
A Proofs

Lemma A.1. Let Rllp be our risk estimator defined over p(x, ỹ) as Rllp(f) =
1

k(k+1) Ep(xk,ỹ)[ℓ(f(x),y)]. Following the assumptions in Section 3.1 from Kobayashi et al. [27],
our proposed method is risk-consistent.

Proof. In Kobayashi et al. [27], it is shown that the risk R in classical multi-class classification can
be reduced to a risk Rrc over p(xk, ỹk) as shown in Equation 1 in Kobayashi et al. [27] under certain
assumptions.

Consider binary classification and follow our notations, we rewrite the Equation 1 in Kobayashi et al.
[27] as below,

Rrc(f) =
1

k(k + 1)
Ep(xk,ỹ)

∑
y∈Yk

∏k
j=1 p(yj | xj)∑

y′∈Yk,
∑

j y′
j=ỹ

∏k
j=1 p(y

′
j | xj)

ℓ(f(xk),y)

We notice that the weight term attached to the loss can be further rewritten as a constrained probability
as follows, ∏k

j=1 p(yj | xj)∑
y′∈Yk,

∑
j y′

j=ỹ

∏k
j=1 p(y

′
j | xj)

= p(y |
k∑

j=1

yj = ỹ,xk)

This allows us to further rewrite the risk Rrc with likelihood loss being ℓ(f(xk),y) =

−p(
∑k

j=1 yj = kỹ | xk):

Rrc(f) =
1

k(k + 1)
Ep(xk,ỹ)− ∑

y∈Yk

p(y |
k∑

j=1

yj = kỹ,xk)p(

k∑
j=1

yj = kỹ | xk)


=

1

k(k + 1)
Ep(xk,ỹ)

− ∑
y∈Yk

p(y,

k∑
j=1

yj = kỹ | xk)


=

1

k(k + 1)
Ep(xk,ỹ)

−p(k∑
j=1

yj = kỹ | xk)


=

1

k(k + 1)
Ep(xk,ỹ)[ℓ(f(x

k),y)] = Rllp(f)

The last few lines follow from the definition of conditional probabilities. This shows that the
risk Rrc(f) = Rllp(f), meaning that the reduction from risk Rrc(f) to the classical risk R(f) in
Kobayashi et al. [27] is applicable to our risk estimator Rllp , which proves that our learning method
is risk-consistent.

Proposition A.2. Assume that the loss function ℓ(f(x), y) is ρ-Lipschitz with respect to f(x) for
any y ∈ Y bounded by some constant. Let fllp be the hypothesis that minimizes the empirical risk,
and f∗

llp is the hypothesis that minimizes the true risk, then fllp converges to f∗
llp as m→∞.

Proof. This claim immediately follows Lemma A.1, where we shows that Rrc(f) = Rllp(f).
Therefore, it holds that Rllp(f̂)−Rllp(f

∗) = R(sc)(f̂)−R(sc)(f
∗), where the latter term, an always

positive term, is shown in Theorem 3.1 in Kobayashi et al. [27] that it converges to 0 at rate
√
m.

15

Proposition 4.1 The count probability p(
∑k

i=1 ŷi = s) of sampling k prediction variables with
summation being s from an unconstrained distribution p(y) =

∏k
i=1 p(ŷi) can be computed exactly

in time O(ks). Moreover, the set {p(
∑k

i=1 ŷi = s)}ks=0 can also be computed in time O(k2).

Proof. The claim that p(
∑k

i=1 ŷi = s) can be computed exactly in time O(ks) follows immediately
from Proposition 1 in Ahmed et al. [6]: in Ahmed et al. [6], the unconstrained distribution is a
factorized distribution obtained from k outputs from a single neural network model while in our
case, the unconstrained distribution p(y) is obtained from applying a classifier that gives a single
output p(yi) on k inputs; the constructive proof of Proposition 1 in Ahmed et al. [6] still applies
in our case. Moreover, the computation of p(

∑k
i=1 ŷi = k) is done in a dynamic programming

manner in the sense that for any s < k, p(
∑k

i=1 ŷi = s) is an intermediate result for computing
p(
∑k

i=1 ŷi = k). By caching the intermediate result, the set {p(
∑k

i=1 ŷi = s)}ks=0 can be obtained
by the time p(

∑k
i=1 ŷi = k) is computed, which finishes our proof.

