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In this Supplementary Material, we provide:
• More details about the MLP-based denoising network, de-
noted as 𝑓𝜃 , in the TPEM. This is mentioned in the “Method-
ology” part (§ 3.2.2) of the main paper.

• More experiments and ablation studies on the TextZoom
Dataset. This is mentioned in the “Experiments” part (§ 4.4)
of the main paper.

• More visualization results on the dataset we built. This is
also mentioned in the “Experiments” part (§ 4.1, 4.2) of the
main paper.

A DETAILS OF THE DENOISING NETWORK
In this section, we present a detailed description of the denoising
network, denoted as 𝑓𝜃 , employed in the TPEM. In prevalent diffu-
sion models applied to tasks such as Single Image Super-Resolution
(SISR) [10, 28] and image deblurring [26, 38], where the network
is designed to process images, researchers often opt for the U-Net
architecture [27] as the denoising network. However, in our work,
the TPEM is designed to enhance the primary text prior, which is
a recognition probability sequence. To achieve this objective, we
introduce an MLP-based architecture. The input to 𝑓𝜃 consists of
three components: the noisy text prior at timestep 𝑡 (denoted as 𝑥𝑡 ),
the primary text prior extracted from low-resolution (LR) images
(denoted as 𝑃 l), and the timestep (denoted as 𝑡 ). Of these inputs, 𝑃 l
is concatenated with 𝑥𝑡 along the second dimension, serving as a
conditioning factor for the denoising process. To reduce the dimen-
sion and obtain the fused feature 𝑥0𝑡 , we employ a 1D convolutional
layer with a kernel size of 1 × 1. Simultaneously, the timestep 𝑡 is
encoded into a time embedding (denoted as 𝑡𝑒 ) using a positional
encoding module [33]. Subsequently, we utilize four MLP blocks to
refine the feature based on the time embedding, with the output of
the final MLP layer representing the denoised feature at timestep
𝑡 , which is also the input for timestep 𝑡 − 1. For a comprehensive
overview of the architecture of 𝑓𝜃 , please refer to Table 1.

B MORE EXPERIMENTS ON TEXTZOOM
In this section, we conduct more experiments and ablation studies
on the TextZoom benchmark [35] to further demonstrate that our
proposed Prior-Enhanced Attention Network (PEAN) can serve
as an effective alternative for scene text image super-resolution
(STISR). TextZoom [35] is a common benchmark for STISR, con-
taining 17367 and 4373 paired LR-HR images collected in natural
scenarios for training and testing, respectively. According to the
degree of blurriness, the testing set is divided into three subsets,
namely easy (1619 pairs), medium (1411 pairs) and hard (1343 pairs).
The sizes of LR and HR images are 16× 64 and 32× 128 respectively.
Noteworthy, following the common practice in existing works, in
this paper, the reported “Average” results are the weighted average

Table 1: Architecture of the MLP-based denoising network. 𝑁
is the size of themini-batch. Grey rows show the components
of MLP Block 1, similar to MLP Block 2, 3 and 4.

Input Input size Output Output size Module / Operation
𝑥𝑡 [𝑁 , 26, 37]

𝑥0𝑡 [𝑁 , 52, 37] Concatenate
𝑃 l [𝑁 , 26, 37]
𝑥0𝑡 [𝑁 , 52, 37] 𝑥0𝑡 [𝑁 , 26, 37] Convolution
𝑡 [𝑁 , 1] 𝑡𝑒 [𝑁 , 1, 26] Positional Encoding
𝑥0𝑡 [𝑁 , 26, 37] 𝑥0𝑡 [𝑁 , 26, 37] Batch Normalization
𝑥0𝑡 [𝑁 , 26, 37] 𝑥0𝑡 [𝑁 , 26, 148] Linear
𝑥0𝑡 [𝑁 , 26, 148] 𝑥0𝑡 [𝑁 , 26, 148] Swish [25] Function
𝑡𝑒 [𝑁 , 1, 26] 𝑡𝑒 [𝑁 , 26, 1] Linear & Reshape
𝑥0𝑡 [𝑁 , 26, 148]
𝑡𝑒 [𝑁 , 26, 1] 𝑥1𝑡 [𝑁 , 26, 148] Repeat & Add

𝑥1𝑡 [𝑁 , 26, 148]
𝑥2𝑡 [𝑁 , 26, 296] MLP Block 2

𝑡𝑒 [𝑁 , 1, 26]
𝑥2𝑡 [𝑁 , 26, 296]

