Appendix:
Unknown-Aware Domain Adversarial Learning for
Open-Set Domain Adaptation

First, Section [A] provides comprehensive literature reviews. Second, Section[B] provides the details for
the proposed model, UADAL. It consists of three parts; 1) Sequential Optimization Problem (Section
[B.1), 2) Posterior Inference (Section[B.2), and 3) Training Details (Section[B.3). Third, Section|[C]
provides the experimental details, including the implementation details (Section|C.T]) and the detailed
experimental results (Section [C.2). Finally, Section [D]shows ‘Limitations and Potential Negative
Societal Impacts’ of this work.

Note that all references and the equation numbers are independent of the main paper. We utilize the
expression of "Eq. (XX) in the main paper", especially when referring the equations from the main

paper.

A Literature Reviews

(Closed-Set) Domain Adaptation (DA) is the task of leveraging the knowledge of the labeled source
domain to the target domain [5} 13} 2, 22| [11]. Here, DA assumes that the class sets from the source
and the target domain are identical. The typical approaches to solve DA have focused on minimizing
the discrepancy between the source and the target domain since they are assumed to be drawn from
the different distributions [31} 41} 23} 24]. The discrepancy-based approaches have been proposed to
define the metric to measure the distance between the source and the target domain in the feature space
[22]146]. Other works are based on adversarial methods [[10, 42l 25]]. These approaches introduce the
domain discriminator and a feature generator in order to learn the feature space to be domain-invariant.
Self-training methods are also proposed to mitigate the DA problems by pseudo-labeling the target
instances [211 |18 28} 132], originally tailored to semi-supervised learning [13} 38]].

Open-Set Recognition (OSR) is the task to classify an instance correctly if it belongs to the known
classes or to reject outliers otherwise, during the testing phase [35]. Here, the outliers are called
‘open-set’” which is not available in the training phase. Many approaches have been proposed to
solve the OSR problem [4} 29, 39, 130, 36, (7, [8]. OpenMax [4] is the first deep learning approach
for OSR, introducing a new model layer to estimate the probability of an instance being unknown
class, based on the Extreme Value Theory (EVT). OSRCI [29]], another stream of the approaches
utilizing GANs, generates the virtual images which are similar to the training instances but do not
belong to the known classes. Other approaches contain the reconstruction-based methods [39,30]]
and prototype-based methods [36, 7, 8]]. Also, [43] claims that the performance of OSR is highly
correlated with its accuracy on the closed-set classes. This claim is associated with our open-set
recognizer.

Open-Set Domain Adaptation is a more realistic and challenging task of Domain Adaptation, where
the target domain includes the open-set instances which are not discovered by the source domain. In
terms of the domain adversarial learning, in addition to STA, OSBP [33]] utilizes a classifier to predict
the target instances to the pre-determined threshold, and trains the feature extractor to deceive the
classifier for aligning to known classes or rejecting as unknown class. However, their recognition on
unknown class only depends on the threshold value, without considering the data instances. PGL [27]]
introduces progressive graph-based learning to regularize the class-specific manifold, while jointly
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optimizing with domain adversarial learning. However, their adversarial loss includes all instances of
the target domain, which is critically weakened by the negative transfer.

In terms of the self-supervised learning, ROS [6] is rotation-based self-supervised learning to compute
the normality score for separating target known/unknown information. DANCE [34] is based on a
self-supervised clustering to move a target instance either to shared-known prototypes in the source
domain or to its neighbor in the target domain. DCC [19]] is a domain consensus clustering to exploit
the intrinsic structure of the target domain. However, these approaches do not have any feature
alignments between the source and the target domain, which leads to performance degradation under
the significant domain shifts.

There is also a notable work, OSLPP [44] optimizing projection matrix toward a common subspace
to class-wisely align the source and the target domain. This class-wise matching depends on the
pseudo label for the target instances. However, inaccurate pseudo labels such as early mistakes can
result in error accumulation and domain misalignment [32]]. Moreover, the optimization requires
the pair-wise distance calculation, which results in a growing complexity of O(n?) by the n data
instances. It could be limited to the large-scaled domain.

B Algorithm and Optimization Details

B.1 Sequential Optimization Problem

B.1.1 Decomposition of Domain Discrimination Loss

The domain discrimination loss for the target domain is as below, (Eq. (7) in the main paper)
[:2(99, Oa) = Ept(:r)[ —wy log Dtk(G(x)) — (1 —wy)log Dtu(G(x))L

where w, = p(known|x) is the probability of a target instance, z, belonging to a target-known class.
Then, we decompose L5(6,,,04) into the two terms, L (6,,0,) and L(0,,04), as follows,

L4(04.0a) = L (0, 04) + LG (94, 0a),
,Cgk(ag,ed) = )\tk . Epm(x) [— log Dtk(G(IC))] y

Etd"(ﬁg,ﬁd) = Aty - Ep,.(x) [—log D¢ (G(2))],

where py(2) := pi(x|known) and py,(x) := pi(z|unknown); Ay = p(known); and A, =
p(unknown).

Proof. We start this proof from Eq. in the main paper,
Li(0g,04) = Ep, (2)[ —wa log Dix(G(2)) — (1 — wy) log Dy, (G(x))]-
For the convenience of the derivation, we replace w, as p(known|x).

L'fj(eg, 0a) = Eprp, (@) [ —pt(known|z)log Dy (G(x)) — pi(unknown|x) log Dy (G (x))]



= / ( — pt(known|z)log Dy (G(x)) — pt(unknown|x) log Dy, (G(m))) dx

z~pe(x)

= / ( — pt(x)(pt(known|x) log Dy, (G(x)) — pi(x)pt(unknown|z) log Dtu(G(x))) dx

x

= / < — pt(known, x) log Dy, (G(z)) — pt(unknown, ) log Dtu(G(x))) dx

x

= /—pt(x|k:nown)pt(known) log Dy (G(x)) dm—i—/—pt(x|unknown)pt(unknown) log Dy, (G(z)) dx

= pt(k‘nown)/ —p¢(z|known) log Dy, (G(z)) dx + pt(unkjnown)/ —pi(z|unknown) log Dy, (G(z)) dx
= pi(known) / —log Dy (G(x)) dx + pr(unknown) / —log Dy, (G(z)) dx
zpek () Topru ()

= pi(known)Eqp,, (2) [=10g Dir(G(2))] + pe(unknown)Ey p, (o) [—10g Diu (G (2))]
= MkEonpi (@) [7108 Dir(G(2)] + AuBonp,,, (o) [~ 10g D (G (2))] -
Thus, we define new terms with respect to py () and py, (z) as follow.
L3 (0g,00) = At Beprop,, (2 [~ 10g Dir(G(2))]
L' (09, 0a) == AuBorp,, () [ = 10g Diu(G ()]
Therefore, by the above derivation, we decompose ﬁfi(Gg, 04) as follow,

L3(0g,04) = L5 (85,04) + L5 (05, 0a)-

B.1.2 Optimal point of the domain discriminator D

The optimal D* given the fixed G is as follow (Eq. (I3) in the main paper),

% . _ ki | Ps (2)  Awpen(2) Atupru(z)
D" (G@i6,)) = ") = [ 25 S S

where paug(2) = (ps(2) + Mkper(2) + Awpru(2)) /2. Note that z € Z stands for the feature space
from G. In other words, pq(z) = {G(x;60,)|x ~ pa(x)} where d is s, tk, or tu.