B Instance MIL Experimental Results

In this section, we provide results for instance level feedback in the MIL setting. The baselines that
we used in our experiments, Gated-Attention and Attention are both examples of embedding based
approaches and do not make instance-level predictions. We compare against one baseline approach,
which is based on Instance-Max from Ilse et al. [24]. This uses the maximum instance probability as
an approximation for the "positiveness" of a bag. We then train it with a binary cross entropy. Note
that max pooling is stated in the literature as the best performing option and makes the “most sense”
in the MIL setting [24, 44].

Table 7: MIL experiment on MNIST dataset on instance-level classification. Each block represents
a different distribution from which we draw bag sizes—First Block: N (10, 2), Second Block:
N (50, 10), Third Block: N (100, 20). We run each experiment for 3 runs and report mean test
accuracy with standard error. We bold the highest value and both if the standard-errors overlap.

Training Bags 50 100 150 200 300 400 500

Instance-Max 0.8714± 0.0015 0.9577± 0.0096 0.9494± 0.0232 0.9845± 0.0009 0.9885± 0.0004 0.9903± 0.0008 0.9908± 0.0004
CL (Ours) 0.9551± 0.0055 0.9780± 0.0015 0.9826± 0.0014 0.9864± 0.0005 0.9906± 0.0001 0.9905± 0.0007 0.9916± 0.0003

Instance-Max 0.9398± 0.0010 0.9415± 0.0008 0.9513± 0.0113 0.9686± 0.0123 0.9849± 0.0010 0.9848± 0.0008 0.9867± 0.0008
CL (Ours) 0.9732± 0.0009 0.9776± 0.0009 0.9799± 0.0010 0.9816± 0.0005 0.9839± 0.0013 0.9864± 0.0006 0.9865± 0.0014

Instance-Max 0.9446± 0.0007 0.9462± 0.0005 0.9583± 0.0076 0.9700± 0.0035 0.9750± 0.0017 0.9776± 0.0008 0.9695± 0.0097
CL (Ours) 0.9695± 0.0010 0.9717± 0.0011 0.9759± 0.0013 0.9764± 0.0006 0.9780± 0.0001 0.9805± 0.0008 0.9798± 0.0003

Table 8: MIL experiment on MNIST dataset on instance-level classification. Each block represents
a different distribution from which we draw bag sizes—First Block: N (10, 2), Second Block:
N (50, 10), Third Block: N (100, 20). We run each experiment for 3 runs and report mean test AUC
with standard error. We bold the highest value and both if the standard-errors overlap.

Training Bags 50 100 150 200 300 400 500

Instance-Max 0.4904± 0.0054 0.8171± 0.0465 0.7740± 0.1072 0.9288± 0.0064 0.9460± 0.0022 0.9562± 0.0037 0.9603± 0.0016
CL (Ours) 0.8341± 0.0135 0.9040± 0.0146 0.9291± 0.0070 0.9394± 0.0005 0.9571± 0.0021 0.9592± 0.0029 0.9647± 0.0012

Instance-Max 0.4956± 0.0007 0.4965± 0.0003 0.5960± 0.0821 0.7297± 0.0959 0.8566± 0.0088 0.8554± 0.0080 0.8733± 0.0048
CL (Ours) 0.7518± 0.0090 0.7900± 0.0081 0.8125± 0.0106 0.8261± 0.0064 0.8473± 0.0064 0.8717± 0.0063 0.8709± 0.0120

Instance-Max 0.4974± 0.0002 0.5007± 0.0016 0.6170± 0.0571 0.7099± 0.0311 0.7546± 0.0164 0.7792± 0.0080 0.7102± 0.0867
CL (Ours) 0.7008± 0.0077 0.7214± 0.0102 0.7617± 0.0130 0.7673± 0.0059 0.7832± 0.0011 0.8085± 0.0084 0.8007± 0.0032

Our results show that for bags of size less than or equal to 150, our method greatly improves upon the
baseline and is better for bag sizes greater than or equal to 200. We notice that across both methods,
performance goes down as bag size increases; we expect this because we have less supervision on
positive bags (at least 1 label is less meaningful for bigger bags). However, our approach is able to
recover this gap compared to the baseline methodology. In the case of less overall training bags, less
than 150 training bags, we find that Instance-max really suffers on AUC while our objective guides
the model to learning something more meaningful—showcasing the robustness of our methodology.

16

C Experimental Details

In this section, we will provide relevant training details as it relates to each of our settings including
hyperparameters and dataset details.

