A Appendix

A.1 Quantization Kinetics in the continuous time domain

The asymptotic quantization of weights W using BDMM with a Lagrangian function £ follows the
discrete updates,

W W—T]vaﬁ(wyA)
A AEmVyL(z,),

which can be expressed in the continuous time domain as follows.

= T Vw L, (1
and N
i VAL,)

where the reciprocal time constants Tv}l and T, ! are proportional to learning rates 7y and 7y,

respectively. The Lagrangian function £ is a Lyapunov function of W and A.

(flf W[’ dW — + V)\[, d)\ 3)
Plugging Eqs. (I)) and @) into Eq. (@) yields
o = YLl VALl @)

The gradients in Eq. can be calculated from the Lagrangian function £, given by
£=C(y, 5" W) + XTes (W),

as follows.

< [aC Ocs; 2
vwel = 3 (G Gy
i=0 ¢ !
VL = 3 st 5)

Therefore, the following equation holds.

= 1"2“(c’?csz) +TA1§CS (6)

The Lagrange multiplier A; at time ¢ is evaluated using Eq. ().

t
Ai (1) = X (0) + 757t / cs;dt. (7)
0

A.2 Pseudocode

Algorithm 1: CBP algorithm. N denotes the number of training epochs in aggregate. M denotes
the number of mini-batches of the training set T'r. The function minibatch (T'r) samples a
mini-batch of training data and their targets from T'r. The function model (z, W) returns the
output from the network for a given mini-batch x. The function clip(W) denotes the clipping
weight, and 7y and 1), denote the weight- and multiplier-learning rates, respectively.

Result: Updated weight matrix W
Pre-training using conventional backprop;
Initialization such that A <— 0,p < 0,9 < 1;
Initial update of A;
for epoch =1 to N do
L sum < 0;
/* Update of weight W */
fori =1to M do
@ § < minibatch(Tr);
y(i) — model(w(i); W);
£ (5,9 W) + XTes (W3 Q, M, 9);
Lsum Loum + L;
W < clip(W — nwVyL);
end
/* Update of window variable ¢ and Lagrange multiplier A */
p<p+1L;
if Lsum > E?an Or P = Pmax then
g < g+Ay
A= X+mes (W, g);
p<0;
Lim — Lium>
else
| LB < Lsums
end

end

A.3 Quantization kinetics with gradually vanishing unconstrained-weight window
We consider the gradually vanishing unconstrained-weight window in addition to the kinetics of
update of weights and lagrange multipliers in Egs. and (@). Given that the update frequency of the

unconstrained-weight window variable g is equal to that of the Lagrange multipliers, its time constant
equals 7.

- — Tx Y0, (8)

where gy = 1 when g < 10, and g9 = 10 otherwise. Regarding the Lagrangian function £ as a
Lyapunov function of W, A, and g, Eq. @) should be modified as follow.

L AW AN 9L dg
dtivwﬁ.WJrv)‘ﬁ.EJraigE')
Plugging Egs. (1), (), and (8) into Eq. (9) yields
ac _ _ . 0L
U o Ll VAL 10

The gradients in Eq. (I0) can be calculated using Eqgs. (8), (9), and (I0) as follows.

vwLl = ; [50 (ngi +Sﬁag§j">r, (11)
’V)\EF = ”Z‘ (ucs;Y;)?,
=0
oL poo o Ted 1
T ZA Yi Z qj+1 — <2g (j+1 — qj) — lw; —m; + 6|> - (12)

Given that ducs; /Ow; = 0 holds for any w; value because of € — 0%,

2 [oC av; \?
VL] Z<a+/\ucs7aw‘> : (13)

i=0 v

1
The gradient 9L /0g is non-zero only if a given weight w; satisfies |w; — m; + €| = % (gj+1 — ¢j)

The probability that w; at a given time satisfies the equality for a given g should be very low.
Additionally, regarding the discrete change in g in the actual application of the algorithm, the
probability is negligible. Thus, this gradient can be ignored hereafter. Therefore, Eq. (I0) can be
re-expressed as

a}/z N
) —1—7')\12 uch (14)