)

Proof. First, we fix G, and optimize the problem with respect to D.
min £p (0, 0a) = L3(0y,0a) + LF(04,0q) + L (0,,04)
d

_ / log Dy (G/(2)) dz — Aur / log Du(G()) dz — Ara / log Dy (G(z)) da

zvps () zpek () zpru(T)
= — /log Dg(2)dz — A\ / log Dy (2) dz — Aw / log Dy, (2) dz
z~ps(2) z~pik (%) z~pru(2)

= / ( — ps(2)log Dg(2) — Mgper (2) log Dix(2) — Atupru(2) log Dtu(2)> dz

z

Also, note that Dy(2) + Dy (z) + Dy, (2) = 1 for all z. Therefore, we transform the optimization
problem as follow [12]:

Iréin — ps(2)log Dy(2) — Mgpek(2) log Dix(2) — Atupru(2) 10g Dy (2)
d
s.t. Dg(2) + Di(2) + Diu(2) =1



for all z. We introduce the Lagrange variable v to use Lagrange multiplier method.
rrelin Lp:=—ps(2)log Dys(z) — Mgpik(2) 1og Dik(2) — Apupiu(z) log Dy, (2)
d
+ v(Ds(2) + Dig(2) + Diu(z) — 1)
To find optimal D*, we find the derivative of Lp with respect to D and v.

azD o _ps(z) _ — pS(Z)
aD.) _ Dup) 0TV e D=7
8/3D _)\tkptk(z) )\tkptk<z)
= — D — _nEmAT
9Dn(z) - Dulz) V70 ¢ Duld) v
8£~D _/\tuptu 2’) Atuptu(z)
= = D _ Ztubtul®)
D)~ Duz) U0 ¢ DPul) v
ILp

5 = Ds(2) 4+ Deg(2) + De(2) =1 =0 <& Dy(z) + Du(z) + Dpu(2) = 1

From the above equations, we have

s(2 A z AuDiu (2
D.(2) + Dat(z) + Dua(z) = P2 4 2B dubal®)

then,
v = ps(2) + MrPer(2) + MeuPiu(2) = 2Pavg(2)-
Thus, we get optimal D* as

D*(2) = (D3 ). Diy(2), Dju(2)] = [y, i) Sabald],

B.1.3 Proof of Theorem 3.1]

Theorem B.1. Let 0} be the optimal parameter of D by optimizing Eq. (|7_7'I) in the main paper. Then,
—Lg(04,80) can be expressed as, with a constant Cy,

—Lc(04,07) = Drr(psllPavg) + Ak Dr L (Pirl|Pavg) — MuDrc L (Pul|lPavg) + Co.

Proof. First, we change maximization problem into minimization problem, and substitute D* by
using Eq. in the main paper. Note that payg = (ps(2) + Akpek(2) + AuPru(2))/2-
min —L(0g,04) = —L5(0g, 0a) - LIF0,,0a) + L (0,,04) (1)

- / (pe(2) 108 D(2) + Mekpri (2) 108 Dfi(2) — Aupea(2) log Dy (2)) d @)

Ps(2) AexPir(2) AtuPru(2)
= s(2)log —222 4\ log 5= — MuPru(2) log ———~ ) dz (3
L(p (Z) Og 2pavg(2) + tkptk(z) Og 2pavg(z) t pt (Z) Og 2pavg<z) ) z ( )
= DKL(psHpavg) + /\tkDKL(ptk”pavg) - )\tuDKL(ptquavg) + CYO (4)
where Cp = —2X\;x log 2 + Agi log Adire — Ap log Mgy

We use below derivation for the last equation, i.e. from Eq. (3) to Eq. {@).

B / ps(2)log ) dz

Ds(2) + AMkDek(2) + AuPru(2)

z

(
o 5 s (
- /Zp ) log s ez

+ [ ps(2)log2dz

z

z/zps(z)logps(z))dz—l—/zps(z)lodez

2pavg(z

dz

~— | — ~—

+ )\tuptu (Z)



Thus,
s (2
/ps(z) IOg P ( ) dz = DKL(psHpavg) - 10g2 (5)

For the second term,

DKL (ptk Hpa'ug)

= /ptk(z) log Puk(2) dz

Pavg(%)
- / pulz)log Loy s Ak;pké>)+ o)
— /zptk(z) log O Atklit:((;))‘f' () dz + /Zptk(Z) log 2 dz
N /zptk(z) tos ps(z) + Atkzit:((zz))Jr AtuPtu(?) 4+ log2
- / pir(2)(log Y CEEm }i;k((ZZ))+ SE) + log Ay — log Ai.) dz + log 2
AixDik(2)

= z)lo dz —log Ave +log2
/zptk( )log Ps(2) + Aupu(2) + Avubru(2) S

A
= /ptk(z) log M dz —log A\, + log 2
e 2Pavg(2)

By multiplying A,

A z A
Mk Di L (pek]|Pavg) = /)\tkptk(z) log Aekpee(2) dz — Ay log %k

z 2Pavg(2)
Thus,
A z A
/)\tkptk(z) log Sl dz = MkDc (P |Pavg) + A log =2 (6)
z 2pavg(2) 2

Similarly, for the third term,

)\tuptu (Z) )\tu
lAtuptu(z) log m dz = MuDkr (ptquavg) + Aty log N (N

In summary, from the Eq. (3), (6), and (7), we obtain the minimization problem with respect to G as
follows,

min —La(0g, 0a) = —L3(0g,0a) — L3 (0g,00) + LG (05, 00) .
= DKL(psHpavg) + )\tkDKL(ptk”pavg) - )\tuDKL(ptu”pavg) + 007

where Cp = —log 2 + Ay log 285 — Ay, log 2+ = —2Xy log 2 + A log Ay — A log Ay O

B.1.4 Proof of Proposition3.2]

Proposition B.2. The third term of the right-hand side in Eq. in the main paper, D 1,(Dtu ||Pavg)»
is bounded to log 2 — log Ay, -



Proof.

ptu(z)
Dk 1 (ptullPav Z/puzlo P dz
KL (PtullPavg) P (2) gpaug(z)