𝑥3𝑡 [𝑁 , 26, 148] MLP Block 3
𝑡𝑒 [𝑁 , 1, 26]
𝑥3𝑡 [𝑁 , 26, 148]

𝑥𝑡−1 [𝑁 , 26, 37] MLP Block 4
𝑡𝑒 [𝑁 , 1, 26]

on the three subsets of TextZoom, which is formulated as:

Accavg =
Acc𝑒 · 𝑁𝑒 + Acc𝑚 · 𝑁𝑚 + Accℎ · 𝑁ℎ

𝑁𝑒 + 𝑁𝑚 + 𝑁ℎ

, (1)

where Acc𝑒 , Acc𝑚 and Accℎ denote the recognition accuracy on
the “easy”, “medium” and “hard” subsets respectively. 𝑁𝑒 , 𝑁𝑚 and
𝑁ℎ denote the number of images in the corresponding subset. For
TextZoom, 𝑁𝑒 = 1619, 𝑁𝑚 = 1411, 𝑁ℎ = 1343.

B.1 Recognition Accuracy of SOTA Recognizers
Following the common practice of existing works, in § 4.3 of the
main paper, we introduce the recognition accuracy of SR images on
three classic scene text recognizers, i.e., ASTER [30], MORAN [20]
and CRNN [29] for evaluation, and our proposed PEAN achieves
new SOTA results with substantial performance improvement. Here
we employ three recent Transformer-based recognizers, i.e., MGP-
STR [34], ABINet [9] and VisionLAN [36] for further evaluation
to demonstrate the robustness of PEAN. The results are shown in
Table 2, fromwhich we can conclude that PEAN can still achieve the
SOTA performance under the evaluation of recent recognizers. This
further justifies that PEAN can surely increase both the resolution
and readability of scene text images, regardless of which recognizer
we choose for evaluation.

B.2 Quality of SR Images
Following the common practice of previous works, we use the
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity
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Table 2: The recognition accuracy of some mainstream STISR methods by three recent scene text recognizers on the three
subsets of TextZoom. The best scores are shown in bold. Note that as to methods used for comparison, we adopt the pre-trained
model released by their authors for evaluation.

Methods Accuracy of MGP-STR [34] (%) Accuracy of ABINet [9] (%) Accuracy of VisionLAN [36] (%)
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

LR 73.4 59.9 45.9 60.6 77.4 58.4 43.5 60.9 74.6 53.3 39.5 56.9
TSRN [35] 67.3 58.7 42.7 57.0 76.2 61.4 44.8 61.8 75.2 58.3 42.7 59.8
TBSRN [4] 72.3 62.9 45.9 61.2 80.2 65.6 48.3 65.7 78.1 62.7 45.3 63.1
TG [5] 71.7 64.7 46.3 61.6 79.8 67.1 49.1 66.3 78.2 63.9 44.3 63.2

TATT [22] 71.3 61.7 45.9 60.4 81.0 65.8 50.0 66.6 79.7 63.9 47.8 64.8
C3-STISR [44] 73.6 63.3 47.8 62.4 81.4 66.2 49.9 66.8 81.0 65.0 47.2 65.5
LEMMA [12] 73.8 65.8 48.6 63.5 83.3 69.5 52.7 69.4 81.7 68.3 49.9 67.6

PEAN 76.5 68.4 52.2 66.4 86.3 73.1 56.5 72.9 83.9 71.3 53.2 70.4
HR 85.2 81.8 76.1 81.3 94.9 90.6 82.7 89.8 94.7 88.8 80.0 88.3

P: 21.89 / S: 0.2931

P: 21.02 / S: 0.1632

LR

SR

HR

P: 20.24 / S: 0.2876

P: 17.41 / S: 0.1400

P: 21.06 / S: 0.3029

P: 18.80 / S: 0.1657

P: 18.47 / S: 0.3343

P: 17.54 / S: 0.2661

Figure 1: Visualizations about cases where SR images have
lower PSNR and SSIM than LR images. “P” and “S” stand for
“PSNR” and “SSIM” respectively.

Index Measure (SSIM) [37] metrics, which are widely utilized in the
classic SISR task, to evaluate the quality of SR images. The results
presented in Table 3 shows that the quality of SR images generated
by our proposed PEAN is comparable to existing works.