Distinguishing the weights belonging to the unconstrained-weight window D,,., from the others at a
given time ¢, Eq. (T4) can be written by

. aC \? e aY; s
dt __TW Z <8'LU1) B Z [TW (3102 +)\Z8wl) _T)\ Y;

Wi €Dy cs Wi & Daycs

15)

)] _102
i
C
Q
e
Q
Q
o 1081
.C
o
(] 11 ©
= 10
Y—
@)
| .
Q
o k — _1.02=w<-0.98
£ \\ —0.02 = w<0.02
Z 1054 — 0.98=w<1.02
g _100
0 20 40 60 80 100 120 140
Epoch

Figure 1: Weight-ternarization kinetics of ResNet-18 on ImageNet

A.4 Quantization Kinetics in the discrete time domain

We monitored the population changes of weights near given quantized weight values for ResNet-18
on ImageNet with ternary-weight constraints. Fig. [I|shows the population changes of weights near -1,
0, and 1 upon the update of the unconstrained-weight window variable g. As such, the variable g was
updated such that Ag = 1 when g < 10, and Ag = 10 otherwise. Step-wise increases in populations
upon the increase of g are seen, indicating the obvious effect of the unconstrained-weight window on

weight-quantization kinetics.

A.5 Hyperparameters

The hyperparameters used are listed in Table[T] The weight- and multiplier-learning rates are denoted
by nw and 7y, respectively. The weight decay rate (L2 regularization) is denoted by wd.

Table 1: Hyperparameters used.

AlexNet ResNet-18
nwo M wd batchsize nw 7y wd batchsize
Binary _3
Onzegil?rs{lift 1074 5x 107% 256 1073 1074 10~* 256
- —4
Two-bit shift '
ResNet-50 GoogleNet
nw o M wd batchsize 7w 7y wd Dbatch size
Binary _3
Ternar 10
One bit shift 10-4 1074 128 10~* 1074 10~* 256
i 104

Two-bit shift

A.6 Computational complexity

CBP is a post-training method so that this number of FLOPs is an additional computational complexity
to the pre-training using backprop.

#FLOPs for CBP = (#FLOPs for weight update) + (#FLOPs for Lagrange multiplier update), where
#FLOPs for weight update = (#FLOPs for loss evaluation) + (#FLOPs for error-backpropagation).

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + (#FLOPs for constraint contribution
calculation)\Tcs).

The number of FLOPs for the latter scales with the number of parameters in total (n,,) because each
parameter is given a set of A and ¢s. The number of multiplication A x cs; (w;) is the same as the
number of parameters (n,,).The calculation of cs; for a given w; involves six FLOPs according to
Egs. (8)-(10). Therefore,

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + 6n,,.

As for conventional backprop, the number of FLOPs for weight update (using error-backpropagation)
approximately equals the number of FLOPs for forward propagation. Therefore,

#FLOPs for weight update = 2 x (#FLOPs for forward propagation) + 6n,,

The Lagrange multiplier update for each multiplier involves one multiplication (7, X c¢s;) and one
addition (\; < \; + mxcs;), but uses c¢s; that has been calculated already when calculating the loss
function. Therefore,

#FLOPs for Lagrange multiplier update = 2n,,.

It should be noted that the multiplier is updated merely a few times during the entire training period:
less than 20 percent of the training epochs, which is parameterized by p.

Therefore, we have

#FLOPs for CBP = 2(#FLOPs for forward propagation) + 2(p + 3)n.,

The number of FLOPs for CBP for three models (for p = 0.2) is shown below.