2ptu(z)
= w(2) 1o dz
/z Pru(2) log Ps(2) + Arpik(2) + Aubra(2)

Pru(?)
= e (2) 1o 2dz+/ u(z)1o dz
Lpf (2) log zpt (2) gps(z) + Aekpir(2) +)\tuptu(z)

=log2 + /ptu(z) log py(2) dz — /ptu(z) log (ps(z) + Axpir (2) + Apupiu(2)) dz

z z

S 10g 2 =+ /ptu (Z) 1ngtu (Z) dz — /ptu (Z) IOg Atuptu(z) dz

z z

(ps(z) + )‘kptk(z) + Atuptu(z) > )\tuptu(z) for all z)

~log2 + / Pra(2) log pra(2) dz — / Pra(2) log pra(2) dz — / Pra(2) log Avu dz

z z

=log2 — log A,
Therefore,

DKL(ptu”pavg) < 1Og2 — 10g Aiu-

B.1.5 Proof of Proposition3.3]

Proposition B.3. Assume that supp(ps) N supp(pe,) = O and supp(pe) N supp(py) = O, where
supp(p) := {z € Z|p(z) > 0} is the support set of probability distribution p. Then, the minimization
problem with respect to G, Eq. (I4) in the main paper, is equivalent to the minimization problem of
summation on two f-divergences.

Dy, (psl|pex) + AexD g, (per| [ps),

where f1(u) = ulog —ajata and fa(u) = ulog wut(i=ay- Therefore, the minimum of Eq.
in the main paper is achieved if and only if ps = pei.

Proof. The minimization problem with respect to G can be expressed as below:
DKL (ps ||pavg) + )\tk:DKL (ptlc ||pavg) - )\tuDKL (ptu Hpavg) + C*0 (9)
where Cy = =2\ log 2 + Mg log Adei — Mg log Ay,

We assume that (i) supp(ps) N supp(pe,) = 0 and (i) supp(pe;) N supp(pey) = 0, where supp(p) :=
{z € Z|p(z) > 0} be the support set of probability distribution p. We denote Z; := Z \ supp(ps.)
and Z5 := supp(py ). Then, the first and second term in Eq. (E[) are written as below, respectively:

Ps(2) / Ps(2)
D sl||[Pavg) = s 1 dz = s 1 d s 10
KL(P ||p g) /Zp (Z) og pavg(z) < le (Z) 0og (ps(z) ¥ )\tkptk(z))/2 z ( )
Ak D i L (PikPavg) = Mk /Z pik(2) log ;::g((zz)) dz (11)
ptk(z)
=\ 1 dz. 12
th /z P10 e N ()2 (12

since py, (z) = 0 forall z € Z; and ps(2) = pu(z) = 0 for all z € Z,. Also, the third term in Eq.
@) is as follows:

ptu(z)
MauD k1, (Dew||Pav :)\u/puzlog dz
Dt (prulpons) =N | puu(2)log 5

13)

ptu(z)
:)\u/ w(2)1log ——F—=dz = Ay log —,
o, P8 G G2 T B



With Eq. to and letting Co := A4y, - log % in Eq. , Eq. (EI) is as below:

Ps (Z) Pk (Z) -
/21 po(e)los (ps(2) + Aepix(2)) /2 det A /21 pu(2)log (Pek(2) + Akpen(2)) /2 e
)

:/ D (z)log[ ps(z . 2
z ° (Ps(2) + Arper(2)) /(L4 X)) 1+ A
Pex(2) 2
Ak /zl pun(2) log {(ptk(z) + Akper(2)/(1+ M) 1+ Ak

_ lo ps(2) . Do 2 ;
_/zlpS( o8 G @ ek () ) */les( Jlog 755 d

pex(2)
o e T e [ el

_ Do ps(2) 2
_/Zl pelz) Lo (Ps(2) + Aexper(2)) /(1 + Aix) I 14+ A

Pek(2)
+ Ak /Z 1 pui(2)log (pee(2) + Aerpen(2)) /(1 + k)

}dz

}dz—Cg

dz — C.
14+ Mg * 2

Cs

dz + A log

1+/\tk_

With denoting o := 1?/\’““6 ,and Cs := log ﬁ + A\ log ﬁ — (Y, and satisfying 0 < o < 1,

. ] ps(2) . s pex(2) 2
— /les( ) log 0= a)pe(2) + op(®) d +)\tk/21ptk( ) log (1 — a)pex(2) + apw(2) d (4;4?3

By the definition of the skewed a-KL Divergence (Dg?z) [47], Eq. is written as follow:
D) (pallpi) + A DYt (pisllps) + Cs. (15)

The skewed a-KL Divergence, D;?% (pllq), belongs to the f-divergence from p to ¢ [47].

Dy (pllg) = /q(x)f(g)g;)dx, where f(u) = ulog m7 (u= {;Eg #1),

where f(u) is a convex function with f(1) = 0. Therefore, Eq. is equivalent to the summation
of f-divergence as below.

Df1 (psHptk) + /\tksz (ptk“ps) + Cs, (16)

where f1(u) = ulog —ajata> and f2 (u) = ulog T (i=ay- Therefore, the minimum of Eq. 1)
is achieved when ps = pyy. L]

B.2 Posterior Inference

We provide the details of the posterior inference to estimate w, = p(known|x) for a target instance,
x. Thus, we model the mixture of two Beta distributions on the entropy values of the target instances.
We estimate w,, as the posterior probability by fitting the Beta mixture model through the Expectation-
Maximization (EM) algorithm. Therefore, this section starts the details of the fitting process of the
Beta mixture model.

B.2.1 Fitting Process of Beta mixture model

We follow the fitting process of Beta mixture model by [1]]. First, the probability density function
(pdf) for the mixture of two Beta distributions on the entropy values is defined as follows,

p(lz) = Arp(z|known) + Ay p(Ly|lunknown), (17

with  p(€;|known) ~ Beta(ag, o) and p(Ly|lunknown) ~ Beta(aq, 1), (18)



where Ay, is p(known); Ay, is p(unknown); £, is the entropy value for the target instance, z,
ie. ¢, = H(E(G(z))) with entropy function H; o and (B represents the parameters of the Beta
distribution for the known component; and «; and 3; are the parameters for unknown component.
Eq. (I8) represents the individual pdf for each component which is followed by the Beta distribution,

We fit the distribution through the Expectation-Maximization (EM) algorithm. We introduce the
latent variables yo(¢;) = p(knownl|l;) and v1(£;) = p(unknownl{,), and use an Expectation
Maximization (EM) algorithm with a finite number of iterations (10 in ours).

