
Application: Compressed Sensing with left-d-regular Graphs
Following Algorithm 1, we partition the indices into the columns. We select     ones per 
column using Gumbel top-K operators. We unroll algorithms of the form:
                                        , where       denotes hard thresholding and    denotes the median 
operation. Our method leads to faster convergence (left) and better reconstruction (right) 
than when using a random     .

Learning Structured Sparse Matrices for Signal Recovery via Unrolled Optimization

Short Summary
In this paper, we propose a method for learning sparse, structured 
measurement operators for signal recovery in linear inverse problems. 
Our method fuses unrolled optimization with Gumbel 
reparametrizations. We demonstrate the flexibility of our method and 
show that it can improve upon the standard regimes based on 
randomness in two compressed sensing scenarios.
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Problem Statement
We consider linear inverse problems, where we have:

1. An unknown signal     drawn from a distribution, of which 
we have access to a database (training set)

2. A set of admissible linear operators                              
which follow the hardware/physics requirement of the 
measurement process

3. A parametrized reconstruction function                         that 
takes measurements and returns the recovered signal

4. A differentiable loss function                               in signal 
space

Want to find measurement operator and parameters of reconstruction 
function that optimize signal recovery over the expectation of the 
signals distribution:
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Our Method:
We propose the use of unrolled optimization in 
conjunction with Gumbel reparametrizations to learn 
sparse structured measurement matrices for signal 
recovery.

Consider the set of possible indices of the measurement 
operator                                  . We partition this index 
set and apply a Gumbel top-K reparametrization on each 
set in the partition. This results in a binary matrix that 
can be used in any autograd framework to construct the 
measurement operator. 

Background & Related Work
Unrolled optimization is a technique in which the computational 
graph of iterative optimization algorithm is unrolled to yield a neural 
network. This allows back-propagating with regards to parameters 
involved in the convex optimization scheme. We use unrolled IHT [1] 
and NA-ALISTA [2] in our experiments.

Gumbel reparametrizations [3,4,5] are a technique for estimating 
gradients in computational graphs which include nodes that are 
categorical random variables.
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Application: Single Pixel Imaging
Following Algorithm 1, we partition the indices into the rows of the measurement operator, 
and select     pixels per row. We unroll algorithms of the form:
By learning a measurement operator that adapts to the dataset structure, our method 
improves the reconstruction (left). Our method decreases the number of iterations required 
(top right) and the number of measurements required (bottom right) compared to a random 