Different from SISR, which aims at improving the image quality
of LR natural images, STISR concentrates more on increasing the
readability of scene text images [35, 45]. Therefore, PSNR and SSIM
areNOT the most suitable metrics for STISR because we empirically
find that readability is not closely related to image quality. Firstly,
as shown in Figure 1, it is common that LR images have higher
PSNR or SSIM than SR images. However, it is very difficult for
us to distinguish text in images if we are given such LR images,
but SR images generated by our proposed PEAN make this task
easier. Therefore, methods with high PSNR or SSIM values do not
necessarily produce readable images, and vice versa.

Secondly, some inherent drawbacks of TextZoom [35] make it
unreasonable to adopt PSNR and SSIM for evaluation if we conduct
experiments on this dataset. We roughly divide them into three cat-
egories, i.e., difference of the background color, low-quality HR im-
ages and cutting out of position, as presented in Figure 2. Figure 2(a)
is a representative example of the “difference of the background
color” drawback, because it is evident that the background color of
LR images is quite different from that of HR images, which further
results in SR images with different backgrounds than HR images.
Since PSNR and SSIM are full-reference image quality assessment
metrics [2], and HR images are used for reference, this difference
has a huge negative impact on the values of PSNR and SSIM for SR
images. Figure 2(b) shows another drawback, i.e., “low-quality HR
images”. We can find that for these image pairs, the quality of the

LR

SR

HR

(a) (b) (c) (d)

Figure 2: Visualizations of drawbacks of TextZoom.

HR image is even worse than that of the LR image. Therefore, PSNR
and SSIM cannot serve as appropriate evaluation metrics because,
for these images, higher PSNR and SSIM mean poorer SR results.

Another common drawback of TextZoom, namely “cutting out
of position”, is illustrated in Figure 2(c, d). According to Wang et
al. [35], TextZoom is constructed by cutting scene text images of
different resolutions from the RealSR [3] and SRRAW [41] datasets.
This manual process inevitably causes misalignment as shown in
Figure 2(c, d). Since HR images are used as reference images, and
PSNR and SSIM are only calculated at the pixel level, their values
will not be high regardless of the clarity of the SR results.

Aside from our analysis, some recent works [12, 17] on STISR
also find the same issue. Guo et al. [12] state that their proposed LEM
concentrates more on the restoration of the character areas instead
of the background areas, which occupies most of a scene text image,
so there will be a reduction of PSNR and SSIM. Liu et al. [17] also
draw a conclusion that PSNR and SSIM are only partially aligned
with human perception when evaluating the quality of scene text
images. In a word, we claim that the recognition accuracy of scene
text recognizers is the most suitable evaluation metric for STISR.
PSNR and SSIM are not reliable due to their inherent full-reference
property and the intrinsic drawbacks of the TextZoom dataset.
Thus, values of PSNR and SSIM are only provided for reference.
Low PSNR and SSIM do not necessarily mean the model is not
powerful enough in STISR.

B.3 Additional Ablation Study
Here we provide more ablation studies to thoroughly analyze the
effectiveness of each module we propose, thereby demonstrating
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Table 3: The PSNR and SSIM of some mainstream STISR methods on the three subsets of TextZoom. Best scores are bold.

Methods PSNR SSIM
Easy Medium Hard Average Easy Medium Hard Average

TSRN [35] 25.07 18.86 19.71 21.42 0.8897 0.6676 0.7302 0.7690
TSRGAN [8] 24.22 19.17 19.99 21.29 0.8791 0.6770 0.7420 0.7718
TBSRN [4] 23.82 19.17 19.68 21.05 0.8660 0.6533 0.7490 0.7614
PCAN [43] 24.57 19.14 20.26 21.49 0.8830 0.6781 0.7475 0.7752
TG [5] 23.34 19.66 19.90 21.10 0.8369 0.6499 0.6986 0.7341

TPGSR [21] 24.35 18.73 19.93 21.18 0.8860 0.6784 0.7507 0.7774
TATT [22] 24.72 19.02 20.31 21.52 0.9006 0.6911 0.7703 0.7930

C3-STISR† [44] 21.78 18.49 19.60 20.05 0.8529 0.6465 0.7125 0.7432
LEMMA† [12] 23.56 18.94 19.63 20.86 0.8748 0.6869 0.7486 0.7754

PEAN 23.76 19.53 20.20 21.30 0.8655 0.6795 0.7287 0.7635

the reasonableness and superiority of our proposed PEAN. Con-
sistent with the main paper, all the experiments are conducted on
TextZoom [35] andwe report the recognition accuracy of ASTER [30].