In E-step, we update the latent variables using Bayes’ rule with fixing the other parameters, \;x, a,
Bos Atu, 1, and 3y, as follows:

Aukp(La| known)

Yolla) = Atkp(Le|known) + App(Ly|unknown)’

where p(¢,|known) and p(¢,|unknown) are from Eq. (18). 1 (¢, ) follows the same claculation.

In M-step, given the fixed vy (¢,;) and ;1 (¢, ) from the E-step, the parameters oy, 5, are estimated by
using a weighted method of moments as follows,

ar(1 — ) Ou(1—2y)

) 5 —1), wherek € {0,1},
ls, sy,

o = Z}C(

B =

where £, and s2 are a weighted average and a weighted variance estimation of the entropy values, £,
for known component, respectively. ¢ and s? are for unknown component as follows,

7 — erxt 'Yk(ga:)gw EIGXt ’yk(Z:E)(‘em — Ek>2
k=" /7
EﬂiGXf Vi (a) ExEXt Vi (€z)

52 = where k € {0,1}.

Then, the mixing coefficients, Ay and )y, are calculated as follows,

1
Ak = - > w0lla), A =1— i, (19)

TEXt
where n; is the number of instances in the target domain, ;.

We conduct a finite number of iteration over E-step and M-step iteratively. Finally, the probability of
a instance being known or unknown class through the posterior probability:

Atkp(Lz | known)
k l) = , 20
p(known|s) Aekp (L [known) + Apyp (L |unknown) (20)

where p(unknown/|l,,) follows the same calculation.

B.3 Training Details

This subsection provides the details for the training part of UADAL. The first part enumerates the
training algorithm procedure, and the second part shows the computational complexity of UADAL
during training.

B.3.1 Training Algorithm of UADAL

We provide a training algorithm of UADAL in detail. All equations in Algorithm [I] of this script
represent the equations in the main paper. The detailed settings for n;¢c,, m, and 1 in Algorithm|I]
are described in Section [C.1.3|

B.3.2 Computational Complexity of UADAL

The computational complexity of UADAL is increased because we need to fit the mixture model,
which requires O(nk), with the number of the target instances (n) and the iterations of EM (k).
Figure [1| shows the negative log-likelihood from the fitted mixture model over EM iterations (k),
along different initializations of \;; and \;,. Here, k can be adjusted to trade the performance
(negative log-likelihood) and the time-complexity (k). Moreover, it shows that the convergence



Algorithm 1 Training algorithm of UADAL.

Require:
Xs: dataset from the source domain.
¢ dataset from the target domain.
Nter: the number of epochs for main training.
m: the batch size.
7n: the frequency to fit the posterior inference.
Ensure:
1: Sample few source minibatches from .
2: Update 0., 6, following Eq. (20).
3: Fitting the posterior model through EM algorithm by Eq.
4: fori=1,...,ner do

5: Sample minibatch of m source samples from .

6: Sample minibatch of m target samples from ;.

7: Update 64 by Eq. (21).

8: Update 6., 0. 6. by Eq. (20} 22).

9: if (i mod 1) = O then
10: Fitting the posterior model through EM algorithm by Eq.
11: end if
12: end for

of EM algorithm of the posterior inference, which makes we set k as constant. As a measure of
the computational complexity, we provide Wall-clock-time for a whole experimental procedure
by following Algorithm I] (under an RTX3090 GPU/i7-10700F CPU). For A—W in Office-31, the
wall-clock-time is 1,484 and 1,415 seconds, with and without posterior inference, respectively (+5%
increment). From this +5% increment, the performance of UADAL with the posterior inference has
improved than with Entropy, as shown in Figure Ob]in the main paper (see the red/blue solid lines).

Posterior Inference w. Initalizations (Ax, Awy)

©

§ — Initialization 0:(0.1, 0.9)

= —-20 Initialization 1:(0.3, 0.7)

i — Initialization 2:(0.5, 0.5)
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= 801
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Figure 1: Convergence over EM iterations (k) of Posterior Inference



C Experimental Part

C.1 Implemenation details
C.1.1 Optimization Details

We utilize the pre-trained ResNet-50 [[15]], DenseNet-121 [[16], EfficientNet-BO [40], and VGGNet
[37], as a backbone network. For all cases of the experiments for the backbone networks and the
datasets, we use the SGD optimizer with the cosine annealing [26] schedule for the learning rate
scheduling. For the parameters in the pre-trained network of ResNet-50, DenseNet, and EfficientNet,
we set the learning rate 0.1 times smaller than the parameters from the scratch, followed by [20, l6]].
For VGGNet with VisDA dataset, we followed [33]]. Therefore, we did not update the parameters of
VGGNet and constructed fully-connected layers with 100 hidden units after the FCS8 layers. In terms
of the entropy loss for the target domain, we adopt a variant of the loss, FixMatch [38]], in order to
utilize the confident predictions of the target instances. We run each setting three times and report
the averaged accuracy with standard deviation. We conduct all experiments on an NVIDIA RTX
3090 GPU and an i7-10700F CPU.

C.1.2 Network Configurations

Except for the feature extractor network GG, the configurations of the other networks, E, C', D, are
based on the classification network. The feature dimensions from the ResNet-50, EfficientNet-BO,
and DenseNet-121 are 2048, 1280, and 1024, respectively, which are the output dimensions of G (100
for VGGNet by the construction of the fully connected layer). Given the dimension, the network C'
utilizes one middle layer between the feature and classification layer with the dimension of 256. After
the middle layer, we apply a batch normalization [[17]] and LeakyReL U [45] with 0.2 parameter. Then,
the feature after the middle layer passes to the classification layer, in which the output dimensions are
|Cs| + 1. The network E has the classification layer without any middle layer, in which the output
dimension is |Cs|. The network D consists of the two middle layers with applying the LeakyReLU,
where the output dimension is 3.

C.1.3 Hyperparameter Settings

For all cases of the experiments, we set the batch size, m, to 32. For the number of epochs for main
training, denoted as n;;.,-, we set 100 for Office-31 and OfficeHome datasets. For the VisDA dataset,
we set n;ter as 10 epochs since it is a large scale. Associated with n;¢.,., we set the frequency to fit
the posterior inference, 7, as 10 epochs for Office-31 and OfficeHome, as 1 epoch for the VisDA
dataset. We set 0.001 as a default learning rate with 0.1 times smaller for the network G since we
bring the pre-trained network. For the network E' of the open-set recognizer, we set 2 times larger
than the default value because the shallow network E should learn the labeled source domain quickly
during 71 epochs, followed by initializing the network E after fitting the posterior inference. For the
case of VGGNet with the VisDA dataset, we utilize the default learning rate for the network G as
same as the other networks since we only train the fully connected layers on the top of VGGNet.