Table 9: Illustration of Adult and Magic datasets showing the number of training bags for each
bag size. Note that we test on the same number of instances in all variations of bag size for both
experiments: 16280 for Adult and 3804 for Magic. The breakdown of training bags is the same
across all distributions of label proportion as well, i.e., [0, 1

2], [
1
2 , 1], [0, 1].

Bag Size Training Bags Adult Training Bags Magic

8 1024 768
32 256 192
128 64 48
512 16 12

C.1 Label Proportion

C.1.1 Adult Dataset

Hyperparameters. We use a learning rate of 0.00001 with the Adam Optimizer and β1 = 0.9, β2 =
0.999. The weight decay value is set to 0.001. We also notice that adding in L1 regularization of
0.001 improved the performance of our method. We train for 10000 epochs and use a set number
of warm epochs for our experiments. All parameters were obtained by using a holdout of 12.5% of
training data for validation on the [0, 1] uniform setting. The network shown in Table 10 was also
obtained grid search on this same validation set.

Table 10: Network used for Adult dataset in LLP Experiments.

Layer Type

1 fc - 2048 + ReLU
2 fc - 64 + ReLU
3 fc - 1 + logsigmoid

Training Procedure. For CL, we use the parameters and network described in the previous paragraph
and early stopping criterion based on validation loss from a held out validation set (12.5% of training
data). For PL, we use the parameters and network except that we do not use L1 as we found this
improves performance. We also use an early stopping criterion based on validation loss from a held
out validation set (12.5% of training data).

Computing Resources. Trained on Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHzU and AMD
EPYC 7313P 16-Core Processor CPU.

C.1.2 Magic Dataset

Hyperparameters. We use a learning rate of 0.0001 with the Adam Optimizer and β1 = 0.9, β2 =
0.999. The weight decay value is set to 0.001. We also notice that adding in L1 regularization of
0.001 improved the performance of our method. We train for 10000 epochs and use a set number
of warm epochs for our experiments. All parameters were obtained by using a holdout of 12.5% of
training data for validation on the [0, 1] uniform setting. The network shown in Table 11 was also
obtained grid search on this same validation set.

Training Procedure. For CL, we use the parameters and network described in the previous
paragraph and early stopping criterion based on validation loss from a held out validation set
(12.5% of training data). For PL, we use the parameters and network except that we do not use
L1 regularization as we found this improves performance. We also use an early stopping criterion

17

Table 11: Network used for Magic dataset in LLP Experiments.

Layer Type

1 fc - 2048 + ReLU
2 fc - 1 + logsigmoid

based on validation loss from a held out validation set (12.5% of training data). In Table 3, there are
two instances where we reran our method with no validation set, i.e. Magic [0, 1

2] and Magic [12 , 1]
because early stopping proved to be unstable with a small amount of validation samples. In these
experiments, we only use 87.5% of training data and ran for a fixed number of epochs: 2000. This
is because with only one validation bag, we can find ourselves with some instability in the training
procedure. Note that PL did not benefit from rerunning with this method.

Computing Resources. Trained on Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHzU and AMD
EPYC 7313P 16-Core Processor CPU.

C.2 Multi-Instance Learning

C.2.1 MNIST-Bags

Dataset Details. We experiment on various modulations of training bag size and number of training
bags. In the main experiment, we draw bag size from: {N (10, 2),N (50, 10),N (100, 20)} and
modulate number of training bags from {50, 100, 150, 200, 300, 400, 500}. In total, this makes 21
different settings. In our follow up experiment where we limit the number of training bags and overall
bag size, we draw bag size from: {N (5, 1),N (10, 2)}. For each experiment, we sample 1000 test
bags with size coorelating to the normal distribution associated.

Hyperparameters. All of our hyperparameters derive from Ilse et al. [24]. This includes using
the Adam optimizer with β1 = 0.9, β2 = 0.999, a learning rate of 0.0005, weight decay of 0.0001,
and max epochs of 200. For the main experiment, we use a validation holdout of 20% to find a class
weight for balancing the loss on positive bags versus negative bags. (We omit this step for our limited
data experiments.)

Table 12: Network used for all MNIST experiments in MIL settings. Derived from the same network
shown in Ilse et al. [24].