B.3.1 Ablation Study on the TPEM.
Paradigm and Network Architecture. Our proposed TPEM

is a diffusion-based module that employs an MLP-based denois-
ing network, denoted as 𝑓𝜃 . In contrast, many researchers in this
field tend to utilize the U-Net architecture [27] as the denoising
network in mainstream diffusion models [10, 26, 28, 38]. Therefore,
we conduct experiments to demonstrate the suitability of the MLP
architecture for processing the recognition probability sequence.
Additionally, we compare the diffusion-based paradigm with the
traditional regression-based paradigm. In the regression-based ap-
proach, the denoising network takes the primary text prior, denoted
as 𝑃 l, as input and generates the ETP, denoted as 𝑃e. The architec-
tures of networks used in both paradigms are similar, with the key
difference being that the only input of the network is 𝑃 l under the
regression-based paradigm. The results presented in Table 4 indicate
the following: (1) For both diffusion-based and regression-based
methods, the MLP is more suitable than the U-Net for process-
ing the recognition probability sequence. (2) The diffusion-based
method outperforms the regression-based method, especially when
employing MLP as the denoising network. This superiority can
be attributed to the powerful distribution mapping capabilities of
diffusion models [39].

Table 4: Ablation study about the paradigm and network
architecture of TPEM.

Methods Easy Medium Hard Average
Regression (U-Net) 80.0 64.9 46.5 64.8
Regression (MLP) 80.9 65.5 47.2 65.6
Diffusion (U-Net) 79.6 65.3 46.9 64.9
Diffusion (MLP) 84.5 71.4 52.9 70.6

Loss Functions. As demonstrated in § 3.2.2 of the main paper,
the optimization process in the TPEM is supervised through the
†Considering that the paper of C3-STISR [44] and LEMMA [12] only offers the average
value, we measure the PSNR and SSIM of the publicly available pre-trained models to
report values on the three subsets.

utilization of the MAE and CTC loss [11]. In this part, we conduct
experiments to validate the choice of the loss functions. In addition
to the aforementioned losses, we also introduce the Kullback-Leibler
(KL) divergence loss in this experiment. Its purpose is to minimize
the discrepancy between the ETP (referred to as 𝑃e) and TP-HR
(denoted as 𝑃h). The results, as presented in Table 5, reveal the
following insights: (1) The MAE loss, a fundamental component
introduced in the pioneering work of diffusion models [13], proves
to be essential. Combining the MAE loss with either the KL diver-
gence loss or the CTC loss leads to an improvement in performance.
(2) In our work, the introduction of the CTC loss provides an im-
provement in performance with +4.8 compared with employing
the MAE loss only. This combined loss results in a more refined
𝑃e, which in turn plays a pivotal role in guiding the SR network to
generate images with enhanced semantic accuracy.

Table 5: Ablation study about the loss function for TPEM.

Loss Functions Easy Medium Hard Average
MAE 80.5 65.8 48.0 65.8
KL 79.9 65.2 47.0 65.1

CTC [11] 82.0 69.0 51.5 68.4
MAE + KL 83.9 70.0 51.2 69.4

MAE + CTC [11] 84.5 71.4 52.9 70.6

Sampling Strategy and Timestep. To strike a balance between
performance and efficiency, we exploit the sampling strategy pro-
posed in DDIM [31] in the sampling process of the TPEM, with
a timestep value of 𝑆 = 1. As demonstrated by Song et al. [31],
the traditional sampling strategy of the DDPM [13] with a large
number of steps (𝑇 steps, where 𝑇 ≫ 𝑆) can be exceedingly time-
consuming. In this section, we conduct experiments to validate the
effectiveness and efficiency of our proposed PEAN with the chosen
sampling strategy and timestep.

Initially, we perform experiments using the sampling strategy of
DDPM [13] while varying the timestep, selecting four different val-
ues for our experiments. The results presented in Table 6 reveal that
this sampling strategy is not efficient. Subsequently, we substitute
such sampling strategy with the one proposed in [31]. As demon-
strated by Song et al. [31], with this strategy, smaller timesteps will
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Table 6: The performance of PEAN with the sampling strat-
egy of the DDPM [13] under different sampling timesteps.
“Duration” is the time the model takes to process an image.