C.1.4 Baselines

For the baselines, we implement the released codes for OSBP [33] (https://github.com/
ksaito-ut/0PDA_BP), STA [20] (https://github.com/thuml/Separate_to_Adapt), PGL
[27] (https://github.com/BUserName/PGL), ROS [6] (https://github.com/silvial993/
ROS), DANCE [34]] (https://github.com/VisionLearningGroup/DANCE), and DCC [19]
(https://github.com/Solacex/Domain-Consensus-Clustering). For OSLPP [44], we are
not able to find the released code. Thus, the reported performances of OSLPP for Office-31 and
Office-Home with ResNet-50 are only available. For the released codes, we follow their initial
experimental settings. Especially, we set all experimental settings for DenseNet and EfficientNet,
equal to the settings on their ResNet-50 experiments, since they do not conduct the experiments on
the DenseNet-121 and EfficientNet-BO. For a fair comparison, we bring the reported results for
the baselines from its papers on the datasets, i.e., Office-31 (with ResNet-50), OfficeHome (with
ResNet-50), and VisDA(with VGGNet) dataset. The officially reported performances are marked as *
in the tables. Except for these cases, we all re-implement the experiments three times.
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C.1.5 Dataset

For the availability of the datasets, we utilize the following links; Office-31 (https://
www.cc.gatech.edu/” judy/domainadapt/#datasets_code)), Office-Home (https://www,
hemanthdv.org/officeHomeDataset.html), and VisDA (http://ai.bu.edu/visda-2017/
#download). We utilize the data transformations for training the proposed model, which are 1) resize,
random horizontal flip, crop, and normalize by following [34], and 2) RandAugment [9] by following
[32].

C.2 Experimental Results
C.2.1 Computational Complexity of OSLPP on VisDA dataset

As OSLPP [44] said, their complexity is O(T (2n?dpca + d pca)), which is repeated for 7' times.
Here, n is the number of samples with n = ns + n;, and dpc 4 is the dimension which is reduced by
PCA. However, regarding memory usage, when the number of samples, n, is much greater than the
dimensionality, the memory complexity is O(n?). Therefore, they claimed that it has limitation of
scaling up to the extremely large dataset (e.g., » > 100, 000). With this point, VisDA dataset consists
of the source dataset with 79,765 instances and the target dataset with 55,388 instances, where the
number of samples becomes 135,153. Therefore, OSLPP is infeasible to conduct the experiments for
VisDA dataset.

C.2.2 Low Accuracy of Baselines

HOS score is a harmonic mean of OS* and UNK. Therefore, HOS is higher when performing well in
both known and unknown classification. With this point, some baselines have very low HOS score in
the Table[T]and [2] of the main paper. This is because their UNK performances are worse. For example,
the reported OS and OS* of PGL [27]] in Office-Home are 74.0 and 76.1, respectively. Here, OS is
the class-wise averaged accuracy over the classes including unknown class. With 25 known classes,
UNK then becomes (25+1)xOS—25x0OS* = 25.1, which leads to HOS score as 33.5. It means that
PGL fails in the open-set scenario because their adversarial loss includes all target instances, which
is critically weakened by the negative transfer.

For DANCE, they only reported OS scores in the paper, which makes the calculation of HOS
infeasible. Also, their class set (15 knowns in OfficeHome) is different from the standard OSDA
scenario (25 knowns in OfficeHome by following [33]]). It means that optimal hyper-parameters are
not available. Therefore, we re-implement based on their official code. Meanwhile, DANCE (also
DCQC) is based on clustering which means that they are weak on initializations or hyperparameters,
empirically shown as higher standard deviations of the performances in the tables. The below is the
detailed answer on the lower performances of baselines, especially DANCE, with EfficientNet. As we
said, there is no reported performance of DANCE with the additional backbone choices. Therefore,
we implemented additional variants of DANCE with EfficientNet and DenseNet by following their
officially released codes. In order to compare fairly, we set all hyper-parameters with that of ResNet-
50 case as UADAL is being set. Specifically, DANCE requires a threshold value (p) to decide whether
a target instance belongs to “known” class or not, which is very sensitive to the performance. We
confirmed that they utilize the different values over the experimental settings. This sensitivity may
degrade the performance of DANCE. Unlike DANCE, UADAL does not require a threshold setting
because it has a posterior inference to automatically find the threshold to decide open-set instances.
Therefore, this becomes the key reason behind the performance difference.

For DCC, the experimental settings for VisDA are not available with the comments of “the clustering
on VisDA is not very stable” in their official code repository. Threfore, our re-implementation of
DCC with VisDA (with EfficientNet-B0O, DenseNet-121, and ResNet50) was also unstable. For a fair
comparison with DCC, please refer to the performances which is marked as * in the Table [T]and 2] of
the main paper.

C.2.3 t-SNE Visualization

Figure [2|and |3|in this script represents the t-SNE visualizations of the learned features extracted by
EfficientNet-B0 and ResNet-50, respectively. It should be noted that EfficientNet-BO (5.3M) has only
20% of parameters than ResNet-50 (25.5M). We observe that the target-unknown (red) features from
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the baselines are not discriminated with the source (green) and the target-known (blue) features. On
the contrary, UADAL and cUADAL align the features from the source and the target-known instances
accurately with clear segregation of the target-unknown features. It means that UADAL learns the
feature spaces effectively even in the less complexity.

(a) DANN (b) STA (c) OSBP (d) DCC (¢) UADAL (f) cUADAL

Figure 2: t-SNE of the features by the EfficientNet-BO on the task D — W of Office-31. (blue:
target-known, red: target-unkonwn, green: source)

R :‘ - . 4.'. - .’ bd
- - .
(a) DANN (b) STA (c) OSBP (d) DCC () UADAL  (f) cUADAL

Figure 3: t-SNE of the features by the ResNet-50 on the task D — W of Office-31. (blue: target-known, red:
target-unkonwn, green: source)

C.24 Proxy A-Distance (PAD)

Proxy A-Distance (PAD) is an empirical measure of distance between domain distributions, which is
proposed by [L1]. Given a generalization error € of discriminating data which sampled by the domain
distributions, PAD value can be computed as dg= 2(1 — 2¢). We compute the PAD value between
target-known and target-unknown features from the feature extractor, G. We follow the detailed
procedure in [[11]. Note that high PAD value means two domain distributions are well discriminated.

C.2.5 Robust on Early Stage Iterations

We investigate the effects of the learning iterations for the early stage training to fit the posterior
inference, which is considered as a hyper-parameter of UADAL. Figure [ represents the performance
metrics such as OS*, UNK, and HOS over the number of the initial training iterations of UADAL. It
shows that UADAL is not sensitive to the number of iterations for the early stage. Taken together

with Figure [8a)in the main paper, these results represent that our two modality assumption for the
target entropy values robustly holds.