Layer Type

1 conv(5, 1, 0) - 20 + ReLU
2 maxpool(2, 2)
3 conv(5, 1, 0) - 50 + ReLU
4 maxpool(2, 2)
5 fc-500 + ReLU
6 fc-1 + logsigmoid

Training Procedure. For CL, we train on all the training data for the maximum number of
iterations: 200. We also use all of the hyperparameters described in the last paragraph and Ilse
et al. [24]. Because we were unable to reproduce the values in Ilse et al. [24] for the Attention and
Gated Attention mechanisms, we reran their experiments with our own implementation. To try and
reproduce their results, we follow their optimization procedure. Specifically, we use a holdout of
training data (20%) and validation loss + error for early stopping. We found that doing so provided
the best values for Attention and Gated Attention.

Instance Pooling. To pool together instance level classification at the final stage, there are several
operations that have been considered in the literature. Some include using the max and mean operator
[44]. We propose a new method based on our constraint. We compute the relevant probabilities
defined in 3 for the MIL setting. More specifically, we compute the probability that a bag has at least

18

one positive instance. We then round the probability of at least one positive instance to obtain our
bag level classification.

Computing Resources. Trained on AMD EPYC 7313P 16-Core Processor CPU.

C.2.2 Colon Cancer Dataset

Dataset Details. The dataset consists of 100 H&E images of which we use 99 of them. There are
a total of 51 positive bags and 48 negative bags. We use a series of data augmentations including
flipping, cropping, and rotation3. Note that these data augmentations do not align with those in the
original paper by Ilse et al. [24], so we reran their baseline methods.

Hyperparameters. We derive our set of hyperparameters from Ilse et al. [24]. We use the Adam
optimizer for all experiments with β1 = 0.9, β2 = 0.999. This includes weight decay of 0.0005,
learning rate of 0.0001, and a maximum of 100 epochs.

Table 13: MIL: Network used for CL in colon cancer dataset. Derived from the same network shown
in Ilse et al. [24].

Layer Type

1 conv(4, 1, 0) - 36 + ReLU
2 maxpool(2, 2)
3 conv(3, 1, 0) - 48 + ReLU
4 maxpool(2, 2)
5 fc-512 + ReLU
6 dropout
7 fc - 512 + ReLU
8 dropout
9 fc-2 + logsigmoid

Training Procedure. We perform 10-fold cross-validation and average the mean value of each
metric over 5 seeds. For CL, we do not use early stopping and train on all data for the maximum
number of epochs using the hyperparameters mentioned in the previous paragraph. For our baselines,
Attention and Gated-Attention, we use the same hyperparameters as mentioned above. However, we
follow the optimization procedure detailed in Ilse et al. [24] to give try and reproduce the results
given in the paper. This involves using a held out validation set for early stopping with validation
loss + error as the stopping criteria. For this experiment, this validation set is assumed to be the
size of 1 fold or one-ninth of the training data. (We find that including early stopping helps increase
performance for both baselines.)

Computing Resources. Trained on NVIDIA RTX A6000 GPU.

C.3 PU Learning

C.3.1 MNIST Dataset

Dataset Details. Our settings derive from Garg et al. [22]. We construct two main datasets from
the original MNIST dataset. This includes the Binarized MNIST and MNIST-17 as detailed in Table
15. In the Binarized MNIST setting, we assign digits [0− 4] as positive and [5− 9] as negative. In
the MNIST-17 setting, we assign digit 1 as positive and 7 as negative. The test set for both settings
are chosen from a set of unlabeled data.

Hyperparameters. We fix weight decay to be 0.0005 and Adam optimizer for all experiments with
β1 = 0.9, β2 = 0.999. We use a learning rate of 0.0001 and train for a maximum of 2000 epochs
in all experiments for both CL and CL-expect. We use a validation set with size equal to 10% of
training data in order to weigh the loss on positive data versus loss on unlabeled data.

3Refer to https://github.com/utayao/Atten_Deep_MIL for the preprocessed data generation code

19

Table 14: Network used for MNIST data in PU Learning experiments. Resembles the network in Garg
et al. [22] except we replace the last layer with a single output and logsigmoid instead of softmax.

Layer Type

1 fc - 5000 + ReLU
2 fc - 5000 + ReLU
3 fc - 50 + ReLU
4 fc-1 + logsigmoid

Training Procedure. For MNIST dataset experiments, we use a fully connected multi-layer
perceptron (MLP) defined in Table 14. We train CL and CL-expect with the hyperparameters defined
in the previous paragraph. Furthermore, we use a held out validation set, equivalent to 10% of training
data, for early stopping. While as results in Garg et al. [22] are aggregated over 10 epochs, we choose
to pick a single epoch based on our early stopping as this makes the most sense for our optimization
technique.