AlexNet: #FLOPs for CBP ~ 1.82G, and #FLOPs for BP ~ 1.45G (i.e., 25% increase in #FLOPs)
ResNet18: #FLOPs for CBP ~ 3.69G, and #FLOPs for BP =~ 3.62G (i.e., 2% increase in #FLOPs)
ResNet50: #FLOPs for CBP =~ 7.89G, and #FLOPs for BP = 7.74G (i.e., 2% increase in #FLOPs)

B Additional Data

B.1 Extra Data

Processes of learning quantized weights in AlexNet, ResNet-18, ResNet-50, and GoogLeNet are
shown in Fig. 2] 3] [and[5] respectively.

Accuracy (%) Accuracy (%)

Accuracy (%)

Accuracy (%)

Binary weight constraint

ESY
L

CFS(x1E-3)

=
L

w
L

N
L

e

0 50 100
Training epoch

Fraction

,_.

o
L
;

100

._.

1)
S
H

=

1076+ " T
-2 0 2

Normalized weight

Ternary weight constraint

3_

CFS(x1E-3)

N
!

=
L

=
oA
o

0 50
Training epoch

Fraction

._.

1S}
L
;

=

100

10721

10764 ; T
-2 0 2

Normalized weight

One-bit shift weight constraint

2.0
™15
L
—
x 1.0
wn
L
O 0.5

0.0

0 100 200

Training epoch

Fraction

-
1Sy
L

I I ?

10°

10-24

10—6 i
—2 0 2

Normalized weight

Two-bit shift weight constraint

100 1 — Top-1
—— Top-5
B _/”nrdw“"””"MM“N
N /,///
40 T r
0 50 100
Training epoch
1001 — Top-1
— Top-5
80_(MJ""F”“M»*»*
60—”'/__’#____,_
40 T
0 50 100
Training epoch
100 1 — Top-1
—— Top-5
80 4=
60—[("..———-—-4—"
40 = T T
0 100 200
Training epoch
100 + — Top-1
—— Top-5
80 1~
60-[,,~—~'--*~“‘
40

0 100 200
Training epoch

2.0 1

Ziin

0 100 200
Training epoch

Fraction

= =
o [=
1 5
. L

100

107¢-
-2 0 2

Normalized weight

Figure 2: Learning quantized weights in AlexNet

1st
51st
101st
122nd

1st
51st
101st
113rd

1st
51st
101st
151st
201st

1st
51st
101st
151st
201st

Accuracy (%) Accuracy (%)

Accuracy (%)

Accuracy (%)

Binary weight constraint

Fraction

,_.

<)
L
;

Fraction

._.

1S)
L
;

Fraction

Fraction

10°

10721

1076 L - :
-2 0 2

Normalized weight

100

10721

10-% L T
-2 0 2

Normalized weight

] =

-2 0 2
Normalized weight

100

10-2 \Mth,/ —
AN

104

1076 "

100 11— Top-1 151
—— Top-5
m
80 w1 101
—
el
0
60 - b 5 4
40 4 : v :
0 100 0 100
Training epoch Training epoch
Ternary weight constraint
100 101
—_ 8_
r””“”"_——*«~“~ m
80 do64
—
Ko
p/””"—— 54
60
— Top-1 © 24
—— Top-5
404 . 0y .
0 100 0 100
Training epoch Training epoch
One-bit shift weight constraint
100 -
6_
I m
80 u
— 41
S B =
2
60 2]
— Top-1 o
—— Top-5
404, . 0y)
0 100 0 100
Training epoch Training epoch
Two-bit shift weight constraint
100 - 6
e ™
80 Ui 44
—
et al
iL o
60]
— Top-1 =
—— Top-5
40 4 : o1 -
0 100 0 100

Training epoch

Training epoch

-2 0 2
Normalized weight

Figure 3: Learning quantized weights in ResNet-18

1st
51st
101st
151st

1st
51st
101st
151st

1st
51st
101st
151st

1st
51st
101st
151st

Accuracy (%) Accuracy (%)