100

O
o

70 A

60 1
—a— Office-31: UNK
50, —&— Office-31: OS*
—e=— QOffice-31: HOS

Performance (%)

100 200 300 400 500 600 700 800 9001000

Iterations

Figure 4: Averaged performance over the tasks in Office-31 varying the number of iterations.
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Office31 (ResNet-50)
A=W A—=D D—-W W—-D D—A W= A Avg.
OS* UNK HOS | 0OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | 0S* UNK HOS

Network

C 80.5 924 86.1 [794 91.0 848 [99.0 983 98.6 [ 987 1000 993 [ 687 897 779 [565 89.1 689 || 80.5 934 859
E 843 945 891 [ 851 870 86.0 | 993 963 97.8 | 995 994 99.5 | 733 873  79.7 | 674 884 765 | 848 92.1 88.1
Office-Home (ResNet-50)
P—R P—C P—A A—P A—R A—C

Network

[} 688 837 755|393 794 526 [ 479 843 6I.1 | 650 763 702 | 784 756 77.0 [467 Ti2 382
E 71.6 831 769 | 434 815 56.6 | 505 837 63.0 |69.1 725 708 | 813 737 774 | 549 747 632
R—A R—P R—C C—R C—=A C—P Avg.

OS* UNK HOS | 0OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS
[} 642 792 T71.0 [ 755 786 770 [ 449 717 552 | 630 750 685 499 774 607 [578 792 66.8 [ 584 781 66.1
E 667 786 721 | 774 762 768 | 511 745 60.6 | 69.1 783 734 | 535 805 642 | 621 788 69.5 || 62.6 780 68.7

OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | 0OS* UNK HOS

Network

Table 1: Ablation study for the network C' and E to generate the entropy value in UADAL w.r.t.
classification accuracies (%) on Office-31 and Office-Home wiht ResNet-50 (bold: best performer).

C.2.6 Ablation Studies on Using Classifier C' as Entropy

This part introduces an ablation study for utilizing the classifier C' to generate the entropy values
instead of an open-set recognizer E. Using the classifier C' (except the last unknown dimension)
directly is also feasible, as E does. Although it is feasible, however, it leads to wrong decisions for
the target-unknown instances. As we explained, the network E learns the decision boundary over
C, classes while the network C does over C, + 1 including unknown class. Especially, in the case
of the target-unknown instances, the network C' is enforced to classify the instances as unknown
class, which is Cy + 1-th dimension. When optimizing the network C' with the target-unknown
instances, we expect that the output of the network C' would have a higher value on the unknown
dimension. With this point, if we use the first C's dimension of C' to calculate the entropy value, there
is no evidence that the distribution of the C’s output is flat over C, classes which implies to a higher
entropy value. Even though the largest predicted value except the last dimension is small, the entropy
value might be lower due to imbalance in the output. Then, it becomes to be considered as known
class, which is wrong decision for the target-unknown instances. Therefore, it gives the negative
effects on the open-set recognition, and it adversely affects when training the model.

As an ablation experiment, we conduct the experiments to compare using F or C' for the entropy.
The experimental results on both cases are shown in Table[T] of this section, applied to Office-31 and
Offce-Home datasets. The network E' in Table[I]is the current UADAL model and C' represents
that the entropy values are generated by the classifier C' without introducing the network E. As you
can see, the performances with F is better than C. It means that the network E learns the decision
boundary for the known classes, and it leads to recognize the open-set instances effectively. It should
be noted that we utilize the structure of E as an one-layered network to reduce the computation
burden.

C.2.7 Ablation Studies on Entropy Minimization

The entropy minimization is important part for the fields such as semi-supervised learning [[14} 38]]
and domain adaptation [24, 20} |34} |6]] where the label information of the dataset is not available.
In order to show the effect of this term, we conduct the ablation study on the datasets of Office-31
and Office-Home. We provide the experimental results in Table[2] Combined with the results in the
main paper, the experimental result shows that UADAL without the entropy minimization loss still
performs better than other baselines. It represents that UADAL learns the feature space appropriately
as we intended to suit Open-Set Domain Adaptation. The properly learned feature space leads to
effectively classify the target instances without the entropy minimization.

C.2.8 Posterior Inference with Efficiency

In terms of complexity, the posterior inference increases the computational complexity because we
need to fit the mixture model. As we provided at the section [B.3.2] Wall-clock-time is increased as
5% with the posterior inference in the case of full data utilization. From this +5% increment, the
performance has improved significantly than that without the posterior inference (as shown in Figure
[Ob]in the paper). In addition, by utilizing the posterior inference, we avoid introducing any extra
hyper-parameter to recognize the unknown instances, which is also our contribution.

As an alternative, we fit the mixture model only by sampling the target instances in order to reduce the
computation time because the computational complexity is O(nk) where n is the number of samples
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Office31 (ResNet-50)

Entropy A=W A—D D—W W—D D—A W—A Avg.
Minimizati OS* UNK HOS | OS* UNK HOS | Os* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS || 0S* UNK HOS
X 859 844 851 [ 847 836 842 956 989 972 [ 987 1000 993 [752 860 803 | 726 874 793 [[854 90.0 875
o 843 945 891 |81 870 86.0 | 993 963 97.8 | 995 994 995 | 733 873 797 | 674 884 765 || 848 921 88.1
Office-Home (ResNet-50)
Entropy P—R P—C P—A A—P A—R A—C
inimizati OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS
X 707 782 742 [ 484 766 593 [ 499 762 603 | 645 794 712 | 788 752 710 | 563 75.1 643
o 71.6  83.1 769 | 434 815 56.6 |505 837 63.0 | 69.1 725 708 |813 737 774 | 549 747 632
R—A R—P R—C C—R C—A C—P Avg.
OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS | OS* UNK HOS || 0S* UNK HOS
X 623 764 686 | 713 810 758 |[573 656 612 | 681 759 718 | 547 709 617 | 60.1 726 658 || 619 752 67.6
o 66.7 786 721 | 774 762 76.8 |51.1 745 60.6 | 69.1 783 734 | 535 805 642 | 621 788 69.5 || 626 780 68.7

Table 2: Ablation study for the entropy minimization loss in UADAL w.r.t. classification accuracies
(%) on Office-31 and Office-Home wiht ResNet-50 (bold: best performer).

and k is the number of fitting iterations (we fixed it as 10). Figure [5|represents the wall-clock time
and the performance measures by sampling ratio (%) for the target domain. Since the computational
complexity is linearly increased by the number of samples, the wall-clock time is also linearly
increased by increasing the sampling ratio. Interestingly, we observed that even though the sampling
ratio is small, i.e. 10%, the performances of UADAL w.r.t. HOS, OS*, and UNK does not decreased,
on both Office-31 and Office-Home datasets.

