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A NOTATIONS

Notations. In this paper, a graph with node features is denoted as G = (X, A) and X € RV jg

the feature matrix (i.e., the i-th row of X is the feature vector «; of node v;) and A € {0,1}""
denotes the adjacency matrix of G, i.e., the (7, j)-th entry in A is 1 if there is an edge between nodes ¢
and j. The degree of node i, denoted as d;, is the number of edges incident with . The degree matrix

D is a diagonal matrix and its i-th diagonal entry is d;. For a d-dimensional vector z € R?, ||z||, is
the Euclidean norm of . We use z; to denote the 7 th entry of a, and x;; for the (7, j)-th entry of X.

diag(x) € R™% s a diagonal matrix such that the i-th diagonal entry is x;. We use x; denote the
row vector of X . The trace of a square matrix X is denoted by tr(X), which is the sum along the
diagonal of X.

B PROJECTION INTO THE POINCARE BALL

Assume the output space of the graph neural network fg(+) is in the Poincaré ball ]D)f, we project the
all the node embedding to the ]D)ff as

E if||z||s% A
SRR (IO B (13)

C PROOF OF THEOREM 2

It directly follow from the transformation of random variables. Specifically, p(z) = py(f ' (z)) -
det (J(f7'(2))). Notice that for f(v) = expg(v) the inverse is logarithmic map f~'(z) =
logg(2z) = m tanh ™' (/¢ ||z||2)m The main difficulty lies with computing the Jacobian
J(f'(2)) and its determinant det (J(f “z) )), which (after crunching some maths) turns out to
enjoy a simple analytical form 0.5 A g% ' (z).

D PROOF OF LEMMA 3

d
D(X, ) =tr(X) —logdet(X) —d = Z (N —logX; —1). (14)
i=1
We usually centralize the embedding {logg(2;)}, therefore we ignore the u for brevity in Eq. (14).
We know that x — log z = 1 with equality at x = 1. and z — log x = log x + 1 — log 4 with equality
atx = 2. Given Ay = Ay++- = Ay > 0, we have:

D(XZ,u) = (logA; +1 —1log4) — (log Ag + 1)

D(XZ, 1) = (log Ay —log \g) + const (15)
Ad-1

Ad

A
+ log 24 4 const.

A A A
DX, ) = (log )\—;) + const = log )\—; + log )\—z---log by
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Let g; = Z’d\)\ and 0 < ¢; < 1, then:
DX, ) = log ot log + log + log + const
> logq, +log gy logqq_1 + logqq + c(mst
d
> Z q; log q; + const
q=1
d (16)
-D(Z,p) < — Z g; log g; + const
q=1
n—1
exp(—D(X, pu)) < exp(- Z q;log ;) + const
q=1

D(X, u) = —log Erank(X) + const.

Thus, our loss yields an upper bound on the Effective Rank.

E SETTING OF THE COLLABORATIVE FILTERING

Datasets. We use three publicly available datasets Amazon-Book, Amazon-CD, and Yelp2020, which
are also employed in the HRCF. The statistics are summarized in Table 5 in the appendix.

Baselines. Compared methods. To verify the effectiveness of our proposed method, the compared
methods include both well-known or leading hyperbolic models and Euclidean baselines. For
hyperbolic models, the HGCF (Sun et al., 2021), HVAE and HAE (Liang et al., 2018) and are
compared. HAE (HVAE) combines a (variational) autoencoder with hyperbolic geometry. Besides,
we include strong Euclidean baselines, i.e., LGCN (He et al., 2020) and NGCF (Wang et al., 2019).

Setting. To show that hyperbolic uniformity is crucial for learning the hierarchical representation, we
combine the proposed uniformity metric with the existing SOTA method (i.e., HRCF (Yang et al.,

2022)) by adding EU as an auxiliary loss. We test the model using the relevancy-based metric
Recall@20 and the ranking-aware metric NDCG@20. In order to maintain a fair comparison and
reduce the workload of our experiments, we closely adhere to the settings of HRCF (Yang et al.,
2022). Specifically, we set the embedding size to 50 and fix the total training epochs at 500. The
range of \ values in the loss function is {10, 15, 20, 25, 30}, while the aggregation order is searched
in range from 2 to 10. When it comes to the margin, we explore values within the range of {0.1, 0.15,
0.2}. To train the network parameters, we employ Riemannian SGD (Bonnabel, 2013) with weight
decay, using values from the range le-4, Se-4, le-3, along with learning rates of {0.001, 0.0015,
0.002}. RSGD is a technique that emulates stochastic gradient descent optimization while accounting
for the geometry of the hyperbolic manifold (Bonnabel, 2013). For the baseline settings of HAE,
HAVE and HGCEF, we refer the reader to (Sun et al., 2021).

Table 5: Statistics of the experimental datasets.

Dataset #User #Item #Interactions Density
Amazon-CD 22,947 18,395 422,301 0.00100
Amazon-Book 52,406 41,264 1,861,118 0.00086
Yelp2020 71,135 45,063 1,940,014 0.00047

F IMPACT OF CURVATURE c.

Since the curvature parameter c¢ controls the depth of hierarchy (height of the tree embedding), we
analyze its effect on results. The notion of height-level uniformity is related to the value of c¢: the
larger c is, the more concentration of the distribution towards the tree root. Figure 8 shows results
w.r.t. varying c. The result shows HyperGCL achieves the best result for different ¢ meaning the the
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height-level uniformity is data dependent and related to sparsity of the datasets (sparsity is indicated
in caption brackets of Figure 8), e.g., graphs with relatively larger density require smaller c.
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Figure 8: Performance w.r.t. the value of curvature c. In caption brackets, we indicate the dataset
sparsity.

G BROADER IMPACT AND LIMITATIONS

Our method enjoys impact and limitations similar to those in graph contrastive learning. Typical
GCL models cannot guarantee they can utilize the feature space efficiently due to the mode collapse
phenomenon. As we utilize the feature space more efficiently due to the Hyperbolic geometry and
the penalty preventing collapse, our model works better, delivering better prediction on graphs for the
similar computational cost. Our idea can be universally applied to other scenarios where the mode
collapse is an issue. Of course, in this work we do not study fairness or biases but we believe that
poorer utilization of the feature space in other methods can exacerbate such issues.
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