A Appendix

A.1 Quantization Kinetics in the continuous time domain

The asymptotic quantization of weights W using BDMM with a Lagrangian function £ follows the
discrete updates,
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which can be expressed in the continuous time domain as follows.
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where the reciprocal time constants Tv}l and T, ! are proportional to learning rates 7y and 7y,

respectively. The Lagrangian function £ is a Lyapunov function of W and A.
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Plugging Eqs. (I)) and @) into Eq. (@) yields
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The gradients in Eq. can be calculated from the Lagrangian function £, given by
£=C(y, 5" W) + XTes (W),

as follows.
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Therefore, the following equation holds.
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The Lagrange multiplier A; at time ¢ is evaluated using Eq. ().

t
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A.2 Pseudocode

Algorithm 1: CBP algorithm. N denotes the number of training epochs in aggregate. M denotes
the number of mini-batches of the training set T'r. The function minibatch (T'r) samples a
mini-batch of training data and their targets from T'r. The function model (z, W) returns the
output from the network for a given mini-batch x. The function clip(W) denotes the clipping
weight, and 7y and 1), denote the weight- and multiplier-learning rates, respectively.

Result: Updated weight matrix W
Pre-training using conventional backprop;
Initialization such that A <— 0,p < 0,9 < 1;
Initial update of A;
for epoch =1 to N do
L sum < 0;
/* Update of weight W */
fori =1to M do
@ § < minibatch(Tr);
y(i) — model(w(i); W);
£ (5,9 W) + XTes (W3 Q, M, 9);
Lsum  Loum + L;
W < clip(W — nwVyL);
end
/* Update of window variable ¢ and Lagrange multiplier A */
p<p+1L;
if Lsum > E?an Or P = Pmax then
g < g+Ay
A= X+mes (W, g);
p<0;
Lim — Lium>
else
| LB < Lsums
end

end

A.3 Quantization kinetics with gradually vanishing unconstrained-weight window
We consider the gradually vanishing unconstrained-weight window in addition to the kinetics of
update of weights and lagrange multipliers in Egs. and (@). Given that the update frequency of the

unconstrained-weight window variable g is equal to that of the Lagrange multipliers, its time constant
equals 7.

- — Tx Y0, (8)

where gy = 1 when g < 10, and g9 = 10 otherwise. Regarding the Lagrangian function £ as a
Lyapunov function of W, A, and g, Eq. @) should be modified as follow.
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Plugging Egs. (1), (), and (8) into Eq. (9) yields
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The gradients in Eq. (I0) can be calculated using Eqgs. (8), (9), and (I0) as follows.
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Given that ducs; /Ow; = 0 holds for any w; value because of € — 0%,
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The gradient 9L /0g is non-zero only if a given weight w; satisfies |w; — m; + €| = % (gj+1 — ¢j)

The probability that w; at a given time satisfies the equality for a given g should be very low.
Additionally, regarding the discrete change in g in the actual application of the algorithm, the
probability is negligible. Thus, this gradient can be ignored hereafter. Therefore, Eq. (I0) can be
re-expressed as
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Distinguishing the weights belonging to the unconstrained-weight window D,,., from the others at a
given time ¢, Eq. (T4) can be written by
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Figure 1: Weight-ternarization kinetics of ResNet-18 on ImageNet

A.4 Quantization Kinetics in the discrete time domain

We monitored the population changes of weights near given quantized weight values for ResNet-18
on ImageNet with ternary-weight constraints. Fig. [I|shows the population changes of weights near -1,
0, and 1 upon the update of the unconstrained-weight window variable g. As such, the variable g was
updated such that Ag = 1 when g < 10, and Ag = 10 otherwise. Step-wise increases in populations
upon the increase of g are seen, indicating the obvious effect of the unconstrained-weight window on

weight-quantization kinetics.

A.5 Hyperparameters

The hyperparameters used are listed in Table[T] The weight- and multiplier-learning rates are denoted
by nw and 7y, respectively. The weight decay rate (L2 regularization) is denoted by wd.

Table 1: Hyperparameters used.

AlexNet ResNet-18
nwo M wd batchsize nw 7y  wd batchsize
Binary _3
Onzegil?rs{lift 1074 5x 107% 256 1073 1074 10~* 256
- —4
Two-bit shift '
ResNet-50 GoogleNet
nw o M wd batchsize 7w 7y  wd Dbatch size
Binary _3
Ternar 10
One bit shift 10-4 1074 128 10~* 1074 10~* 256
i 104

Two-bit shift




A.6 Computational complexity

CBP is a post-training method so that this number of FLOPs is an additional computational complexity
to the pre-training using backprop.

#FLOPs for CBP = (#FLOPs for weight update) + (#FLOPs for Lagrange multiplier update), where
#FLOPs for weight update = (#FLOPs for loss evaluation) + (#FLOPs for error-backpropagation).

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + (#FLOPs for constraint contribution
calculation )\Tcs).

The number of FLOPs for the latter scales with the number of parameters in total (n,,) because each
parameter is given a set of A and ¢s. The number of multiplication A x cs; (w;) is the same as the
number of parameters (n,,).The calculation of cs; for a given w; involves six FLOPs according to
Egs. (8)-(10). Therefore,

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + 6n,,.

As for conventional backprop, the number of FLOPs for weight update (using error-backpropagation)
approximately equals the number of FLOPs for forward propagation. Therefore,

#FLOPs for weight update = 2 x (#FLOPs for forward propagation) + 6n,,

The Lagrange multiplier update for each multiplier involves one multiplication (7, X c¢s;) and one
addition (\; < \; + mxcs;), but uses c¢s; that has been calculated already when calculating the loss
function. Therefore,

#FLOPs for Lagrange multiplier update = 2n,,.

It should be noted that the multiplier is updated merely a few times during the entire training period:
less than 20 percent of the training epochs, which is parameterized by p.

Therefore, we have

#FLOPs for CBP = 2(#FLOPs for forward propagation) + 2(p + 3)n.,

The number of FLOPs for CBP for three models (for p = 0.2) is shown below.

AlexNet: #FLOPs for CBP ~ 1.82G, and #FLOPs for BP ~ 1.45G (i.e., 25% increase in #FLOPs)
ResNet18: #FLOPs for CBP ~ 3.69G, and #FLOPs for BP =~ 3.62G (i.e., 2% increase in #FLOPs)
ResNet50: #FLOPs for CBP =~ 7.89G, and #FLOPs for BP = 7.74G (i.e., 2% increase in #FLOPs)

B Additional Data

B.1 Extra Data

Processes of learning quantized weights in AlexNet, ResNet-18, ResNet-50, and GoogLeNet are
shown in Fig. 2] 3] [ and[5] respectively.
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Figure 2: Learning quantized weights in AlexNet
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Figure 3: Learning quantized weights in ResNet-18
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Figure 4: Learning quantized weights in ResNet-50
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Figure 5: Learning quantized weights in Googl.eNet
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