150 1200 70
w 90 w ) S
() [
E 100 80% E 900 ng
X~ ~ 600 60
E 708 E 8
O 50 T &) T
- 60 — 300 55
g —e— HOS g —e— HOS
50 0- 50
10 50 100 0.1 1 10 50 100
Target Sampling Ratio (%) Target Sampling Ratio (%)
(a) Office-31 (b) Office-Home

Figure 5: Quantitative analysis for ablation study of applying sampling on the target domain with
Office-31 (a) and Office-Home (b). Each subfigure represents the Wall-Clock Time (s) increased by
fitting process of the mixture model during training and HOS (%) over the target sampling ratio. (All
records are the averaged values over the tasks in each dataset, not just single task.)

In order to investigate the robustness on the sampling ratio, we provide the qualitative analysis in
Figure[6] For each sampling ratio, the left figure represents the original target entropy distribution,
and the middle shows the sampled target entropy values and the fitted BMM densities. Finally, the
right figure represents the weight distribution by the posterior inference. As you can see, our posterior
inference takes the entropy values, and fits the mixture model without any thresholds. Therefore,
even if the sampling ratio is small, the observation that the target-unknown instances have higher
entropy values than the target-known instances still holds. Therefore, the open-set recognition on the
target domain is still informative, and it leads to maintain the performances of UADAL.

C.2.9 Full Experimental Results with All Metrics

As a reminder, HOS metric is a harmonic mean of OS* and UNK where OS* is accuracy for the
known class classification and UNK is for the unknown classification. Since Open-Set Domain
Adaptation should perform well on both tasks, we choose HOS metric as a primary metric. For
other metrics such as OS, OS*, and UNK, we provide the full experimental results including OS,
OS*, and UNK in this section. First of all, we provide the summary table of the experimental results
with the officially reported performances of the baselines, which is denoted as * for reliable and fair
comparisons. Table[3]in this appendix shows that UADAL outperforms the baselines over all datasets,
in the conventional setting of the backbone networks (such as Office-31/Office-Home with ResNet-50
and VisDA with VGGNet). The detailed results are shown in Table ] for Office-31 and Table 3] for
Office-Home, in this appendix.
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(b) Target Sampling Ratio: 10%

Figure 6: Qualitative analysis for ablation study of applying sampling on the target domain (D—W
task in Office-31). The subfigure (a) and (b) represent the different sampling ratio, 50% and 10%,
respectively. Each subfigure consists of 1) left: the original target entropy distribution, 2) midde: the
sampled target entropy distribution with the fitted Beta Mixture Model (BMM), and 3) right: the
weight (w) distribution (by the fitted BMM in middle) on the target domain.

Method Office31 (ResNet-50) Office-Home (ResNet-50) VisDA (VGGNet)
OS OS*¥ UNK Avg. HOS | OS OS*¥ UNK Avg. HOS| OS OS*¥ UNK HOS
DANN | 854 87.1 683 759405 | 535 526 77.1 60.7+0.2 - - - -
CDAN | 86.1 883 639 734+13 | 553 545 746 614403 - - - -
OSBP* | 86.6 87.2 804 83.7+04 | 642 64.1 663 64702 | 629 592 851 69.8
STA* 825 843 648 72.5+08 | 619 61.8 633 61.1£03 | 66.8 639 842 727
PGL* 81.1 827 647 72.6+15 | 741 76.1 25.0 35.2 80.7 828 68.1 747
ROS* 86.5 86.6 858 85.9+02 | 62.0 616 724 662403 - - - -
DANCE | 91.0 940 602 73.1+1.0 | 72.8 744 350 442406 - - -
DCC* - - - 86.8 - - - 64.2 68.8 68.0 73.6 70.7
LGU* - - - - 714 727 389 50.7 70.1 692 755 722
OSLPP* | 89.0 893 85.6 874 64.1 638 717 67.0 - - - -
UADAL | 855 848 92.1 88.1+02 [ 63.1 62.6 780 68.7£02 | 674 63.1 933 753
cUADAL | 856 848 93.0 88.5+03 |63.1 625 776 68.5+0.1 | 683 643 92,6 759

Table 3: Summary of the OSDA experimental results. The results in Office-31 and Office-Home are
the averaged accuracies over the tasks because there are the multiple domains. (bold: best performer,
underline: second-best performer, *: officially reported performances.)

D Limitations and Potential Negative Societal Impacts

Limitations Our domain adaptation setting assumes that we have an access to a labeled source
dataset and an unlabeled target dataset, simultaneously. Thus, we may encounter the situation
where the access for the source dataset and the target dataset is not available at the same time, i.e.
streamlined data gathering. In addition, our work solves the Open-Set Domain Adaptation problem.
It intrinsically assumes the existence of ‘unknown’ information in the target domain. Our open-set
recognition is based on this assumption, thus we fit the mixture model where each mode represents
for known/unknown information. We think that the common assumption of the high entropy value on
target-unknowns could be considered as a limitation, as well.

Potential Negative Societal Impacts Because open-set domain adaptation focuses on categories
belonging to the class of the source dataset, it is infeasible to distinguish differences between
categories that are only within the target dataset. Therefore, if the source dataset’s categories are not
sufficient, important categories within the target dataset may not be classified, which would lead to
only limited applications when we have social stratifications.
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Office31 (ResNet-50)

A=W A—D D—-W
Model OS OS* UNK HOS| OS OS* UNK HOS| OS O0S* UNK HOS
DANN [ 845 874 557 681 [879 90.8 592 715 [973 993 770 867
CDAN | 86.7 903 507 649 | 886 922 524 668 | 972 99.6 732 843
OSBP 86.1 868 792 827 |89.1 905 755 824|976 977 967 972
STA 850 867 676 759 |85 91.0 639 750 | 90.6 94.1 555 698
PGL 814 827 679 746 | 805 821 654 728 | 857 875 681 765
ROS 873 884 767 821 | 866 875 778 824 | 987 993 93.0 96.0
DANCE | 943 987 507 669 | 928 965 559 70.7 | 97.0 1000 66.8 80.0
DCC - - - 87.1 - - - 85.5 - - - 91.2
LGU - - - - - - - - - - - -
OSLPP | 894 895 884 89.0 |924 926 904 915 |96.1 969 88.0 923
UADAL [ 853 843 945 89.1 [8.2 85I 870 86.0 [99.0 993 963 978
cUADAL | 864 855 951 901 | 860 856 904 879 |98.6 987 97.7 982
W —D D— A W— A AVG.