Timesteps Easy Medium Hard Average Duration (s)
𝑇 = 200 80.2 66.2 48.8 66.0 0.29
𝑇 = 500 82.4 66.3 47.9 66.6 0.66
𝑇 = 1000 80.0 65.7 48.3 65.7 1.11
𝑇 = 2000 80.7 66.1 49.1 66.3 2.15

result in equal or even superior performance, prompting us to ex-
plore five different timesteps in this set of experiments. The results
showcased in Table 7 verify that this modified sampling strategy
speeds up the inference phase of the model. Additionally, compared
with 𝑇 = 500, which yields the best performance for DDPM in our
experiments, PEAN exhibits an improvement in performance by
approximately +4.0 in average with this kind of sampling strategy.

Table 7: The performance of PEAN with the sampling strat-
egy of the DDIM [31] under different sampling timesteps.
“Duration” is the time the model takes to process an image.

Timesteps Easy Medium Hard Average Duration (s)
𝑆 = 1 84.5 71.4 52.9 70.6 0.04
𝑆 = 5 79.7 65.9 46.8 65.1 0.09
𝑆 = 10 81.7 69.4 50.6 68.2 0.10
𝑆 = 100 83.2 69.0 50.7 68.6 0.19
𝑆 = 500 82.4 68.5 50.5 68.1 0.68

Furthermore, we compare the efficiency of our proposed PEAN
with other mainstream text prior-based STISR methods [12, 21, 22,
40, 44]. The results displayed in Table 8 demonstrate that PEAN is
on par with TPGSR [21], TATT [22] and C3-STISR [44] in terms of
speed, while achieving an average performance improvement of
+6.5. It even outperforms the two recent works, i.e., LEMMA [12]
and RTSRN [40], in both speed and performance. In summary, our
proposed PEAN stands as an effective and efficient solution when
compared to previous works.

Table 8: The performance of the mainstream text prior-based
STISR methods. “Duration” is the time the model takes to
process an image.

Methods Easy Medium Hard Average Duration (s)
TPGSR [21] 78.9 62.7 44.5 62.8 0.03
TATT [22] 78.9 63.4 45.4 63.6 0.02

C3-STISR [44] 79.1 63.3 46.8 64.1 0.03
LEMMA [12] 81.1 66.3 47.4 66.0 0.07
RTSRN [40] 80.4 66.1 49.1 66.2 0.10

PEAN 84.5 71.4 52.9 70.6 0.04

B.3.2 Ablation Study on the AMM.
Necessity of LAM and GAM. Strip-wise attention and its

variants have found application across various computer vision

tasks [6, 14, 32]. However, many of these approaches focus solely
on local horizontal and vertical attention, neglecting the incorpora-
tion of global contextual information. This study aims at justifying
the indispensability of simultaneously employing both LAM and
GAM in the STISR task. Table 9 illustrates the following key obser-
vations: (1) Upon removing both LAM and GAM, the model exhibits
trivial performance. Notably, the addition of LAM improves net-
work performance by +1.9, while the inclusion of GAM results in a
further +3.0 improvement. This underscores the effectiveness of
the self-attention mechanism as a component of the feature extrac-
tor. (2) Utilizing LAM or GAM alone yields limited performance
gains. However, the combination of LAM and GAM results in a
substantial performance improvement of +10.1. This underlines
the complementary nature of signals brought by LAM and GAM to
the feature extractor. The reason is that LAM can effectively extract
features on a per-character basis, while GAM facilitates interaction
between characters, enhancing the ability of the model to learn the
semantics of text in images.

Table 9: Analysis on the necessity of LAM and GAM.

LAM GAM Easy Medium Hard Average
75.5 60.4 42.5 60.5

✓ 76.8 62.7 44.6 62.4
✓ 78.5 63.0 45.8 63.5

✓ ✓ 84.5 71.4 52.9 70.6

Number of Blocks. In this part, we evaluate how the number of
blocks in the AMM affects the performance of our model. According
to results illustrated in Table 10, we find that when𝑁 = 6, the model
achieves overall the best performance. Therefore, we empirically
choose 𝑁 = 6 as the default setting for all the experiments in the
main paper and this Supplementary Material.

Table 10: Analysis on the number of blocks in the AMM.

