sin O —cosf 0 o

1(me + my,sin 0) 1(me + my sin)

The task is to perform a swing-up i.e. starting from an initial state of X = [0, 0,0, 0] " at time to =0,

reach the target state of X = [0, m, 0, 0] ! by the end of the time horizon ¢ = T". We consider T =
1.5s with a time discretization step of At = 0.02s. Notice that the dynamics are affine in control,
and selecting the running cost to be [= u’ Ru, minimization of the Hamiltonian with respect to
w assumes a closed-form solution, namely that of eq. (22)). This fact allows us to replace the min
operator in favor of this solution (Pereira et al., 2019b). Here, we test NOVAS by avoiding this
replacement. We consider a running and terminal cost matrix of diag(Q) = [0.0, 10.0, 3.0,0.5] and
the control cost matrix of R = 0.1. The cart-pole parameters considered are m,, = 0.01 kg, m, =
1.0 kg, I = 0.5m, which are the mass of the pendulum, mass of cart, and length of the pendulum,
respectively. For the noise standard deviation, 0 = 0.5 was used. As far as the hyper-parameters for
learning the deep FBSDE controller are concerned, we used a two-layer LSTM network as shown
in Fig. Eke) with hidden dimension of 16 in each layer, a batch size of 128, and trained the network
using the Adam optimizer for 3500 iterations with a learning rate of 5¢ 3. For the NOVAS layer at
every time step, we used 5 inner-loop iterations and 100 samples for both training and inference. A
shape function of S = exp(-), initial = 0, and initial o = 10 were used.

With reference to parameters in Alg.[I] for this experiment we used 75 time steps, which means that
the LSTM graph can be viewed as a 75 layered feed-forward network when unrolled. Additionally,
at each time step we use a NOVAS Layer to compute the optimal control. Thus, the total number
of network layers is L = 75 + 74 = 149 with f;’s being NOVAS_Layer fori = 2, 4, 6,

A.3.2 PORTFOLIO OPTIMIZATION PROBLEM

We now consider a problem for which an explicit solution of the Hamiltonian min operator does not
exist. Let IV be the total number of stocks that make up an index [such that [= ﬁ Zivzl S;, where
S; is the stock price process of the i-th stock. Let M be the number of a fixed selection of traded
stocks taken from those N stocks such that M < N. Furthermore, let v € RM+1 be the control
vector. The (N + 1) dimensional state vector is comprised N stock prices and a wealth process W.
The dynamics of each stock price and wealth process are given by

etk

T = [Softmax(u)]k = W,
m=1

(k=1,2,-,M+1) (23)

N
dS;(t) = Si(t) pi dt + S;(t) dn; (where, i=1,2,--- ,Nanddny, = Z 0i,j dw; (t)) (24)
j=1

M+1 M+1
dwqﬂ__ﬂqﬂ<w1r&4—§:7mﬁmﬂh+-§:wmdmn> (25)
m=2 m=2

where 7y, is the fraction of wealth invested in the k-th traded stock, r is rate of return per period of
the risk-free asset, y; is the rate of return of the i stock. Here, 0;,; denotes the standard deviation
of noise terms entering the i—the stock process wherein ¢ = j indicates the contribution of the
process’ own noise as opposed to i # j, which indicates the interaction of noises between stocks
(correlation). All w;’s are mutually independent standard Brownian motions. To obtain the o’s, we
used randomly generated synthetic covariance matrices which mimic real stock-market data. Note
that the M traded stocks were randomly picked and were not constrained to be any specific sub-
selection of the N stocks. Separate noise realizations were used during training, validation, and
testing to ensure that the network does not over-fit to a particular noise profile.

16

Published as a conference paper at ICLR 2021

For our experiments we use N = 100 stocks that make up the index I and M = 20 traded stocks.
We used a scaled squared-softplus function as terminal cost, given by

2
o(e(1) = g 5 -log (1 40T)

with 8 = 10, ¢ = 500, and no running cost, focusing on investment outperformance at the end of
the planning horizon of one year. To simulate the stock dynamics we used a time discretization of
dt = 1/52, which amounts to controls (and thus amounts invested) being applied on a weekly basis,
for a total time of 1 year. The deep FBSDE-NOVAS hyperparameters were as follows: 16 neurons
each in a two-layer LSTM network to predict the gradient of the value function at each time step,
a batch size of 32, an initial learning rate set to 1e~2 and reduced by factor of 0.1 after 4000 and
4500 training iterations. Training was done using the Adam optimizer for a total of 5000 iterations.
For NOVAS, we used 100 samples with 5 inner-loop iterations for training and 200 samples with 50
inner-loop iterations for inference. The shape function used was S(x) = exp (z).

With reference to parameters in Alg.[I] for this experiment we used 52 time steps, which means that
the LSTM graph can be viewed as a 52 layered feed-forward network when unrolled. Additionally, at
each time step (except for the last time step) we use a NOVAS_Layer to compute the optimal control.
Thus, the total number of network layers is L = 52 4+ 51 = 103 with f;’s being NOVAS_Layer for
1=2,4,6,....

A.3.3 Lo0SS FUNCTION FOR TRAINING DEEP FBSDE CONTROLLERS

The loss function used in our experiments to train the deep FBSDE controller with the NOVAS layer
is as follows:

L=1- -H;(V(zr,T) = V*(xr,T)) + 1o Hs(Vo(ar, T) — V) (zr,T))
tls - Hs(Viw (w0, T) = Vi (2, T)) + L - (V¥ (20, T)) + s - (Vi (20, T)) + 16 - (Vi (2, T)) 7,

where ,

as, for |a| < 6,
H pr—
@) {(5(2|a —9), otherwise.

Here, xr denotes z(T"), V(z1,T), Vo (xr,T), and V.. (xr, T) are the predicted value function, its
predicted gradient, and the predicted last column of the Hessian matrix, respectively, at the terminal
time step. The corresponding targets are obtained through the given terminal cost function qb(x(T))
so that V*(zp,T) = ¢(x7), Va(er,T) = ¢(xr) and Vo (z7,T) = ¢uu(zr). Each term is
computed by averaging across the batch samples. Additionally, we may choose to add terms that
directly minimize the targets. This is possible because gradients flow through the dynamics functions
and therefore the weights of the LSTM can influence what the terminal state 2(7") will be.

For the cart-pole problem we used 6 = 50 and [l1,ls,13,14,15,16] = [1,1,0,1,1,0], and for the
portfolio optimization problem we used § = 50 and [I1, l2, 3, 14,15,16] = [1,1,1,1,0,0].
A.3.4 HARDWARE CONFIGURATION AND RUN-TIMES

All experiments were run on a NVIDIA GeForce RTX 2080Ti graphics card with 12GB memory.
The PyTorch (Paszke et al., 2019) implementation of the 101-dimensional portfolio optimization
problem had a run-time of 2.5 hours.

17