Computing Resources. Trained on a singular NVIDIA RTX 2080-Ti GPU.

Table 15: Table taken almost directly from Garg et al. [22]. Table shows the break down of the
various simulated PU datasets that we train on.

Dataset Simulated PU Dataset P vs N Training Test
Positive Unlabeled Unlabeled

CIFAR Binarized CIFAR [0− 4] vs. [5− 9] 12500 12500 2500
CIFAR Cat vs. Dog 3 vs. 5 3000 3000 500

MNIST Binarized MNIST [0− 4] vs. [5− 9] 15000 15000 2500
MNIST-17 1 vs. 7 3000 3000 500

C.3.2 CIFAR Dataset.

Dataset Details. Our settings derive from Garg et al. [22]. We construct two main datasets from
the original CIFAR dataset. This includes the Binarized CIFAR and CIFAR Cat vs. Dog as detailed
in Table 15. In the Binarized CIFAR setting, we assign classes [0− 4] as positive and classes [5− 9]
as negative. In the CIFAR Cat vs. Dog setting, we assign Cats (class 3) as positive and Dogs (class 5)
as negative. The test set for both settings are chosen from a set of unlabeled data.

Hyperparameters. We fix weight decay to be 0.0005 and Adam optimizer for all experiments with
β1 = 0.9, β2 = 0.999. We use a learning rate of 0.0001 for all experiments except for CL-expect in
the CIFAR Cat vs. Dog setting where we use 0.001. We use a validation set with size equal to 10%
of training data in order to weigh the loss on positive data versus loss on unlabeled data.

Training Procedure. We use a ResNet-18 architecture for all CIFAR experiments. We train CL
and CL-expect with the hyperparameters defined in the previous paragraph. Furthermore, we use
a held out validation set, equivalent to 10% of training data, for early stopping. While as results in
Garg et al. [22] are aggregated over 10 epochs, we choose to pick a single epoch as this makes the
most sense for our optimization technique.

Computing Resources. Trained on a singular NVIDIA 2080-Ti GPU.

C.3.3 Early Stopping

The early stopping procedure that we used in our experiments was a bit unique. Using our holdout
of validation data, we do early stopping using the proximity to the class prior and validation loss to
break ties. We can imagine that if we perfectly identify all positive and unlabeled samples and then
calculate accuracy against the actually provided labels, we would get an accuracy equivalent to the
class prior. This is because all the positive samples in the unlabeled set would be labeled incorrect.

20

D Limitations

In MIL, one assumption that our approach makes is that the label distribution of instances within a
bag are independent. This is a common assumption in the literature as stated in Carbonneau et al. [13].
However, in most practical scenarios, this assumption does not hold. Through empirical validation
we show that while this is true, our method can still outperform state of the art benchmarks on the
Colon Cancer dataest [41], which violates the independence assumption (Table 5). In PU Learning,
our approaches—CL and CL-expect—assume that the batch of data is sufficiently large such that the
distribution is roughly binomial. Note that CL-expect relies on the expected value of the binomial
distribution while as CL relies on the entire distribution. If the batch of data was too small, this
assumption would certainly degrade as batch-to-batch variance would make our loss unsuitable.

E Broader Impact

We provide a unified framework to count-based weakly supervised learning. One benefit enjoyed by
our approach is that it does not necessitate the presence of instance labels, and is therefore privacy
preserving. In many of our settings, we show that we can still train a strong instance level classifier
even with these weak bag-level annotations. Another important use case that we have not fully
explored in this paper is debiasing classifiers through using our proportion loss as a regularization
term. If we know the expected class priors, we can penalize any bias in the classifiers predictions.
Care should be taken however since, just as our approach can be used to de-bias classifiers, it can
also be used by a malicious actor to bias them.

21

	Introduction
	Problem Formulations
	Learning from Label Proportions
	Multiple Instance Learning
	Learning from Positive and Unlabeled Data

	A Unified Approach: Count Loss
	Tractable Computation of Count Probability
	Related Work
	Experiments
	Learning from Label Proportions
	Multiple Instance Learning
	Learning from Positive and Unlabeled Data

	Conclusions
	Proofs
	Instance MIL Experimental Results
	Experimental Details
	Label Proportion
	Adult Dataset
	Magic Dataset

	Multi-Instance Learning
	MNIST-Bags
	Colon Cancer Dataset

	PU Learning
	MNIST Dataset
	CIFAR Dataset.
	Early Stopping

	Limitations
	Broader Impact