Accuracy (%)

Accuracy (%)

Binary weight constraint

12.5 10°
100 - — 1st
/M«—ww 10.0 A —— b51st
m 102 — 101st
i 1 C
80 W 7.51 2 —— 114th
X O
//”"w 3 5.0 ©
60 i L 107%+
— Top-1 2.5
—— Top-5
40 L] | 0.0 7 i 10-6 L4 } }
0 50 100 0 50 100 -2 0 2
Training epoch Training epoch Normalized weight
Ternary weight constraint
10°
100 - . — 1st
[I —— 51st
m 102 —— 101st
1 C
801 W 4+ o
b
60 g 2+ 10417 |
— Top-1
—— Top-5
40 L ; : o1 . i 10764 |11 :
0 50 100 0 50 100 -2 0 2
Training epoch Training epoch Normalized weight
One-bit shift weight constraint
9
8 - 10°
100 - — 1st
e 6 —— 51st
™ c 1072 —— 101st
80 w o —— 141st
f’ﬁw—“ \>-</ 4 J g
60 E & 10741
O 24
— Top-1
—— Top-5
404 . oy . 10-¢ 4 ; ;
0 100 0 100 -2 0 2
Training epoch Training epoch Normalized weight
Two-bit shift weight constraint
10°
100 - — 1st
6 —— 51st
oM c 1024 —— 101st
80 wo, | o —— 141st
e —— — 4 S
% S
60 4 g 2 = 104
— Top-1
—— Top-5
40 . oY . 1078+ .
0 100 0 100 -2 0 2

Training epoch

Training epoch

Normalized weight

Figure 4: Learning quantized weights in ResNet-50

Accuracy (%) Accuracy (%)

Accuracy (%)

Accuracy (%)

Binary weight constraint

10°
1001 — Top-1 30 — 1st
—— Top-5 —— 51st
m 10-2- — 81st
1 120 4 c
80 w o \ —— 101st
x 2 —— 116th
604 2 10 i 1074+ —— 151st
S —— 201st
—— 247th
40 0y .] 10-s L » .
0 100 200 0 100 200 -2 0 2
Training epoch Training epoch Normalized weight
Ternary weight constraint
10°
1004 —— = —
Top-1 20 1st
—— Top-5 —— 51st
80 0 15 c 10724 — 101st
o 2 —— 123rd
X 10 s
n o
60 - L LI 1074
O 5]
40 ; , 0+ . . 10-6-
0 50 100 0 50 100 -2 0 2
Training epoch Training epoch Normalized weight
One-bit shift weight constraint
10°
100 15 — 1st
—— 51st
W"“ = 10-2. —— 101st
4 | c
80 W 10+ S
oo NM\N«'W““ g N g o]
— Top-1
—— Top-5
40 L . . oy , ! 106
0 50 100 0 50 100 -2 0 2
Training epoch Training epoch Normalized weight
Two-bit shift weight constraint
10°
1001 151 — 1st
s S 15T
e e 10721 . —— 101st
80 w 101 S
= 3
60 | Www g 5 | LIL- 10_4 |
— Top-1
—— Top-5
40 T T 01 ; I 1 10-6
0 50 100 0 50 100 -2 0 2

Training epoch

Training epoch

Normalized weight

Figure 5: Learning quantized weights in Googl.eNet

	Introduction
	Related work
	Optimization method
	Pseudo-Lagrange multiplier method
	Constrained backpropagation using the pseudo-Lagrange multiplier method
	Learning kinetics

	Experiments
	AlexNet
	ResNet-18 and ResNet-50
	GoogLeNet

	Discussion
	Conclusion
	Appendix
	Quantization kinetics in the continuous time domain
	Pseudocode
	Quantization kinetics with gradually vanishing unconstrained-weight window
	Quantization kinetics in the discrete time domain
	Hyperparameters
	Computational complexity

	Additional Data
	Extra Data