𝑁 Easy Medium Hard Average
1 81.9 67.4 48.0 66.8
2 82.8 67.9 50.6 68.1
3 83.4 68.0 50.3 68.3
4 83.8 70.5 53.1 70.1
5 84.3 70.4 53.3 70.3
6 84.5 71.4 52.9 70.6
7 84.2 71.0 52.9 70.3
8 83.1 69.1 51.2 68.8

B.3.3 Ablation Study on the MTL Paradigm.
Features Serving as the Input of the ARM. As shown in

Figure 2 of the main paper, in the training phase, the output feature
of the AMM, i.e., the output of the 𝑁 th block (𝑁 = 6 in our paper)
is sent to the ARM. Then the ARM extracts features to perform
the text recognition task in the MTL paradigm. In this part, we
investigate the most proper input feature for the ARM. As presented
in Table 11, we can find that: (1) Even without the ARM and the
MLT paradigm, our proposed PEAN can attain the performance
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of 67.9 on average, surpassing the current SOTA method [17] by
+1.5. This reveals that the ARM and the MTL paradigm employed
in our proposed PEAN are not the sole components contribute to
the SOTA performance. (2) The adoption of the ARM can truly
facilitate the training process, bringing an additional improvement
in performance by +2.7. (3) However, if the inappropriate feature
is sent into the ARM, the performance is even worse than that
without the ARM. Our experiments show that sending the output
of the 6th block into the ARM is the best choice.

Table 11: Ablation study on features for the input of the ARM.
The first line indicates the case that we do not employ the
ARM for assistance. 𝐵𝑖 denotes the 𝑖th block of the AMM.

Input of ARM Easy Medium Hard Average
w/o ARM 81.4 68.8 50.7 67.9
𝐵1 output 79.1 64.6 47.4 64.7
𝐵2 output 84.2 69.9 51.5 69.5
𝐵3 output 80.1 65.9 45.4 64.9
𝐵4 output 79.2 64.3 47.1 64.5
𝐵5 output 80.1 64.7 45.1 64.4
𝐵6 output 84.5 71.4 52.9 70.6
SRM output 79.6 64.4 46.5 64.5

PerformanceGain from theMTLParadigm.Herewe provide
a more comprehensive comparison between the AMM and the
SRB [35]. While Table 4 in our main paper primarily compares
the AMM and the SRB under the MTL paradigm, we conduct an
additional comparison by excluding such paradigm. The results
are presented in Table 12. Our findings indicate the following: (1)
Without the MTL paradigm, the AMM still outperforms the SRB
by an average of +4.2. The introduction of it leads to an additional
improvement of +1.7. (2) The utilization of the MTL paradigm
contributes to an improvement of performance for both the AMM
and the SRB. Notably, the combination of the AMM and the MTL
paradigm yields superior performance.

Table 12: Comparison between the AMM and the SRB.

Modules MTL Easy Medium Hard Average

SRB [35] 79.1 62.7 46.1 63.7
✓ 80.1 64.4 46.4 64.7

AMM 81.4 68.8 50.7 67.9
✓ 84.5 71.4 52.9 70.6

Given that the MTL paradigm can potentially enhance other
STISRmethods, we introduce it into previous text prior-based STISR
methods [12, 21, 22, 40, 44]. This exploration aims to validate the
uniqueness of PEAN, as simply integrating the MTL paradigm with
existing approaches cannot yield significant performance improve-
ments. In line with our proposed PEAN, we input the output of the
last block of the SRB (or MSRB for RTSRN [40]) from these models
into the ARM and apply the MTL paradigm during training.

The results presented in Table 13 highlight a distinctive pat-
tern: the ARM does not consistently improve the performance of

Table 13: Performance of other mainstream text prior-based
models when they are equipped with the MTL paradigm.

Methods MTL Easy Medium Hard Average

TPGSR [21] 78.9 62.7 44.5 62.8
✓ 0.01 0.03 0.01 0.02

TATT [22] 78.9 63.4 45.4 63.6
✓ 78.9 63.3 44.7 63.4

C3-STISR [44] 79.1 63.3 46.8 64.1
✓ 79.9 63.4 46.4 64.3

LEMMA [12] 81.1 66.3 47.4 66.0
✓ 76.2 59.0 43.9 60.7

RTSRN [40] 80.4 66.1 49.1 66.2
✓ 73.0 56.3 36.9 56.5

other text prior-based STISR methods. In certain instances, the
inclusion of the MTL paradigm even leads to a degradation in per-
formance. This observation underscores the idea that the MTL par-
adigm, which is integral to the optimization phase of our proposed
PEAN, are not universally beneficial components for achieving su-
perior performance across all the STISR methods. Its effectiveness
in boosting STISR performance is realized specifically when used
in conjunction with our proposed PEAN.