OS OS* UNK HOS | OS OS* UNK HOS| OS O0OS* UNK HOS | OS 0S* UNK HOS
DANN |[973 1000 702 825 |73.0 729 745 737|722 721 731 726 |[854 87.1 683 759+0.5
CDAN | 97.0 1000 673 805 |745 749 70.6 727 | 725 728 693 710 || 8.1 883 639 734+13
OSBP 97.7 99.1 842 91.1 | 758 76.1 723 751 | 73.1 73.0 744 737 || 86.6 872 804 837104
STA 833 849 678 752 | 815 831 659 732|664 662 680 66.1 | 825 843 648 72.54+0.8
PGL 81.1 828 640 722 | 788 806 612 695 |79.1 808 61.8 70.1 || 81.1 827 647 72.6+l.5
ROS 99.9 100.0 994 99.7 | 754 748 812 779 | 712 697 866 772 | 86.5 86.6 858 85.9+0.2
DANCE | 97.6 1000 737 848 |84 853 536 658 |81.6 837 606 702 ||91.0 940 602 73.1+1.0
DCC - - - 87.1 - - - 85.5 - - - 84.4 - - - 86.8
LGU - - - - - - - - - - - - - - - -
OSLPP |954 958 915 936 |8l.6 821 766 793 |789 789 785 78.7 || 89.0 89.3 856 87.4
UADAL | 995 995 994 995 [ 745 733 873 797 [ 693 674 884 765 |[855 848 92.1 88.1+0.2
cUADAL | 993 993 994 994 | 754 742 878 805 | 676 656 878 75.1 || 856 848 93.0 88.5+0.3

Table 4: Classification accuracy (%) on Office-31 dataset using ResNet-50 as the backbone network.
(bold: best performer, underline: second-best performer)

Office-Home (ResNet-50)

P—R P—C P—A A—P
Model OS OS* UNK HOS | OS OS* UNK HOS | OS O0S* UNK HOS | OS OSs* UNK HOS
DANN [ 679 677 720 698 [ 323 30.1 863 446 [440 424 839 563 [604 60.0 713 652
CDAN 69.8 69.8 69.7 69.7 | 35.0 33.1 824 472 |47.1 458 812 586 | 620 617 688 65.1
OSBP 760 762 717 739 | 453 445 663 532 | 594 591 681 632 | 713 718 59.8 652
STA 757 762 643 695 | 451 442 67.1 532 | 549 542 724 619 | 672 68.0 484 540
PGL 82.6 848 27.6 41.6 | 584 592 384 466 | 722 73.7 347 472 | 771 789 321 456
ROS 71.1 708 784 744 | 475 465 712 563 | 576 573 643 606 | 685 684 703 693
DANCE | 842 86.5 27.1 412 | 489 482 674 557 | 69.7 70.7 439 542 | 822 840 354 498
DCC - - - 64.0 - - - 52.8 - - - 59.5 - - - 67.4
LGU 812 828 412 550 | 531 545 181 272 | 684 69.1 509 586 | 793 805 493 612
OSLPP | 76.8 770 712 740 | 53.6 53.1 67.1 593 | 554 546 762 636 | 725 725 731 72.8
UADAL | 721 716 83.1 769 | 449 434 B8I5 56.6 | 51.8 505 837 63.0 [ 692 69.I 725 708
cUADAL | 71.7 712 834 76.8 | 427 412 80.7 546 |521 509 824 629 |696 694 739 71.6

A—R A—C R—A R—P

OS OS* UNK HOS | OS OS* UNK HOS | OS O0S* UNK HOS | OS OSs* UNK HOS

DANN [ 748 751 673 710 [389 371 827 512 [57.6 568 771 654 [695 69.6 672 684
CDAN 748 752 667 70.7 | 412 397 789 529 | 604 59.8 736 660 | 70.6 709 646 676
OSBP 788 793 675 729 | 506 502 61.1 55.1 | 66.1 66.1 673 66.7 | 76.0 763 68.6 723
STA 719 786 604 683 | 47.0 46.0 723 558 | 675 675 667 67.1 | 763 7T1.1 554 645
PGL 859 877 409 558 | 616 633 19.1 293 | 78.6 815 6.1 114 | 83.0 848 38.0 525
ROS 759 758 772 765 | 515 506 741 60.1 | 67.1 67.0 70.8 688 | 723 720 800 757
DANCE | 874 89.8 253 394 | 544 544 537 531 |768 792 167 275 | 841 862 296 440
DCC - - - 80.6 - - - 52.9 - - - 56.0 - - - 62.7
LGU 850 86.5 475 613|576 586 326 419 |764 775 489 600 | 818 832 468 599
OSLPP | 79.7 80.1 694 743 |563 559 67.1 61.0 | 613 608 750 672 |78.1 784 708 744
UADAL [ 81.0 813 737 774 | 557 549 747 632 [67.1 667 786 721 |773 774 762 768
cUADAL | 818 822 733 77.5 | 558 550 756 63.6 | 673 668 79.6 72.6 |777 778 756 76.7

R—C C—R C—A C—P AVG.

OS OS* UNK HOS | OS OS* UNK HOS | OS OS* UNK HOS| OS OS* UNK HOS| OS 0OS* UNK HOS

DANN [388 37.1 809 509 [61.6 6I.1 735 667 [454 438 843 576 [51.2 50.1 776 609 | 535 526 77.1 60.7+0.2
CDAN 417 403 758 527 | 620 615 737 67.1 | 464 449 828 582 | 526 516 768 617 | 553 545 746 61.4+03
OSBP 486 480 630 545|719 720 692 706 | 598 594 703 643 | 66.8 67.0 627 647 | 642 64.1 663 64.7+0.2
STA 503 499 o6l.1 545 | 67.0 67.0 66.7 668 |519 514 650 574 |61.7 61.8 59.1 604 | 619 61.8 633 61.1+03
PGL 66.2 688 0.0 00 | 688 702 338 456 | 828 859 53 100 | 720 739 245 368 | 741 76.1 250 35.2
ROS 523 515 730 604 | 656 653 722 686 | 541 53.6 655 589 |603 598 716 652 | 620 616 724 662+03
DANCE | 594 60.1 413 483 |81.3 839 184 302 |712 729 284 409 | 746 763 328 459 |728 744 350 442106
DCC - - - 76.9 - - - 67.0 - - - 49.8 - - - 66.6 - - - 64.2
LGU 62.1 634 296 404 | 764 716 464 581 | 658 672 308 422 |69.1 717 41 7.8 | 714 727 389 50.7
OSLPP | 548 544 643 590 | 675 672 739 704 | 507 49.6 79.0 609 | 621 61.6 733 669 | 641 638 71.7 67.0
UADAL | 520 S5I.1 745 60.6 | 694 69.1 783 734 |545 535 805 642 | 628 621 788 69.5 | 63.1 626 780 68.7+0.2
cUADAL | 525 518 71.1 599 | 695 693 763 726 | 549 538 820 65.0 | 61.8 61.1 774 683 | 63.1 625 77.6 68.5+0.1

Table 5: Classification accuracy (%)
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