B.3.4 Ablation Study on the Loss Functions.
Performance Gain from the SFM Loss. In the optimization

phase of PEAN, we incorporate the SFM loss [5], a loss function
not utilized by previous text prior-based methods. To assess the
efficacy of it, we conduct experiments by introducing it into the
optimization phase of established text prior-based STISR meth-
ods [12, 21, 22, 40, 44]. This analysis aims to demonstrate that the
SFM loss alone is insufficient to achieve superior performance, un-
derscoring the necessity of developing PEAN. Considering that
LEMMA [12] and RTSRN [40] employ the text-focus loss [4], a
loss function working similar with the SFM loss, we deliberately
abandon the text-focus loss when training these two models dur-
ing our experiments. The results presented in Table 14 confirm
our argument, showing that simply introducing the SFM loss into
existing methods does not yield significant performance improve-
ments. Additionally, our experiments demonstrate the rationality
of incorporating the SFM loss into the optimization of PEAN. This
integration proves beneficial, contributing to an observable perfor-
mance boost for PEAN.

Weights of the Loss Functions. In this part, we conduct ex-
periments to find out the best values of weights of the five loss
functions, i.e., 𝜆1 to 𝜆5 in the main paper. Taking weights in pre-
vious works into account [5, 35, 44], we select 𝜆3 in [0, 1] with an
interval of 0.2. Similarly, 𝜆4 is selected in [0, 100] with an interval
of 25. 𝜆1, 𝜆2 and 𝜆5 are selected in [0, 2] with an interval of 0.5. The
results are presented in Figure 3, from which we can find that the
best combination of the weight of each loss is 𝜆1 = 1.0, 𝜆2 = 1.0,
𝜆3 = 0.8, 𝜆4 = 75 and 𝜆5 = 1.0. Too low or too high weights will
lead to trivial performance. Therefore, we choose 𝜆1 = 1.0, 𝜆2 = 1.0,
𝜆3 = 0.8, 𝜆4 = 75 and 𝜆5 = 1.0 as the default setting of weights of
the losses in the main paper and this Supplementary Material.
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Figure 3: Ablation study on the weight of five loss functions. We report the average recognition accuracy calculated by Eq. (1).

Table 14: Performance of other mainstream text prior-based
models when they are equipped with the SFM loss [5].

Methods SFM Loss Easy Medium Hard Average

TPGSR [21] 78.9 62.7 44.5 62.8
✓ 74.9 60.1 41.3 59.8

TATT [22] 78.9 63.4 45.4 63.6
✓ 78.3 62.3 46.3 63.3

C3-STISR [44] 79.1 63.3 46.8 64.1
✓ 79.6 63.9 46.5 64.4

LEMMA [12] 81.1 66.3 47.4 66.0
✓ 76.2 62.4 43.8 61.8

RTSRN [40] 80.4 66.1 49.1 66.2
✓ 1.1 2.8 1.9 1.9

B.3.5 Ablation Study on Other Modules and Settings.
Kind of Shallow Feature Extractor. As shown in Figure 2 of

the main paper, a single convolutional layer is applied to extract
the shallow feature 𝐹 s. Recently, CNN-Transformer-based archi-
tecture is widely adopted in SISR [16, 19, 42], so here we perform
experiments to adopt CNN-Transformer-based modules as Shallow
Feature Extractors. As presented in Table 15, it is surprising to
find that a single convolutional layer is enough for shallow feature
extraction. Redundant ViT layers only make the model difficult
to optimize and degrade the SR performance. Therefore, we use a
single convolutional layer as the shallow feature extractor.

Table 15: Analysis on kind of the shallow feature extractor.

Extractors Easy Medium Hard Average
Conv only 84.5 71.4 52.9 70.6

Conv + ViT [7] 77.9 62.4 43.7 62.4
Conv + Swin [18] 76.5 62.1 44.0 61.9

Performance Gain from the Pre-training Process. As dis-
cussed in § 4.2 of the main paper, our proposed PEAN involves
an initial phase where we exclude the TPEM and pre-train the
model using TP-HR. Subsequently, the TPEM is introduced, and the
weights of parameters obtained from the pre-training phase are ini-
tialized for the ongoing fine-tuning process. In this part, we conduct
experiments aimed at investigating the impact of this configuration.

We also extend this approach to established text prior-based STISR
methods [12, 21, 22, 40, 44] to demonstrate that the pre-training
process alone does not result in a substantial performance improve-
ment for these methods, highlighting the necessity of proposing
PEAN. The results shown in Table 16 affirm our argument. Notably,
even without the pre-training process, our proposed PEAN outper-
forms the SOTA STISR method, i.e., TextDiff [17], by an average of
+1.1. The inclusion of the pre-training process setting leads to an
additional improvement of +3.1.

Table 16: Performance of the mainstream text prior-based
models when equipped with the pre-training process.

Methods Pre-training Easy Medium Hard Average

TPGSR [21] 78.9 62.7 44.5 62.8
✓ 77.6 61.4 43.6 61.9

TATT [22] 78.9 63.4 45.4 63.6
✓ 79.5 63.4 45.9 64.0

C3-STISR [44] 79.1 63.3 46.8 64.1
✓ 77.8 60.5 43.4 61.7

LEMMA [12] 81.1 66.3 47.4 66.0
✓ 81.7 67.3 48.5 66.9

RTSRN [40] 80.4 66.1 49.1 66.2
✓ 79.1 62.9 45.9 63.7

82.5 67.8 49.0 67.5PEAN
✓ 84.5 71.4 52.9 70.6

Compatibility with different TPGs.We adopt the pre-trained
PARSeq [1] as the TPG, which is stronger than the CRNN [29]
applied in [21, 22, 40, 44] and the ABINet [9] employed in [12].
For a fair comparison, we conduct experiments wherein CRNN,
ABINet and PARSeq are introduced as the TPG respectively in these
works. Notably, as depicted in Figure 2 of [12], LEMMA relies on the
attentionmap sequence generated by the TPG for character location
enhancement. However, CRNN is not an attention-based TPG and
is unsuitable for LEMMA. To address this, we treat the output of
the last convolutional layer in CRNN as the pseudo attention map
and apply several linear layers to adjust its dimensions.

The results presented in Table 17 demonstrates that our proposed
PEAN exhibits compatibility with the text prior generated by CRNN,
ABINet, and PARSeq. Although PARSeq [1] is more powerful than
CRNN [29] and ABINet [9], previous works fail to benefit a lot
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Table 17: Performance of the mainstream text prior-based models when they are equipped with different TPGs.

Methods CRNN [29] ABINet [9] PARSeq [1] Easy Medium Hard Average

TPGSR [21]
✓ 78.9 62.7 44.5 62.8

✓ 73.0 55.4 39.5 57.0
✓ 72.3 55.3 38.9 56.6

TATT [22]
✓ 78.9 63.4 45.4 63.6

✓ 75.4 56.6 40.5 58.6
✓ 74.1 56.6 40.6 58.2

C3-STISR [43]
✓ 79.1 63.3 46.8 64.1

✓ 72.5 54.2 38.8 56.2
✓ 75.5 56.7 38.5 58.1

LEMMA [12]
✓ 76.1 58.8 42.7 60.3

✓ 81.1 66.3 47.4 66.0
✓ 77.6 60.5 44.7 62.0

RTSRN [40]
✓ 80.4 66.1 49.1 66.2

✓ 3.3 2.9 2.2 2.9
✓ 80.2 67.5 46.3 65.7

✓ 80.8 66.1 48.6 66.2
✓ 82.2 66.0 47.7 66.4PEAN

✓ 84.5 71.4 52.9 70.6

from the text prior generated by it. However, with the pre-trained
PARSeq as the TPG, our proposed PEAN outperforms the current
SOTA text prior-based STISR method, i.e., RTSRN [40] by +4.9 on
average. When ABINet is used as the TPG, RTSRN exhibits trivial
performance, whereas PEAN continues to demonstrate superior
performance. This indicates that our proposed PEAN has good
adaptability to the text prior generated by all the three TPGs.

C VISUALIZATIONS ON OTHER DATASETS
In this section, we provide more visualization results on the dataset
we built to show the generalization of our proposed PEAN and
display it ability to restore visual structure. As mentioned in the
main paper, we employ IIIT5K [23], SVTP [24] and IC15 [15] for
evaluation. We select 651 images whose resolution is no greater
than 16 × 64 as LR images and input them directly into the PEAN
trained on TextZoom. The results are shown in Figure 4, fromwhich
we can conclude that: (1) Previous works result in artifacts, while
our proposed PEAN can address this issue. (2) Our proposed PEAN
works well in terms of images with long or deformed text, while
existing works tend to generate incorrect SR results.
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